

Advanced Deep Learning with
TensorFlow 2 and Keras
Second Edition

Apply DL, GANs, VAEs, deep RL, unsupervised
learning, object detection and segmentation, and more

Rowel Atienza

BIRMINGHAM - MUMBAI

Advanced Deep Learning with TensorFlow 2 and Keras
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Andrew Waldron
Project Editor: Janice Gonsalves
Content Development Editor: Dr. Ian Hough
Technical Editor: Karan Sonawane
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Sandip Tadge

First published: October 2018
Second edition: February 2020
Production reference: 1260220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83882-165-4

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

Contributors

About the authors
Rowel Atienza is an Associate Professor at the Electrical and Electronics
Engineering Institute of the University of the Philippines, Diliman. He holds the
Dado and Maria Banatao Institute Professorial Chair in Artificial Intelligence and
received his MEng from the National University of Singapore for his work on an
AI-enhanced four-legged robot. He gained his Ph.D. at The Australian National
University for his contribution in the field of active gaze tracking for human-robot
interaction. His current research work focuses on AI and computer vision.

I would like to thank my family, Cherry, Diwa, and Jacob.
They never cease to support my work.

I would like to thank my mother, who instilled into me the value
of education.

I would like to express my gratitude to the people of Packt and
this book's technical reviewer, Janice, Ian, Karan, and Valerio.
They are inspiring and easy to work with.

I would like to thank the institutions who always support my
teaching and research agenda, University of the Philippines,
DOST, Samsung Research PH, and CHED-PCARI.

I would like to acknowledge my students. They have been
patient as I develop my courses in AI.

About the reviewer
Valerio Maggio received his Ph.D in Computational Science by the Dept. of
Mathematics of the University of Naples "Federico II", with a thesis in machine
learning and software engineering entitled "Improving Software Maintenance
using Unsupervised Machine Learning techniques." After some years as a postdoc
researcher and lecturer at the University of Salerno and at the University of
Basilicata, he joined the "Predictive Models for Biomedicine and Environment"
lab at Fondazione Bruno Kessler (FBK), where he worked as a Research Associate.
Valerio is currently a Senior Research Associate at the Dynamic Genetics Lab at
University of Bristol (http://dynamicgenetics.org/). His research interests focus
on methods and software for reproducible machine learning and deep learning for
biomedicine. Valerio is also a Cloud Research Software Engineer as part of the
Microsoft initiative for Higher Education and Research, and a very active member
of the Python community. He is a lead member of the organising committee of many
international conferences, such as EuroPython, PyCon/PyData Italy, and EuroScipy.

http://dynamicgenetics.org/

[i]

Table of Contents
Preface vii
Chapter 1: Introducing Advanced Deep Learning with Keras 1

1. Why is Keras the perfect deep learning library? 2
Installing Keras and TensorFlow 3

2. MLP, CNN, and RNN 5
The differences between MLP, CNN, and RNN 5

3. Multilayer Perceptron (MLP) 6
The MNIST dataset 7
The MNIST digit classifier model 9
Building a model using MLP and Keras 13
Regularization 15
Output activation and loss function 16
Optimization 19
Performance evaluation 23
Model summary 25

4. Convolutional Neural Network (CNN) 28
Convolution 30
Pooling operations 31
Performance evaluation and model summary 32

5. Recurrent Neural Network (RNN) 35
6. Conclusion 41
7. References 41

Chapter 2: Deep Neural Networks 43
1. Functional API 44

Creating a two-input and one-output model 47
2. Deep Residual Network (ResNet) 53

Table of Contents

[ii]

3. ResNet v2 63
4. Densely Connected Convolutional Network (DenseNet) 67

Building a 100-layer DenseNet-BC for CIFAR10 69
5. Conclusion 74
6. References 74

Chapter 3: Autoencoders 77
1. Principles of autoencoders 78
2. Building an autoencoder using Keras 81
3. Denoising autoencoders (DAEs) 90
4. Automatic colorization autoencoder 96
5. Conclusion 104
6. References 104

Chapter 4: Generative Adversarial Networks (GANs) 105
1. An Overview of GANs 105

Principles of GANs 107
2. Implementing DCGAN in Keras 112
3. Conditional GAN 121
4. Conclusion 131
5. References 131

Chapter 5: Improved GANs 133
1. Wasserstein GAN 134

Distance functions 134
Distance function in GANs 136
Use of Wasserstein loss 139
WGAN implementation using Keras 144

2. Least-squares GAN (LSGAN) 151
3. Auxiliary Classifier GAN (ACGAN) 155
4. Conclusion 169
5. References 169

Chapter 6: Disentangled Representation GANs 171
1. Disentangled representations 172
InfoGAN 174

Implementation of InfoGAN in Keras 178
Generator outputs of InfoGAN 189

2. StackedGAN 192
Implementation of StackedGAN in Keras 193
Generator outputs of StackedGAN 211

4. Conclusion 215
5. References 215

Table of Contents

[iii]

Chapter 7: Cross-Domain GANs 217
1. Principles of CycleGAN 218

The CycleGAN model 221
Implementing CycleGAN using Keras 227
Generator outputs of CycleGAN 242
CycleGAN on MNIST and SVHN datasets 245

2. Conclusion 252
3. References 252

Chapter 8: Variational Autoencoders (VAEs) 255
1. Principles of VAE 256

Variational inference 257
Core equation 258
Optimization 259
Reparameterization trick 260
Decoder testing 261
VAE in Keras 261
Using CNN for AE 268

2. Conditional VAE (CVAE) 274
3. 𝜷𝜷 -VAE – VAE with disentangled latent representations 282
4. Conclusion 286
5. References 286

Chapter 9: Deep Reinforcement Learning 289
1. Principles of Reinforcement Learning (RL) 290
2. The Q value 293
3. Q-learning example 294

Q-Learning in Python 299
4. Nondeterministic environment 306
5. Temporal-difference learning 307

Q-learning on OpenAI Gym 307
6. Deep Q-Network (DQN) 313

DQN on Keras 316
Double Q-learning (DDQN) 323

7. Conclusion 325
8. References 326

Chapter 10: Policy Gradient Methods 327
1. Policy gradient theorem 328
2. Monte Carlo policy gradient (REINFORCE) method 331
3. REINFORCE with baseline method 335
4. Actor-Critic method 338

Table of Contents

[iv]

5. Advantage Actor-Critic (A2C) method 341
6. Policy Gradient methods using Keras 344
7. Performance evaluation of policy gradient methods 360
8. Conclusion 366
9. References 367

Chapter 11: Object Detection 369
1. Object detection 370
2. Anchor boxes 372
3. Ground truth anchor boxes 379
4. Loss functions 386
5. SSD model architecture 390
6. SSD model architecture in Keras 394
7. SSD objects in Keras 395
8. SSD model in Keras 398
9. Data generator model in Keras 402
10. Example dataset 406
11. SSD model training 407
12. Non-Maximum Suppression (NMS) algorithm 408
13. SSD model validation 412
14. Conclusion 419
15. References 419

Chapter 12: Semantic Segmentation 421
1. Segmentation 422
2. Semantic segmentation network 425
3. Semantic segmentation network in Keras 428
4. Example dataset 433
5. Semantic segmentation validation 435
6. Conclusion 438
7. References 439

Chapter 13: Unsupervised Learning Using Mutual Information 441
1. Mutual Information 442
2. Mutual Information and Entropy 444
3. Unsupervised learning by maximizing the Mutual Information of
discrete random variables 447
4. Encoder network for unsupervised clustering 450
5. Unsupervised clustering implementation in Keras 454
6. Validation using MNIST 464
7. Unsupervised learning by maximizing the Mutual Information

of continuous random variables 464

Table of Contents

[v]

8. Estimating the Mutual Information of a bivariate Gaussian 466
9. Unsupervised clustering using continuous random variables

in Keras 473
10. Conclusion 481
11. References 481

Other Books You May Enjoy 483
Index 487

[vii]

Preface
In recent years, Deep Learning has made unprecedented success stories in difficult
problems in vision, speech, natural language processing and understanding, and
all other areas with abundance of data. The interest in this field from companies,
universities, governments, and research organizations has accelerated the advances
in the field. This book covers select important topics in Deep Learning with three
new chapters, Object Detection, Semantic Segmentation, and Unsupervised Learning using
Mutual Information. The advanced theories are explained by giving a background
of the principles, digging into the intuition behind the concepts, implementing
the equations and algorithms using Keras, and examining the results.

Artificial Intelligence (AI), as it stands today, is still far from being a well-
understood field. Deep Learning (DL), as a sub field of AI, is in the same position.
While it is far from being a mature field, many real-world applications such
as vision-based detection and recognition, autonomous navigation, product
recommendation, speech recognition and synthesis, energy conservation, drug
discovery, finance, and marketing are already using DL algorithms. Many more
applications will be discovered and built. The aim of this book is to explain advanced
concepts, give sample implementations, and let the readers as experts in their field
identify the target applications.

A field that is not completely mature is a double-edged sword. On one edge,
it offers a lot of opportunities for discovery and exploitation. There are many
unsolved problems in deep learning. This translates into opportunities to be the first
to market – be that in product development, publication, or recognition. The other
edge is it would be difficult to trust a not-fully-understood field in a mission-critical
environment. We can safely say that if asked, very few machine learning engineers
will ride an auto-pilot plane controlled by a deep learning system. There is a lot of
work to be done to gain this level of trust. The advanced concepts that are discussed
in this book have a high chance of playing a major role as the foundation in gaining
this level of trust.

Preface

[viii]

No DL book will be able to completely cover the whole field. This book is not an
exception. Given time and space, we could have touched interesting areas like
natural language processing and understanding, speech synthesis, automated
machine learning (AutoML), graph neural networks (GNNs), Bayesian deep
learning, and many others. However, this book believes in choosing and explaining
select areas so that readers can take up other fields that are not covered.

As the reader who is about to embark upon reading this book, keep in mind
that you chose an area that is exciting and can have a huge impact on society.
We are fortunate to have a job that we look forward to working on as we wake
up in the morning.

Who this book is for
The book is intended for machine learning engineers and students who would like
to gain a better understanding of advanced topics in deep learning. Each discussion
is supplemented with code implementation in Keras. In particular, the Keras API
of TensorFlow 2 or simply tf.keras is what's used This book is for readers who
would like to understand how to translate theory into working code implementation
in Keras. Apart from understanding theories, code implementation is usually one
of the difficult tasks in applying machine learning to real-world problems.

What this book covers
Chapter 1, Introducing Advanced Deep Learning with Keras, covers the key concepts
of deep learning such as optimization, regularization, loss functions, fundamental
layers, and networks and their implementation in tf.keras. This chapter serves
as a review of both deep learning and tf.keras using the sequential API.

Chapter 2, Deep Neural Networks, discusses the functional API of tf.keras. Two
widely used deep network architectures, ResNet and DenseNet, are examined
and implemented in tf.keras using the functional API.

Chapter 3, Autoencoders, covers a common network structure called the autoencoder,
which is used to discover the latent representation of input data. Two example
applications of autoencoders, denoising and colorization, are discussed and
implemented in tf.keras.

Chapter 4, Generative Adversarial Networks (GANs), discusses one of the recent
significant advances in deep learning. GAN is used to generate new synthetic
data that appear real. This chapter explains the principles of GAN. Two examples
of GAN, DCGAN and CGAN, are examined and implemented in tf.keras.

Preface

[ix]

Chapter 5, Improved GANs, covers algorithms that improve the basic GAN. The
algorithms address the difficulty in training GANs and improve the perceptual
quality of synthetic data. WGAN, LSGAN, and ACGAN are discussed and
implemented in tf.keras.

Chapter 6, Disentangled Representation GANs, discusses how to control the attributes of
the synthetic data generated by GANs. The attributes can be controlled if the latent
representations are disentangled. Two techniques in disentangling representations,
InfoGAN and StackedGAN, are covered and implemented in tf.keras.

Chapter 7, Cross-Domain GANs, covers a practical application of GAN, translating
images from one domain to another, commonly known as cross-domain transfer.
CycleGAN, a widely used cross-domain GAN, is discussed and implemented in
tf.keras. This chapter demonstrates CycleGAN performing colorization and style
transfer.

Chapter 8, Variational Autoencoders (VAEs), discusses another important topic in DL.
Similar to GAN, VAE is a generative model that is used to produce synthetic data.
Unlike GAN, VAE focuses on decodable continuous latent space that is suitable for
variational inference. VAE and its variations, CVAE and β-VAE, are covered and
implemented in tf.keras.

Chapter 9, Deep Reinforcement Learning, explains the principles of reinforcement
learning and Q-learning. Two techniques in implementing Q-learning for discrete
action space are presented, Q-table update and Deep Q-Networks (DQNs).
Implementation of Q-learning using Python and DQN in tf.keras are demonstrated in
OpenAI Gym environments.

Chapter 10, Policy Gradient Methods, explains how to use neural networks to learn the
policy for decision making in reinforcement learning. Four methods are covered and
implemented in tf.keras and OpenAI Gym environments, REINFORCE, REINFORCE
with Baseline, Actor-Critic, and Advantage Actor-Critic. The example presented in
this chapter demonstrates policy gradient methods on a continuous action space.

Chapter 11, Object Detection, discusses one of the most common applications of
computer vision, object detection or identifying and localizing objects in an image.
Key concepts of a multi-scale object detection algorithm called SSD are covered
and an implementation is built step by step using tf.keras. An example technique for
dataset collection and labeling is presented. Afterward, the tf.keras implementation of
SSD is trained and evaluated using the dataset.

Preface

[x]

Chapter 12, Semantic Segmentation, discusses another common application of
computer vision, semantic segmentation or identifying the object class of each pixel
in an image. Principles of segmentation are discussed. Then, semantic segmentation
is covered in more detail. An example implementation of a semantic segmentation
algorithm called FCN is built and evaluated using tf.keras. The same dataset
collected in the previous chapter is used but relabeled for semantic segmentation.

Chapter 13, Unsupervised Learning Using Mutual Information, looks at how DL is not
going to advance if it heavily depends on human labels. Unsupervised learning
focuses on algorithms that do not require human labels. One effective technique
to achieve unsupervised learning is to take advantage of the concept of Mutual
Information (MI). By maximizing MI, unsupervised clustering/classification is
implemented and evaluated using tf.keras.

To get the most out of this book
• Deep learning and Python: The reader should have a fundamental knowledge

of deep learning and its implementation in Python. While previous experience
in using Keras to implement deep learning algorithms is important, it is not
required. Chapter 1, Introducing Advanced Deep Learning with Keras, offers a
review of deep learning concepts and their implementation in tf.keras.

• Math: The discussions in this book assume that the reader is familiar with
calculus, linear algebra, statistics, and probability at college level.

• GPU: The majority of the tf.keras implementations in this book require
a GPU. Without a GPU, it is not practical to execute many of the code
examples because of the time involved (many hours to days). The examples
in this book use reasonable amounts of data as much as possible in order to
minimize the use of high-performance computers. The reader is expected to
have access to at least NVIDIA GTX 1060.

• Editor: The example code in this book was edited using vim in Ubuntu Linux
18.04 LTS and MacOS Catalina. Any Python-aware text editor is acceptable.

• TensorFlow 2: The code examples in this book are written using the Keras
API of TensorFlow 2 or tf2. Please ensure that the NVIDIA GPU driver and
tf2 are both properly installed.

• GitHub: We learn by example and experimentation. Please git pull or fork
the code bundle for the book from its GitHub repository. After getting the
code, examine it. Run it. Change it. Run it again. Do creative experiments by
tweaking the code. It is the only way to appreciate all the theory explained
in the chapters. Giving a star on the book's GitHub repository https://
github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
is also highly appreciated.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Preface

[xi]

Download the example code files
The code bundle for the book is hosted on GitHub at:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide color images of figures used in this book. You can download it here:
https://static.packt-cdn.com/downloads/9781838821654_ColorImages.pdf.

Conventions used
The code in this book is in Python. More specifically, Python 3. For example:

A block of code is set as follows:

def build_generator(inputs, image_size):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 Arguments:
 inputs (Layer): Input layer of the generator
 the z-vector)
 image_size (tensor): Target size of one side
 (assuming square image)

 Returns:
 generator (Model): Generator Model
 """

 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 x = Dense(image_resize * image_resize * layer_filters[0])(inputs)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9787838821654_ColorImages.pdf

Preface

[xii]

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Activation('sigmoid')(x)
 generator = Model(inputs, x, name='generator')
 return generator

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

generate fake images
fake_images = generator.predict([noise, fake_labels])
real + fake images = 1 batch of train data
x = np.concatenate((real_images, fake_images))
real + fake labels = 1 batch of train data labels
labels = np.concatenate((real_labels, fake_labels))

Whenever possible, docstrings are is included. At the very least, text comments
are used to minimize space usage.

Any command-line code execution is written as follows:

python3 dcgan-mnist-4.2.1.py

The above example has the following layout: algorithm-dataset-chapter.
section.number.py. The command-line example is DCGAN on the MNIST dataset
in Chapter 4, Generative Adversarial Networks (GANs) second section and first listing.
In some cases, the explicit command line to execute is not written but it is assumed
to be:

python3 name-of-the-file-in-listing

The file name of the code example is included in the Listing caption. This book uses
Listing to identify code examples in the text.

Preface

[xiii]

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
StackedGAN has two additional loss functions, Conditional and Entropy.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

Warnings or important notes appear like this.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com

[1]

1
Introducing Advanced Deep

Learning with Keras
In this first chapter, we will introduce three deep learning artificial neural networks
that we will be using throughout the book. These networks are MLP, CNN, and
RNN (defined and described in Section 2), which are the building blocks of selected
advanced deep learning topics covered in this book, such as autoregressive networks
(autoencoder, GAN, and VAE), deep reinforcement learning, object detection and
segmentation, and unsupervised learning using mutual information.

Together, we'll discuss how to implement MLP, CNN, and RNN based models
using the Keras library in this chapter. More specifically, we will use the TensorFlow
Keras library called tf.keras. We'll start by looking at why tf.keras is an excellent
choice as a tool for us. Next, we'll dig into the implementation details within the
three deep learning networks.

This chapter will:

• Establish why the tf.keras library is a great choice to use for advanced deep
learning

• Introduce MLP, CNN, and RNN – the core building blocks of advanced deep
learning models, which we'll be using throughout this book

• Provide examples of how to implement MLP, CNN, and RNN based models
using tf.keras

• Along the way, start to introduce important deep learning concepts,
including optimization, regularization, and loss function

Introducing Advanced Deep Learning with Keras

[2]

By the end of this chapter, we'll have the fundamental deep learning networks
implemented using tf.keras. In the next chapter, we'll get into the advanced
deep learning topics that build on these foundations. Let's begin this chapter by
discussing Keras and its capabilities as a deep learning library.

1. Why is Keras the perfect deep learning
library?
Keras [1] is a popular deep learning library with over 370,000 developers using it at
the time of writing – a number that is increasing by about 35% every year. Over 800
contributors actively maintain it. Some of the examples we'll use in this book have
been contributed to the official Keras GitHub repository.

Google's TensorFlow, a popular open source deep learning library, uses Keras as a
high-level API for its library. It is commonly called tf.keras. In this book, we will
use the word Keras and tf.keras interchangeably.

tf.keras is a popular choice as a deep learning library since it is highly integrated
into TensorFlow, which is known in production deployments for its reliability.
TensorFlow also offers various tools for production deployment and maintenance,
debugging and visualization, and running models on embedded devices and
browsers. In the technology industry, Keras is used by Google, Netflix, Uber, and
NVIDIA.

We have chosen tf.keras as our tool of choice to work with in this book because
it is a library dedicated to accelerating the implementation of deep learning models.
This makes Keras ideal for when we want to be practical and hands-on, such as
when we're exploring the advanced deep learning concepts in this book. Because
Keras is designed to accelerate the development, training, and validation of deep
learning models, it is essential to learn the key concepts in this field before someone
can maximize the use of the library.

In the tf.keras library, layers are connected to one another like pieces of
Lego, resulting in a model that is clean and easy to understand. Model training
is straightforward, requiring only data, a number of epochs of training, and
metrics to monitor.

All of the examples in this book can be found on GitHub at the
following link: https://github.com/PacktPublishing/
Advanced-Deep-Learning-with-Keras.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 1

[3]

The end result is that most deep learning models can be implemented with
significantly fewer lines of code compared to other deep learning libraries
such as PyTorch. By using Keras, we'll boost productivity by saving time in
code implementation, which can instead be spent on more critical tasks such as
formulating better deep learning algorithms.

Likewise, Keras is ideal for the rapid implementation of deep learning models,
like the ones that we will be using in this book. Typical models can be built in just
a few lines of code using the Sequential model API. However, do not be misled by
its simplicity.

Keras can also build more advanced and complex models using its functional
API and Model and Layer classes for dynamic graphs, which can be customized
to satisfy unique requirements. The functional API supports building graph-
like models, layer reuse, and creating models that behave like Python functions.
Meanwhile, the Model and Layer classes provide a framework for implementing
uncommon or experimental deep learning models and layers.

Installing Keras and TensorFlow
Keras is not an independent deep learning library. As you can see in Figure
1.1.1, it is built on top of another deep learning library or backend. This could
be Google's TensorFlow, MILA's Theano, Microsoft's CNTK, or Apache MXNet.
However, unlike the previous edition of this book, we will use Keras as provided
by TensorFlow 2.0 (tf2 or simply tf), which is better known as tf.keras, to
take advantage of the useful tools offered by tf2. tf.keras is also considered the
de facto frontend of TensorFlow, which has exhibited its proven reliability in the
production environment. Furthermore, Keras' support for backends other than
TensorFlow will no longer be available in the near future.

Migration from Keras to tf.keras is generally as straightforward as changing:

from keras... import ...

to

from tensorflow.keras... import ...

In this book, the code examples are all written in Python 3 as support for Python 2
ends in the year 2020.

Introducing Advanced Deep Learning with Keras

[4]

On hardware, Keras runs on a CPU, GPU, and Google's TPU. In this book, we'll test
on a CPU and NVIDIA GPUs (specifically, the GTX 1060, GTX 1080Ti, RTX 2080Ti,
V100, and Quadro RTX 8000 models):

Figure 1.1.1: Keras is a high-level library that sits on top of other
deep learning frameworks. Keras is supported on CPU, GPU, and TPU.

Before proceeding with the rest of the book, we need to ensure that tf2 is correctly
installed. There are multiple ways to perform the installation; one example is by
installing tf2 using pip3:

$ sudo pip3 install tensorflow

If we have a supported NVIDIA GPU, with properly installed drivers, and both
NVIDIA CUDA toolkit and the cuDNN Deep Neural Network library, it is highly
recommended that you install the GPU-enabled version since it can accelerate both
training and predictions:

$ sudo pip3 install tensorflow-gpu

There is no need to install Keras as it is already a package in tf2. If you are
uncomfortable installing libraries system-wide, it is highly recommended to use an
environment such as Anaconda (https://www.anaconda.com/distribution/).
Other than having an isolated environment, the Anaconda distribution installs
commonly used third-party packages for data sciences that are indispensable for
deep learning.

The examples presented in this book will require additional packages, such as
pydot, pydot_ng, vizgraph, python3-tk, and matplotlib. We'll need to install
these packages before proceeding beyond this chapter.

The following should not generate any errors if tf2 is installed along with its
dependencies:

https://www.anaconda.com/distribution/

Chapter 1

[5]

$ python3

>>> import tensorflow as tf

>>> print(tf.__version__)

2.0.0

>>> from tensorflow.keras import backend as K

>>> print(K.epsilon())

1e-07

This book does not cover the complete Keras API. We'll only be covering the
materials needed to explain selected advanced deep learning topics in this book.
For further information, we can consult the official Keras documentation, which can
be found at https://keras.io or https://www.tensorflow.org/guide/keras/
overview.

In the succeeding sections, the details of MLP, CNN, and RNN will be discussed.
These networks will be used to build a simple classifier using tf.keras.

2. MLP, CNN, and RNN
We've already mentioned that we'll be using three deep learning networks, they are:

• MLP: Multilayer Perceptron
• CNN: Convolutional Neural Network
• RNN: Recurrent Neural Network

These are the three networks that we will be using throughout this book. Later on,
you'll find that they are often combined together in order to take advantage of the
strength of each network.

In this chapter, we'll discuss these building blocks one by one in more detail. In the
following sections, MLP is covered alongside other important topics such as loss
functions, optimizers, and regularizers. Following this, we'll cover both CNNs and
RNNs.

The differences between MLP, CNN, and RNN
An MLP is a fully connected (FC) network. You'll often find it referred to as either
deep feed-forward network or feed-forward neural network in some literature. In
this book, we will use the term MLP. Understanding this network in terms of known
target applications will help us to get insights about the underlying reasons for the
design of the advanced deep learning models.

https://keras.io
https://www.tensorflow.org/guide/keras/overview
https://www.tensorflow.org/guide/keras/overview

Introducing Advanced Deep Learning with Keras

[6]

MLPs are common in simple logistic and linear regression problems. However,
MLPs are not optimal for processing sequential and multi-dimensional data
patterns. By design, an MLP struggles to remember patterns in sequential data
and requires a substantial number of parameters to process multi-dimensional data.

For sequential data input, RNNs are popular because the internal design allows
the network to discover dependency in the history of the data, which is useful
for prediction. For multi-dimensional data like images and videos, CNNs excel
in extracting feature maps for classification, segmentation, generation, and other
downstream tasks. In some cases, a CNN in the form of a 1D convolution is also
used for networks with sequential input data. However, in most deep learning
models, MLP and CNN or RNN are combined to make the most out of each network.

MLP, CNN, and RNN do not complete the whole picture of deep networks. There
is a need to identify an objective or loss function, an optimizer, and a regularizer.
The goal is to reduce the loss function value during training, since such a reduction
is a good indicator that a model is learning.

To minimize this value, the model employs an optimizer. This is an algorithm that
determines how weights and biases should be adjusted at each training step. A
trained model must work not only on the training data but also on data outside of
the training environment. The role of the regularizer is to ensure that the trained
model generalizes to new data.

Now, let's get into the three networks – we'll begin by talking about the MLP
network.

3. Multilayer Perceptron (MLP)
The first of the three networks we will be looking at is the MLP network. Let's
suppose that the objective is to create a neural network for identifying numbers
based on handwritten digits. For example, when the input to the network is an
image of a handwritten number 8, the corresponding prediction must also be
the digit 8. This is a classic job of classifier networks that can be trained using
logistic regression. To both train and validate a classifier network, there must be
a sufficiently large dataset of handwritten digits. The Modified National Institute
of Standards and Technology dataset, or MNIST [2] for short, is often considered as
the Hello World! of deep learning datasets. It is a suitable dataset for handwritten
digit classification.

Before we discuss the MLP classifier model, it's essential that we understand the
MNIST dataset. A large number of examples in this book use the MNIST dataset.
MNIST is used to explain and validate many deep learning theories because the
70,000 samples it contains are small, yet sufficiently rich in information:

Chapter 1

[7]

Figure 1.3.1: Example images from the MNIST dataset. Each grayscale image is 28 × 28-pixels.

In the following section, we'll briefly introduce MNIST.

The MNIST dataset
MNIST is a collection of handwritten digits ranging from 0 to 9. It has a training
set of 60,000 images, and 10,000 test images that are classified into corresponding
categories or labels. In some literature, the term target or ground truth is also used
to refer to the label.

In the preceding figure, sample images of the MNIST digits, each being sized at 28
x 28 - pixel, in grayscale, can be seen. To use the MNIST dataset in Keras, an API
is provided to download and extract images and labels automatically. Listing 1.3.1
demonstrates how to load the MNIST dataset in just one line, allowing us to both
count the train and test labels and then plot 25 random digit images.

Listing 1.3.1: mnist-sampler-1.3.1.py

import numpy as np
from tensorflow.keras.datasets import mnist
import matplotlib.pyplot as plt

load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

count the number of unique train labels
unique, counts = np.unique(y_train, return_counts=True)
print("Train labels: ", dict(zip(unique, counts)))

count the number of unique test labels

Introducing Advanced Deep Learning with Keras

[8]

unique, counts = np.unique(y_test, return_counts=True)
print("Test labels: ", dict(zip(unique, counts)))

sample 25 mnist digits from train dataset
indexes = np.random.randint(0, x_train.shape[0], size=25)
images = x_train[indexes]
labels = y_train[indexes]

plot the 25 mnist digits
plt.figure(figsize=(5,5))
for i in range(len(indexes)):
 plt.subplot(5, 5, i + 1)
 image = images[i]
 plt.imshow(image, cmap='gray')
 plt.axis('off')

plt.savefig("mnist-samples.png")
plt.show()
plt.close('all')

The mnist.load_data() method is convenient since there is no need to load
all 70,000 images and labels individually and store them in arrays. Execute the
following:

python3 mnist-sampler-1.3.1.py

On the command line, the code example prints the distribution of labels in the train
and test datasets:

Train labels:{0: 5923, 1: 6742, 2: 5958, 3: 6131, 4: 5842, 5: 5421, 6:
5918, 7: 6265, 8: 5851, 9: 5949}

Test labels:{0: 980, 1: 1135, 2: 1032, 3: 1010, 4: 982, 5: 892, 6: 958,
7: 1028, 8: 974, 9: 1009}

Afterward, the code will plot 25 random digits, as shown in previously in Figure
1.3.1.

Before discussing the MLP classifier model, it is essential to keep in mind that
while the MNIST data consists of two dimensional tensors, it should be reshaped
depending on the type of input layer. The following Figure 1.3.2 shows how a 3 × 3
grayscale image is reshaped for MLP, CNN, and RNN input layers:

Chapter 1

[9]

Figure 1.3.2: An input image similar to the MNIST data is reshaped depending on the type of input layer.
For simplicity, the reshaping of a 3 × 3 grayscale image is shown.

In the following sections, an MLP classifier model for MNIST will be introduced.
We will demonstrate how to efficiently build, train, and validate the model using
tf.keras.

The MNIST digit classifier model
The proposed MLP model shown in Figure 1.3.3 can be used for MNIST digit
classification. When the units or perceptrons are exposed, the MLP model is a fully
connected network, as shown in Figure 1.3.4. We will also show how the output
of the perceptron is computed from inputs as a function of weights, wi, and bias,
bn, for the n-th unit. The corresponding tf.keras implementation is illustrated
in Listing 1.3.2:

Figure 1.3.3: The MLP MNIST digit classifier model

Introducing Advanced Deep Learning with Keras

[10]

Figure 1.3.4: The MLP MNIST digit classifier in Figure 1.3.3 is made of fully connected layers. For simplicity,
the activation and dropout layers are not shown. One unit or perceptron is also shown in detail.

Listing 1.3.2: mlp-mnist-1.3.2.py

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist

load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector

Chapter 1

[11]

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

image dimensions (assumed square)
image_size = x_train.shape[1]
input_size = image_size * image_size

resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

network parameters
batch_size = 128
hidden_units = 256
dropout = 0.45

model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
this is the output for one-hot vector
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

loss function for one-hot vector
use of adam optimizer
accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

validate the model on test dataset to determine generalization
_, acc = model.evaluate(x_test,
 y_test,
 batch_size=batch_size,

Introducing Advanced Deep Learning with Keras

[12]

 verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Before discussing the model implementation, the data must be in the correct shape
and format. After loading the MNIST dataset, the number of labels is computed as:

compute the number of labels
num_labels = len(np.unique(y_train))

Hardcoding num_labels = 10 is also an option. But, it's always a good practice to
let the computer do its job. The code assumes that y_train has labels 0 to 9.

At this point, the labels are in digit format, that is, from 0 to 9. This sparse scalar
representation of labels is not suitable for the neural network prediction layer that
outputs probabilities per class. A more suitable format is called a one-hot vector,
a 10-dimensional vector with all elements 0, except for the index of the digit class.
For example, if the label is 2, the equivalent one-hot vector is [0,0,1,0,0,0,0,0,0,0].
The first label has index 0.

The following lines convert each label into a one-hot vector:

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

In deep learning, data are stored in tensors. The term tensor applies to a scalar
(0D tensor), vector (1D tensor), matrix (two dimensional tensor), and
multi-dimensional tensor.

From this point, the term tensor is used unless scalar, vector, or matrix makes the
explanation clearer.

The rest of the code as shown below computes the image dimensions, the input_
size value of the first dense layer, and scales each pixel value from 0 to 255 to
range from 0.0 to 1.0. Although raw pixel values can be used directly, it is better
to normalize the input data so as to avoid large gradient values that could make
training difficult. The output of the network is also normalized. After training, there
is an option to put everything back to the integer pixel values by multiplying the
output tensor by 255.

The proposed model is based on MLP layers. Therefore, the input is expected to
be a 1D tensor. As such, x_train and x_test are reshaped to [60,000, 28 * 28]
and [10,000, 28 * 28], respectively. In NumPy, a size of -1 means to let the library
compute the correct dimension. In the case of x_train, this is 60,000.

Chapter 1

[13]

image dimensions (assumed square) 400
image_size = x_train.shape[1]
input_size = image_size * image_size

resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

After preparing the dataset, the following focuses on building the MLP classifier
model using the Sequential API of Keras.

Building a model using MLP and Keras
After the data preparation, building the model is next. The proposed model is
made of three MLP layers. In Keras, an MLP layer is referred to as dense, which
stands for the densely connected layer. Both the first and second MLP layers are
identical in nature with 256 units each, followed by the Rectified Linear Unit
(ReLU) activation and dropout. 256 units are chosen since 128, 512, and 1,024 units
have lower performance metrics. At 128 units, the network converges quickly but
has a lower test accuracy. The additional number of units for 512 or 1,024 does not
significantly increase the test accuracy.

The number of units is a hyperparameter. It controls the capacity of the network.
The capacity is a measure of the complexity of the function that the network can
approximate. For example, for polynomials, the degree is the hyperparameter. As
the degree increases, the capacity of the function also increases.

As shown in the following lines of code, the classifier model is implemented using
the Sequential API of Keras. This is sufficient if the model requires one input and
one output as processed by a sequence of layers. For simplicity, we'll use this for
now; however, in Chapter 2, Deep Neural Networks, the Functional API of Keras will
be introduced to implement advanced deep learning models that require more
complex structures such as multiple inputs and outputs.

model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
this is the output for one-hot vector model.
add(Activation('softmax'))

Introducing Advanced Deep Learning with Keras

[14]

Since a Dense layer is a linear operation, a sequence of Dense layers can only
approximate a linear function. The problem is that the MNIST digit classification
is inherently a non-linear process. Inserting a relu activation between the Dense
layers will enable an MLP network to model non-linear mappings. relu or ReLU is
a simple non-linear function. It's very much like a filter that allows positive inputs
to pass through unchanged while clamping everything else to zero. Mathematically,
relu is expressed in the following equation and is plotted in Figure 1.3.5:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)

Figure 1.3.5: Plot of the ReLU function. The ReLU function introduces non-linearity in neural networks.

There are other non-linear functions that can be used, such as elu, selu, softplus,
sigmoid, and tanh. However, relu is the most commonly used function and is
computationally efficient due to its simplicity. The sigmoid and tanh functions are
used as activation functions in the output layer and will be described later. Table 1.3.1
shows the equation for each of these activation functions:

Chapter 1

[15]

relu relu(x) = max(0, x) 1.3.1
softplus softplus(x) = log(1 + ex) 1.3.2
elu

 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑎𝑎) = { 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0
𝑎𝑎(𝑒𝑒𝑥𝑥 − 1) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

where a ≥ 0 and is a tunable hyperparameter

1.3.3

selu selu(x) = k × elu(x, a)
where k = 1.0507009873554804934193349852946 and
a = 1.6732632423543772848170429916717

1.3.4

sigmoid
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 1

1 + 𝑒𝑒−𝑥𝑥
1.3.5

tanh
tanh(𝑥𝑥) = 𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
1.3.6

Table 1.3.1: Definition of common non-linear activation functions

Although we have completed the key layers of the MLP classifier model, we have not
addressed the issue of generalization or the ability of the model to perform beyond
the train dataset. To address this issue, we will introduce regularization in the next
section.

Regularization
A neural network has the tendency to memorize its training data, especially if it
contains more than enough capacity. In such cases, the network fails catastrophically
when subjected to the test data. This is the classic case of the network failing to
generalize. To avoid this tendency, the model uses a regularizing layer or function. A
common regularizing layer is Dropout.

The idea of dropout is simple. Given a dropout rate (here, it is set to dropout = 0.45),
the Dropout layer randomly removes that fraction of units from participating in the
next layer. For example, if the first layer has 256 units, after dropout = 0.45 is applied,
only (1 - 0.45) * 256 units = 140 units from layer 1 participate in layer 2.

Introducing Advanced Deep Learning with Keras

[16]

The Dropout layer makes neural networks robust to unforeseen input data because
the network is trained to predict correctly, even if some units are missing. It's worth
noting that dropout is not used in the output layer and it is only active during
training. Moreover, dropout is not present during predictions.

There are regularizers that can be used other than dropouts such as l1 or l2. In
Keras, the bias, weight, and activation outputs can be regularized per layer. l1 and
l2 favor smaller parameter values by adding a penalty function. Both l1 and l2
enforce the penalty using a fraction of the sum of the absolute (l1) or square (l2)
of parameter values. In other words, the penalty function forces the optimizer to
find parameter values that are small. Neural networks with small parameter values
are more insensitive to the presence of noise from within the input data.

As an example, an l2-weight regularizer with fraction=0.001 can be implemented
as:

from tensorflow.keras.regularizers import l2
model.add(Dense(hidden_units,
 kernel_regularizer=l2(0.001),
 input_dim=input_size))

No additional layer is added if an l1 or l2 regularization is used. The regularization
is imposed in the Dense layer internally. For the proposed model, dropout still has
a better performance than l2.

We are almost complete with our model. The next section focuses on the output
layer and loss function.

Output activation and loss function
The output layer has 10 units followed by a softmax activation layer. The 10 units
correspond to the 10 possible labels, classes, or categories. The softmax activation
can be expressed mathematically, as shown in the following equation:

𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑁𝑁−1
𝑗𝑗=0

 (Equation 1.3.7)

Chapter 1

[17]

The equation is applied on all N = 10 outputs, xi for i = 0, 1 … 9 for the final
prediction. The idea of softmax is surprisingly simple. It squashes the outputs
into probabilities by normalizing the prediction. Here, each predicted output
is a probability that the index is the correct label of the given input image. The
sum of all the probabilities for all outputs is 1.0. For example, when the softmax
layer generates a prediction, it will be a 10-dim 1D tensor that may look like the
following output:

[3.57351579e-11 7.08998016e-08 2.30154569e-07 6.35787558e-07

5.57471187e-11 4.15353840e-09 3.55973775e-16 9.99995947e-01

1.29531730e-09 3.06023480e-06]

The prediction output tensor suggests that the input image is going to be 7 given
that its index has the highest probability. The numpy.argmax() method can be used
to determine the index of the element with the highest value.

There are other choices of output activation layer, such as linear, sigmoid, or
tanh. The linear activation is an identity function. It copies its input to its output.
The sigmoid function is more specifically known as a logistic sigmoid. This will
be used if the elements of the prediction tensor will be independently mapped
between 0.0 and 1.0. The summation of all the elements of the predicted tensor is
not constrained to 1.0 unlike in softmax. For example, sigmoid is used as the last
layer in sentiment prediction (from 0.0 to 1.0, 0.0 being bad, and 1.0 being good) or
in image generation (0.0 is mapped to pixel level 0 and 1.0 is mapped to pixel 255).

The tanh function maps its input in the range -1.0 to 1.0. This is important if the
output can swing in both positive and negative values. The tanh function is more
popularly used in the internal layer of recurrent neural networks but has also been
used as an output layer activation. If tanh is used to replace sigmoid in the output
activation, the data used must be scaled appropriately. For example, instead of

scaling each grayscale pixel in the range [0.0 1.0] using 𝑥𝑥 =
𝑥𝑥
255 , it is assigned in

the range [-1.0 to 1.0] using 𝑥𝑥 = 𝑥𝑥 − 127.5
127.5 .

The following graph in Figure 1.3.6 shows the sigmoid and tanh functions.
Mathematically, sigmoid can be expressed in the following equation:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝜎𝜎(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥 (Equation 1.3.5)

Introducing Advanced Deep Learning with Keras

[18]

Figure 1.3.6: Plots of sigmoid and tanh

How far the predicted tensor is from the one-hot ground truth vector is called
loss. One type of loss function is mean_squared_error (MSE), or the average of
the squares of the differences between the target or label and the prediction. In the
current example, we are using categorical_crossentropy. It's the negative of
the sum of the product of the target or label and the logarithm of the prediction per
category. There are other loss functions that are available in Keras, such as mean_
absolute_error and binary_crossentropy. Table 1.3.2 summarizes the common
loss functions.

Loss Function Equation
mean_squared_error

1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ (𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝)2
𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐

𝑖𝑖=1

mean_absolute_error
1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ |𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝|

𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐

𝑖𝑖=1

Chapter 1

[19]

categorical_crossentropy

− ∑ 𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙log 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝

𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐

𝑖𝑖=1

binary_crossentropy −𝑦𝑦1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 log 𝑦𝑦1
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −

(1 − 𝑦𝑦1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) log(1 − 𝑦𝑦1
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

Table 1.3.2: Summary of common loss functions. Categories refers to the number of classes (for example: 10
for MNIST) in both the label and the prediction. Loss equations shown are for one output only. The mean

loss value is the average for the entire batch.

The choice of the loss function is not arbitrary but should be a criterion that the
model is learning. For classification by category, either categorical_crossentropy
or mean_squared_error is a good choice after the softmax activation layer. The
binary_crossentropy loss function is normally used after the sigmoid activation
layer, while mean_squared_error is an option for the tanh output.

In the next section, we will discuss optimization algorithms to minimize the loss
functions that we discussed here.

Optimization
With optimization, the objective is to minimize the loss function. The idea is that
if the loss is reduced to an acceptable level, the model has indirectly learned the
function that maps inputs to outputs. Performance metrics are used to determine
if a model has learned the underlying data distribution. The default metric in Keras
is loss. During training, validation, and testing, other metrics such as accuracy
can also be included. Accuracy is the percentage, or fraction, of correct predictions
based on ground truth. In deep learning, there are many other performance
metrics. However, it depends on the target application of the model. In literature,
the performance metrics of the trained model on the test dataset is reported for
comparison with other deep learning models.

Introducing Advanced Deep Learning with Keras

[20]

In Keras, there are several choices for optimizers. The most commonly used
optimizers are stochastic gradient descent (SGD), Adaptive Moments (Adam),
and Root Mean Squared Propagation (RMSprop). Each optimizer features tunable
parameters like learning rate, momentum, and decay. Adam and RMSprop are
variations of SGD with adaptive learning rates. In the proposed classifier network,
Adam is used since it has the highest test accuracy.

SGD is considered the most fundamental optimizer. It's a simpler version of the
gradient descent in calculus. In gradient descent (GD), tracing the curve of a
function downhill finds the minimum value, much like walking downhill in a valley
until the bottom is reached.

The GD algorithm is illustrated in Figure 1.3.7. Let's suppose x is the parameter (for
example, weight) being tuned to find the minimum value of y (for example, the loss

function). Starting at an arbitrary point of x= -0.5. the gradient
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −2.0 . The GD

algorithm imposes that x is then updated to 𝑥𝑥 = −0.5 − 𝜖𝜖(−2.0) . The new value of
x is equal to the old value, plus the opposite of the gradient scaled by 𝜖𝜖 . The small
number 𝜖𝜖 refers to the learning rate. If 𝜖𝜖 =0.01 then the new value of x = -0.48. GD is
performed iteratively. At each step, y will get closer to its minimum value. At x =

0.5,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 0.0 . GD has found the absolute minimum value of y = -1.25. The gradient

recommends no further change in x.

The choice of learning rate is crucial. A large value of 𝜖𝜖 may not find the minimum
value since the search will just swing back and forth around the minimum value.
On one hand, a large value of 𝜖𝜖 may take a significant number of iterations before
the minimum is found. In the case of multiple minima, the search might get stuck
in a local minimum.

Chapter 1

[21]

Figure 1.3.7: GD is similar to walking downhill on the function curve until the lowest point is reached. In this
plot, the global minimum is at x = 0.5.

An example of multiple minima can be seen in Figure 1.3.8. If for some reason the
search started at the left side of the plot and the learning rate is very small, there is
a high probability that GD will find x = -1.51 as the minimum value of y. GD will
not find the global minimum at x = 1.66. A sufficiently valued learning rate will
enable the GD to overcome the hill at x = 0.0.

Introducing Advanced Deep Learning with Keras

[22]

In deep learning practices, it is normally recommended to start with a bigger
learning rate (for example, 0.1 to 0.001) and gradually decrease this as the loss gets
closer to the minimum.

Figure 1.3.8: Plot of a function with 2 minima, x = -1.51 and x = 1.66. Also shown is the derivative of the
function.

GD is not typically used in deep neural networks since it is common to encounter
millions of parameters to train. It is computationally inefficient to perform a full
GD. Instead, SGD is used. In SGD, a mini batch of samples is chosen to compute an
approximate value of the descent. The parameters (for example, weights and biases)
are adjusted by the following equation:

𝛉𝛉 ← 𝛉𝛉 − ϵ𝐠𝐠

In this equation, 𝛉𝛉 and 𝐠𝐠 = 1
𝑚𝑚 𝛁𝛁𝜽𝜽 ∑ 𝐿𝐿 are the parameters and gradient tensor of

the loss function, respectively. The g is computed from partial derivatives of the
loss function. The mini-batch size is recommended to be a power of 2 for GPU
optimization purposes. In the proposed network, batch_size = 128.

Chapter 1

[23]

Equation 1.3.8 computes the last layer parameter updates. So, how do we adjust the
parameters of the preceding layers? In this case, the chain rule of differentiation is
applied to propagate the derivatives to the lower layers and compute the gradients
accordingly. This algorithm is known as backpropagation in deep learning. The
details of backpropagation are beyond the scope of this book. However, a good
online reference can be found at http://neuralnetworksanddeeplearning.com.

Since optimization is based on differentiation, it follows that an important criterion
of the loss function is that it must be smooth or differentiable. This is an important
constraint to keep in mind when introducing a new loss function.

Given the training dataset, the choice of the loss function, the optimizer, and the
regularizer, the model can now be trained by calling the fit() function:

loss function for one-hot vector
use of adam optimizer
accuracy is a good metric for classification tasks model.
compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

This is another helpful feature of Keras. By just supplying both the x and y data,
the number of epochs to train, and the batch size, fit() does the rest. In other deep
learning frameworks, this translates to multiple tasks such as preparing the input
and output data in the proper format, loading, monitoring, and so on. While all of
these must be done inside a for loop, in Keras, everything is done in just one line.

In the fit() function, an epoch is the complete sampling of the entire training data.
The batch_size parameter is the sample size of the number of inputs to process at
each training step. To complete one epoch, fit() will process the number of steps
equal to the size of the train dataset divided by the batch size plus 1 to compensate
for any fractional part.

After training the model, we can now evaluate its performance.

Performance evaluation
At this point, the model for the MNIST digit classifier is now complete. Performance
evaluation will be the next crucial step to determine if the proposed trained model
has come up with a satisfactory solution. Training the model for 20 epochs will be
sufficient to obtain comparable performance metrics.

http://neuralnetworksanddeeplearning.com

Introducing Advanced Deep Learning with Keras

[24]

The following table, Table 1.3.3, shows the different network configurations and
corresponding performance measures. Under Layers, the number of units is shown
for layers 1 to 3. For each optimizer, the default parameters in tf.keras are used.
The effects of varying the regularizer, optimizer, and the number of units per layer
can be observed. Another important observation in Table 1.3.3 is that bigger networks
do not necessarily translate to better performance.

Increasing the depth of this network shows no added benefits in terms of accuracy
for both the training and testing datasets. On the other hand, a smaller number
of units, like 128, could also lower both the test and train accuracy. The best train
accuracy at 99.93% is obtained when the regularizer is removed, and 256 units per
layer are used. The test accuracy, however, is much lower, at 98.0%, as a result of the
network overfitting.

The highest test accuracy is with the Adam optimizer and Dropout(0.45) at 98.5%.
Technically, there is still some degree of overfitting given that its training accuracy
is 99.39%. Both the train and test accuracy are the same at 98.2% for 256-512-256,
Dropout(0.45), and SGD. Removing both the Regularizer and ReLU layers results
in it having the worst performance. Generally, we'll find that the Dropout layer has a
better performance than l2.

The following table demonstrates a typical deep neural network performance during
tuning:

Layers Regularizer Optimizer ReLU Train
Accuracy
(%)

Test
Accuracy
(%)

256-256-256 None SGD None 93.65 92.5
256-256-256 L2(0.001) SGD Yes 99.35 98.0
256-256-256 L2(0.01) SGD Yes 96.90 96.7
256-256-256 None SGD Yes 99.93 98.0
256-256-256 Dropout(0.4) SGD Yes 98.23 98.1
256-256-256 Dropout(0.45) SGD Yes 98.07 98.1
256-256-256 Dropout(0.5) SGD Yes 97.68 98.1
256-256-256 Dropout(0.6) SGD Yes 97.11 97.9

Chapter 1

[25]

256-512-256 Dropout(0.45) SGD Yes 98.21 98.2
512-512-512 Dropout(0.2) SGD Yes 99.45 98.3
512-512-512 Dropout(0.4) SGD Yes 98.95 98.3
512-1024-512 Dropout(0.45) SGD Yes 98.90 98.2
1024-1024-
1024

Dropout(0.4) SGD Yes 99.37 98.3

256-256-256 Dropout(0.6) Adam Yes 98.64 98.2
256-256-256 Dropout(0.55) Adam Yes 99.02 98.3
256-256-256 Dropout(0.45) Adam Yes 99.39 98.5
256-256-256 Dropout(0.45) RMSprop Yes 98.75 98.1
128-128-128 Dropout(0.45) Adam Yes 98.70 97.7

Table 1.3.3 Different MLP network configurations and performance measures

The example indicates that there is a need to improve the network architecture.
After discussing the MLP classifier model summary in the next section, we
will present another MNIST classifier. The next model is based on CNN and
demonstrates a significant improvement in test accuracy.

Model summary
Using the Keras library provides us with a quick mechanism to double-check the
model description by calling:

model.summary()

Listing 1.3.3 below shows the model summary of the proposed network. It requires
a total of 269,322 parameters. This is substantial considering that we have a simple
task of classifying MNIST digits. MLPs are not parameter efficient. The number of
parameters can be computed from Figure 1.3.4 by focusing on how the output of the
perceptron is computed. From the input to the Dense layer: 784 × 256 + 256 =
200,960. From the first Dense layer to the second Dense layer: 256 × 256 + 256 =
65,792. From the second Dense layer to the output layer: 10 × 256 + 10 = 2,570.
The total is 269,322.

Introducing Advanced Deep Learning with Keras

[26]

Listing 1.3.3: Summary of an MLP MNIST digit classifier model:

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 256) 200960

activation_1 (Activation) (None, 256) 0

dropout_1 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 256) 65792

activation_2 (Activation) (None, 256) 0

dropout_2 (Dropout) (None, 256) 0

dense_3 (Dense) (None, 10) 2570

activation_3 (Activation) (None, 10) 0

===

Total params: 269,322

Trainable params: 269,322

Non-trainable params: 0

Another way of verifying the network is by calling:

plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

Figure 1.3.9 shows the plot. You'll find that this is similar to the results of summary()
but graphically shows the interconnection and I/O of each layer.

Chapter 1

[27]

Figure 1.3.9: The graphical description of the MLP MNIST digit classifier

Having summarized our model, this concludes our discussion of MLPs. In the next
section, we will build a MNIST digit classifier model based on CNN.

Introducing Advanced Deep Learning with Keras

[28]

4. Convolutional Neural Network (CNN)
We are now going to move onto the second artificial neural network, CNN. In this
section, we're going to solve the same MNIST digit classification problem, but this
time using a CNN.

Figure 1.4.1 shows the CNN model that we'll use for the MNIST digit classification,
while its implementation is illustrated in Listing 1.4.1. Some changes in the previous
model will be needed to implement the CNN model. Instead of having an input
vector, the input tensor now has new dimensions (height, width, channels) or
(image_size, image_size, 1) = (28, 28, 1) for the grayscale MNIST images. Resizing
the train and test images will be needed to conform to this input shape requirement.

Figure 1.4.1: The CNN model for MNIST digit classification

Implement the preceding figure:

Listing 1.4.1: cnn-mnist-1.4.1.py

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, Dropout
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist

load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

input image dimensions
image_size = x_train.shape[1]
resize and normalize
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])

Chapter 1

[29]

x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
pool_size = 2
filters = 64
dropout = 0.2

model is a stack of CNN-ReLU-MaxPooling
model = Sequential()
model.add(Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 input_shape=input_shape))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu'))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu'))
model.add(Flatten())
dropout added as regularizer
model.add(Dropout(dropout))
output layer is 10-dim one-hot vector
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='cnn-mnist.png', show_shapes=True)

loss function for one-hot vector
use of adam optimizer
accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=10, batch_size=batch_size)

_, acc = model.evaluate(x_test,
 y_test,
 batch_size=batch_size,
 verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Introducing Advanced Deep Learning with Keras

[30]

The major change here is the use of the Conv2D layers. The ReLU activation function
is already an argument of Conv2D. The ReLU function can be brought out as an
Activation layer when the batch normalization layer is included in the model.
Batch normalization is used in deep CNNs so that large learning rates can be
utilized without causing instability during training.

Convolution
If, in the MLP model, the number of units characterizes the Dense layers, the kernel
characterizes the CNN operations. As shown in Figure 1.4.2, the kernel can be
visualized as a rectangular patch or window that slides through the whole image
from left to right, and from top to bottom. This operation is called convolution. It
transforms the input image into a feature map, which is a representation of what the
kernel has learned from the input image. The feature map is then transformed into
another feature map in the succeeding layer and so on. The number of feature maps
generated per Conv2D is controlled by the filters argument.

Figure 1.4.2: A 3 × 3 kernel is convolved with an MNIST digit image.

Chapter 1

[31]

The convolution is shown in steps tn and tn+1 where the kernel moved by a stride of 1
pixel to the right.

The computation involved in the convolution is shown in Figure 1.4.3:

Figure 1.4.3: The convolution operation shows how one element of the feature map is computed

For simplicity, a 5 × 5 input image (or input feature map) where a 3 × 3 kernel is
applied is illustrated. The resulting feature map is shown after the convolution. The
value of one element of the feature map is shaded. You'll notice that the resulting
feature map is smaller than the original input image, this is because the convolution
is only performed on valid elements. The kernel cannot go beyond the borders of the
image. If the dimensions of the input should be the same as the output feature maps,
Conv2D accepts the option padding='same'. The input is padded with zeros around
its borders to keep the dimensions unchanged after the convolution.

Pooling operations
The last change is the addition of a MaxPooling2D layer with the argument pool_
size=2. MaxPooling2D compresses each feature map. Every patch of size pool_size
× pool_size is reduced to 1 feature map point. The value is equal to the maximum
feature point value within the patch. MaxPooling2D is shown in the following figure
for two patches:

Figure 1.4.4: MaxPooling2D operation.
For simplicity, the input feature map is 4 × 4, resulting in a 2 × 2 feature map.

Introducing Advanced Deep Learning with Keras

[32]

The significance of MaxPooling2D is the reduction in feature map size, which
translates to an increase in receptive field size. For example, after MaxPooling2D(2),
the 2 × 2 kernel is now approximately convolving with a 4 × 4 patch. The CNN has
learned a new set of feature maps for a different receptive field size.

There are other means of pooling and compression. For example, to achieve a 50%
size reduction as MaxPooling2D(2), AveragePooling2D(2) takes the average of a
patch instead of finding the maximum. Strided convolution, Conv2D(strides=2,…),
will skip every two pixels during convolution and will still have the same 50% size
reduction effect. There are subtle differences in the effectiveness of each reduction
technique.

In Conv2D and MaxPooling2D, both pool_size and kernel can be non-square. In
these cases, both the row and column sizes must be indicated. For example, pool_
size = (1, 2) and kernel = (3, 5).

The output of the last MaxPooling2D operation is a stack of feature maps. The role
of Flatten is to convert the stack of feature maps into a vector format that is suitable
for either Dropout or Dense layers, similar to the MLP model output layer.

In the next section, we will evaluate the performance of the trained MNIST CNN
classifier model.

Performance evaluation and model summary
As shown in Listing 1.4.2, the CNN model in Listing 1.4.1 requires a smaller number
of parameters at 80,226 compared to 269,322 when MLP layers are used. The
conv2d_1 layer has 640 parameters because each kernel has 3 × 3 = 9 parameters,
and each of the 64 feature maps has one kernel and one bias parameter. The number
of parameters for other convolution layers can be computed in a similar way.

Listing 1.4.2: Summary of a CNN MNIST digit classifier

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 26, 26, 64) 640

max_pooling2d_1 (MaxPooling2) (None, 13, 13, 64) 0

conv2d_2 (Conv2D) (None, 11, 11, 64) 36928

max_pooling2d_2 (MaxPooling2) (None, 5.5, 5, 64) 0

conv2d_3 (Conv2D) (None, 3.3, 3, 64) 36928

flatten_1 (Flatten) (None, 576) 0

dropout_1 (Dropout) (None, 576) 0

dense_1 (Dense) (None, 10) 5770

activation_1 (Activation) (None, 10) 0

Chapter 1

[33]

===

Total params: 80,266

Trainable params: 80,266

Non-trainable params: 0

Figure 1.4.5: shows a graphical representation of the CNN MNIST digit classifier.

Figure 1.4.5: Graphical description of the CNN MNIST digit classifier

Introducing Advanced Deep Learning with Keras

[34]

Table 1.4.1 shows a maximum test accuracy of 99.4%, which can be achieved for a
3-layer network with 64 feature maps per layer using the Adam optimizer with
dropout=0.2. CNNs are more parameter efficient and have a higher accuracy than
MLPs. Likewise, CNNs are also suitable for learning representations from sequential
data, images, and videos.

Layers Optimizer Regularizer Train Accuracy
(%)

Test Accuracy (%)

64-64-64 SGD Dropout(0.2) 97.76 98.50
64-64-64 RMSprop Dropout(0.2) 99.11 99.00
64-64-64 Adam Dropout(0.2) 99.75 99.40
64-64-64 Adam Dropout(0.4) 99.64 99.30

Table 1.4.1: Different CNN network configurations and performance measures for the CNN MNIST digit
classifier.

Having looked at CNNs and evaluated the trained model, let's look at the final core
network that we will discuss in this chapter: RNN.

5. Recurrent Neural Network (RNN)
We're now going to look at the last of our three artificial neural networks, RNN.

RNNs are a family of networks that are suitable for learning representations of
sequential data like text in natural language processing (NLP) or a stream of sensor
data in instrumentation. While each MNIST data sample is not sequential in nature,
it is not hard to imagine that every image can be interpreted as a sequence of rows
or columns of pixels. Thus, a model based on RNNs can process each MNIST image
as a sequence of 28-element input vectors with timesteps equal to 28. The following
listing shows the code for the RNN model in Figure 1.5.1:

Figure 1.5.1: RNN model for MNIST digit classification

Chapter 1

[35]

Listing 1.5.1: rnn-mnist-1.5.1.py

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, SimpleRNN
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist

load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of labels
num_labels = len(np.unique(y_train))

convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

resize and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2

model is RNN with 256 units, input is 28-dim vector 28 timesteps
model = Sequential()
model.add(SimpleRNN(units=units,
 dropout=dropout,
 input_shape=input_shape))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)

loss function for one-hot vector
use of sgd optimizer
accuracy is good metric for classification tasks

Introducing Advanced Deep Learning with Keras

[36]

model.compile(loss='categorical_crossentropy',
 optimizer='sgd',
 metrics=['accuracy'])
train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

_, acc = model.evaluate(x_test,
 y_test,
 batch_size=batch_size,
 verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

There are two main differences between the RNN classifier and the two previous
models. First is the input_shape = (image_size, image_size), which is actually
input_ shape = (timesteps, input_dim) or a sequence of input_dim-dimension
vectors of timesteps length. Second is the use of a SimpleRNN layer to represent an
RNN cell with units=256. The units variable represents the number of output units.
If the CNN is characterized by the convolution of kernels across the input feature
map, the RNN output is a function not only of the present input but also of the
previous output or hidden state. Since the previous output is also a function of the
previous input, the current output is also a function of the previous output and input
and so on. The SimpleRNN layer in Keras is a simplified version of the true RNN.
The following equation describes the output of SimpleRNN:

𝐡𝐡𝑡𝑡 = tanh(𝐛𝐛 + 𝐖𝐖𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝐱𝐱𝑡𝑡) ….(Equation 1.5.1)

In this equation, b is the bias, while W and U are called recurrent kernel (weights
for the previous output) and kernel (weights for the current input), respectively.
Subscript t is used to indicate the position in the sequence. For a SimpleRNN layer
with units=256, the total number of parameters is 256 + 256 × 256 + 256 × 28 =
72,960, corresponding to b, W, and U contributions.

The following figure shows the diagrams of both SimpleRNN and RNN when used
for classification tasks. What makes SimpleRNN simpler than an RNN is the absence
of the output values ot = Vht + c before the softmax function is computed:

Chapter 1

[37]

Figure 1.5.2: Diagram of SimpleRNN and RNN

RNNs might be initially harder to understand when compared to MLPs or CNNs. In
an MLP, the perceptron is the fundamental unit. Once the concept of the perceptron
is understood, an MLP is just a network of perceptrons. In a CNN, the kernel is a
patch or window that slides through the feature map to generate another feature
map. In an RNN, the most important is the concept of self-loop. There is in fact just
one cell.

The illusion of multiple cells appears because a cell exists per timestep, but in fact it
is just the same cell reused repeatedly unless the network is unrolled. The underlying
neural networks of RNNs are shared across cells.

The summary in Listing 1.5.2 indicates that using a SimpleRNN requires a fewer
number of parameters.

Listing 1.5.2: Summary of an RNN MNIST digit classifier

Layer (type) Output Shape Param #

===

simple_rnn_1 (SimpleRNN) (None, 256) 72960

dense_1 (Dense) (None, 10) 2570

activation_1 (Activation) (None, 10) 0

Introducing Advanced Deep Learning with Keras

[38]

===

Total params: 75,530

Trainable params: 75,530

Non-trainable params: 0

Figure 1.5.3 shows the graphical description of the RNN MNIST digit classifier.
The model is very concise:

Figure 1.5.3: The RNN MNIST digit classifier graphical description

Table 1.5.1 shows that the SimpleRNN has the lowest accuracy among the networks
presented:

Layers Optimizer Regularizer Train Accuracy
(%)

Test Accuracy (%)

256 SGD Dropout(0.2) 97.26 98.00
256 RMSprop Dropout(0.2) 96.72 97.60
256 Adam Dropout(0.2) 96.79 97.40
512 SGD Dropout(0.2) 97.88 98.30

Table 1.5.1: The different SimpleRNN network configurations and performance measures

Chapter 1

[39]

In many deep neural networks, other members of the RNN family are more
commonly used. For example, Long Short-Term Memory (LSTM) has been used
in both machine translation and question answering problems. LSTM addresses the
problem of long-term dependency or remembering relevant past information to the
present output.

Unlike an RNN or a SimpleRNN, the internal structure of the LSTM cell is more
complex. Figure 1.5.4 shows a diagram of LSTM. LSTM uses not only the present
input and past outputs or hidden states, but it introduces a cell state, st, that carries
information from one cell to the other. The information flow between cell states is
controlled by three gates, ft, it, and qt. The three gates have the effect of determining
which information should be retained or replaced and the amount of information in
the past and current input that should contribute to the current cell state or output.
We will not discuss the details of the internal structure of the LSTM cell in this book.
However, an intuitive guide to LSTMs can be found at http://colah.github.io/
posts/2015-08-Understanding-LSTMs.

The LSTM() layer can be used as a drop-in replacement for SimpleRNN(). If LSTM is
overkill for the task at hand, a simpler version called a Gated Recurrent Unit (GRU)
can be used. A GRU simplifies LSTM by combining the cell state and hidden state
together. A GRU also reduces the number of gates by one. The GRU() function can
also be used as a drop-in replacement for SimpleRNN().

Figure 1.5.4: Diagram of LSTM. The parameters are not shown for clarity.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

Introducing Advanced Deep Learning with Keras

[40]

There are many other ways to configure RNNs. One way is making an RNN model
that is bidirectional. By default, RNNs are unidirectional in the sense that the
current output is only influenced by the past states and the current input.

In bidirectional RNNs, future states can also influence the present and past states
by allowing information to flow backward. Past outputs are updated as needed
depending on the new information received. RNNs can be made bidirectional by
calling a wrapper function. For example, the implementation of bidirectional LSTM
is Bidirectional(LSTM()).

For all types of RNNs, increasing the number of units will also increase the capacity.
However, another way of increasing the capacity is by stacking the RNN layers. It
should be noted though that as a general rule of thumb, the capacity of the model
should only be increased if needed. Excess capacity may contribute to overfitting,
and, as a result, may lead to both a longer training time and a slower performance
during prediction.

6. Conclusion
This chapter provided an overview of the three deep learning models – MLP,
RNN, CNN – and also introduced TensorFlow 2 tf.keras, a library for rapid
development, training, and testing deep learning models that is suitable for a
production environment. The Sequential API of Keras was also discussed. In the
next chapter, the Functional API will be presented, which will enable us to build
more complex models specifically for advanced deep neural networks.

This chapter also reviewed the important concepts of deep learning such as
optimization, regularization, and loss functions. For ease of understanding, these
concepts were presented in the context of MNIST digit classification.

Different solutions to MNIST digit classification using artificial neural networks,
specifically MLP, CNN, and RNN, which are important building blocks of deep
neural networks, were also discussed together with their performance measures.

With an understanding of deep learning concepts and how Keras can be used as a
tool with them, we are now equipped to analyze advanced deep learning models.
After discussing the Functional API in the next chapter, we'll move on to the
implementation of popular deep learning models. Subsequent chapters will discuss
selected advanced topics such as autoregressive models (autoencoder, GAN, VAE),
deep reinforcement learning, object detection and segmentation, and unsupervised
learning using mutual information. The accompanying Keras code implementations
will play an important role in understanding these topics.

Chapter 1

[41]

7. References
1. Chollet, François. Keras (2015). https://github.com/keras-team/keras.
2. LeCun, Yann, Corinna Cortes, and C. J. Burges. MNIST handwritten digit

database. AT&T Labs [Online]. Available: http://yann.lecun.com/exdb/
mnist2 (2010).

https://github.com/keras-team/keras
http://yann.lecun.com/exdb/mnist2
http://yann.lecun.com/exdb/mnist2

[43]

2
Deep Neural Networks

In this chapter, we'll be examining deep neural networks. These networks have
shown excellent performance in terms of the accuracy of their classification on
more challenging datasets like ImageNet, CIFAR10 (https://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf), and CIFAR100. For conciseness,
we'll only be focusing on two networks: ResNet [2][4] and DenseNet [5]. While
we will go into much more detail, it's important to take a minute to introduce
these networks.

ResNet introduced the concept of residual learning, which enabled it to build very
deep networks by addressing the vanishing gradient problem (discussed in section 2)
in deep convolutional networks.

DenseNet improved ResNet further by allowing every convolution to have direct
access to inputs, and lower layer feature maps. It's also managed to keep the
number of parameters low in deep networks by utilizing both the Bottleneck
and Transition layers.

But why these two models, and not others? Well, since their introduction, there
have been countless models such as ResNeXt [6] and WideResNet [7] which
have been inspired by the technique used by these two networks. Likewise, with
an understanding of both ResNet and DenseNet, we'll be able to use their design
guidelines to build our own models. By using transfer learning, this will also allow
us to take advantage of pretrained ResNet and DenseNet models for our own
purposes such as for object detection and segmentation. These reasons alone, along
with their compatibility with Keras, make the two models ideal for exploring and
complimenting the advanced deep learning scope of this book.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Deep Neural Networks

[44]

While this chapter's focus is on deep neural networks; we'll begin this chapter by
discussing an important feature of Keras called the Functional API. This API acts
as an alternative method for building networks in tf.keras and enables us to build
more complex networks that cannot be accomplished by the Sequential model
API. The reason why we're focusing so much on this API is that it will become
a very useful tool for building deep networks such as the two we're focusing on
in this chapter. It's recommended that you've completed Chapter 1, Introducing
Advanced Deep Learning with Keras, before moving onto this chapter as we'll refer
to introductory level code and concepts explored in that chapter as we take them
to an advanced level in this chapter.

The goals of this chapter are to introduce:

• The Functional API in Keras, as well as exploring examples of networks
running it

• Deep Residual Networks (ResNet versions 1 and 2) implementation in
tf.keras

• The implementation of Densely Connected Convolutional Networks
(DenseNet) in tf.keras

• Explore the two popular deep learning models, ResNet and DenseNet

Let's begin by discussing the Functional API.

1. Functional API
In the Sequential model API that we first introduced in Chapter 1, Introducing
Advanced Deep Learning with Keras, a layer is stacked on top of another layer.
Generally, the model will be accessed through its input and output layers. We also
learned that there is no simple mechanism if we find ourselves wanting to add an
auxiliary input at the middle of the network, or even to extract an auxiliary output
before the last layer.

That model also had its downsides; for example, it doesn't support graph-like
models or models that behave like Python functions. In addition, it's also difficult
to share layers between the two models. Such limitations are addressed by the
Functional API and are the reason why it's a vital tool for anyone wanting to work
with deep learning models.

Chapter 2

[45]

The Functional API is guided by the following two concepts:

• A layer is an instance that accepts a tensor as an argument. The output of a
layer is another tensor. To build a model, the layer instances are objects that
are chained to one another through both input and output tensors. This will
have a similar end-result to stacking multiple layers in the Sequential model.
However, using layer instances makes it easier for models to have either
auxiliary or multiple inputs and outputs since the input/output of each layer
will be readily accessible.

• A model is a function between one or more input tensors and output tensors.
In between the model input and output, tensors are the layer instances that
are chained to one another by layer input and output tensors. A model is,
therefore, a function of one or more input layers and one or more output
layers. The model instance formalizes the computational graph on how the
data flows from input(s) to output(s).

After you've completed building the Functional API model, the training and
evaluation are then performed by the same functions used in the Sequential model.
To illustrate, in a Functional API, a two dimensional convolutional layer, Conv2D,
with 32 filters and with x as the layer input tensor and y as the layer output tensor
can be written as:

y = Conv2D(32)(x)

We're also able to stack multiple layers to build our models. For example, we can
rewrite the Convolutional Neural Network (CNN) on MNIST cnn-mnist-1.4.1.py
using the Functional API as shown in the following listing:

Listing 2.1.1: cnn-functional-2.1.1.py

import numpy as np
from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical

load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

from sparse label to categorical
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

Deep Neural Networks

[46]

reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 64
dropout = 0.3

use functional API to build cnn layers
inputs = Input(shape=input_shape)
y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu')(inputs)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu')(y)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu')(y)
image to vector before connecting to dense layer
y = Flatten()(y)
dropout regularization
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

build the model by supplying inputs/outputs
model = Model(inputs=inputs, outputs=outputs)
network model in text
model.summary()

classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

Chapter 2

[47]

train the model with input images and labels
model.fit(x_train,
 y_train,
 validation_data=(x_test, y_test),
 epochs=20,
 batch_size=batch_size)

model accuracy on test dataset
score = model.evaluate(x_test,
 y_test,
 batch_size=batch_size,
 verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

By default, MaxPooling2D uses pool_size=2, so the argument has been removed.

In the preceding listing, every layer is a function of a tensor. Each layer generates
a tensor as an output which becomes the input to the next layer. To create this
model, we can call Model() and supply both the inputs and outputs tensors,
or alternatively the lists of tensors. Everything else remains the same.

The same listing can also be trained and evaluated using the fit() and evaluate()
functions, similar to the Sequential model. The Sequential class is, in fact, a subclass
of the Model class. We need to remember that we inserted the validation_data
argument in the fit() function to see the progress of validation accuracy during
training. The accuracy ranges from 99.3% to 99.4% in 20 epochs.

Creating a two-input and one-output model
We're now going to do something really exciting, creating an advanced model
with two inputs and one output. Before we start, it's important to know that the
Sequential model API is designed for building 1-input and 1-output models only.

Let's suppose a new model for the MNIST digit classification is invented, and it's
called the Y-Network, as shown in Figure 2.1.1. The Y-Network uses the same input
twice, both on the left and right CNN branches. The network combines the results
using a concatenate layer. The merge operation concatenate is similar to stacking
two tensors of the same shape along the concatenation axis to form one tensor. For
example, concatenating two tensors of shape (3, 3, 16) along the last axis will result
in a tensor of shape (3, 3, 32).

Deep Neural Networks

[48]

Everything else after the concatenate layer will remain the same as the previous
chapter's CNN MNIST classifier model: Flatten, then Dropout, and then Dense:

Figure 2.1.1: The Y-Network accepts the same input twice but processes the input in two branches
of convolutional networks. The outputs of the branches are combined using the concatenate layer.

The last layer prediction is going to be similar to the previous chapter's CNN MNIST classifier model.

To improve the performance of the model in Listing 2.1.1, we can propose several
changes. Firstly, the branches of the Y-Network are doubling the number of filters
to compensate for the halving of the feature maps size after MaxPooling2D(). For
example, if the output of the first convolution is (28, 28, 32), after max pooling the
new shape is (14, 14, 32). The next convolution will have a filter size of 64 and output
dimensions of (14, 14, 64).

Second, although both branches have the same kernel size of 3, the right branch
uses a dilation rate of 2. Figure 2.1.2 shows the effect of different dilation rates on
a kernel with size 3. The idea is that by increasing the effective receptive field size
of the kernel using dilation rate, the CNN will enable the right branch to learn
different feature maps. Using a dilation rate greater than 1 is a computationally
efficient approximate method to increase receptive field size. It is approximate since
the kernel is not actually a full-blown kernel. It is efficient since we use the same
number of operations as with a dilation rate equal to 1.

Chapter 2

[49]

To appreciate the concept of the receptive field, notice that when the kernel computes
each point of a feature map, its input is a patch in the previous layer feature map
which is also dependent on its previous layer feature map. If we continue tracking
this dependency down to the input image, the kernel depends on an image patch
called the receptive field.

We'll use the option padding='same' to ensure that we will not have negative tensor
dimensions when the dilated CNN is used. By using padding='same', we'll keep the
dimensions of the input the same as the output feature maps. This is accomplished
by padding the input with zeros to make sure that the output has the same size.

Figure 2.1.2: By increasing the dilation rate from 1, the effective kernel receptive field size also increases

Listing 2.1.2 for cnn-y-network-2.1.2.py shows the implementation of the
Y-Network using the Functional API. The two branches are created by the two for
loops. Both branches expect the same input shape. The two for loops will create two
3-layer stacks of Conv2D-Dropout-MaxPooling2D. While we used the concatenate
layer to combine the outputs of the left and right branches, we could also utilize
the other merge functions of tf.keras, such as add, dot, and multiply. The choice
of the merge function is not purely arbitrary but must be based on a sound model
design decision.

In the Y-Network, concatenate will not discard any portion of the feature maps.
Instead, we'll let the Dense layer figure out what to do with the concatenated
feature maps.

Listing 2.1.2: cnn-y-network-2.1.2.py

import numpy as np

from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.layers import Flatten, concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist

Deep Neural Networks

[50]

from tensorflow.keras.utils import to_categorical
from tensorflow.keras.utils import plot_model

load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

from sparse label to categorical
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
dropout = 0.4
n_filters = 32

left branch of Y network
left_inputs = Input(shape=input_shape)
x = left_inputs
filters = n_filters
3 layers of Conv2D-Dropout-MaxPooling2D
number of filters doubles after each layer (32-64-128)
for i in range(3):
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',
 activation='relu')(x)
 x = Dropout(dropout)(x)
 x = MaxPooling2D()(x)
 filters *= 2

right branch of Y network
right_inputs = Input(shape=input_shape)
y = right_inputs
filters = n_filters
3 layers of Conv2D-Dropout-MaxPooling2Do
number of filters doubles after each layer (32-64-128)
for i in range(3):
 y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',

Chapter 2

[51]

 activation='relu',
 dilation_rate=2)(y)
 y = Dropout(dropout)(y)
 y = MaxPooling2D()(y)
 filters *= 2

merge left and right branches outputs
y = concatenate([x, y])
feature maps to vector before connecting to Dense
y = Flatten()(y)
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

build the model in functional API
model = Model([left_inputs, right_inputs], outputs)
verify the model using graph
plot_model(model, to_file='cnn-y-network.png', show_shapes=True)
verify the model using layer text description
model.summary()

classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

train the model with input images and labels
model.fit([x_train, x_train],
 y_train,
 validation_data=([x_test, x_test], y_test),
 epochs=20,
 batch_size=batch_size)

model accuracy on test dataset
score = model.evaluate([x_test, x_test],
 y_test,
 batch_size=batch_size,
 verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

Taking a step back, we can note that the Y-Network is expecting two inputs
for training and validation. The inputs are identical, so [x_train, x_train]
is supplied.

Over the course of the 20 epochs, the accuracy of the Y-Network ranges from 99.4%
to 99.5%. This is a slight improvement over the 3-stack CNN which achieved a range
between 99.3% and 99.4% accuracy. However, this was at the cost of both higher
complexity and more than double the number of parameters.

Deep Neural Networks

[52]

The following figure, Figure 2.1.3, shows the architecture of the Y-Network as
understood by Keras and generated by the plot_model() function:

Figure 2.1.3: The CNN Y-Network as implemented in Listing 2.1.2

Chapter 2

[53]

This concludes our look at the Functional API. We should take this time to remember
that the focus of this chapter is building deep neural networks, specifically ResNet
and DenseNet. Therefore, we're only covering the Functional API materials needed
to build them, as covering the entire API would be beyond the scope of this book.
With that said, let's move on to discussing ResNet.

2. Deep Residual Network (ResNet)
One key advantage of deep networks is that they have a great ability to learn
different levels of representation from both inputs and feature maps. In classification,
segmentation, detection, and a number of other computer vision problems, learning
different feature maps generally leads to a better performance.

However, you'll find that it's not easy to train deep networks because the gradient
may vanish (or explode) with depth in the shallow layers during backpropagation.
Figure 2.2.1 illustrates the problem of vanishing gradient. The network parameters
are updated by backpropagation from the output layer to all previous layers. Since
backpropagation is based on the chain rule, there is a tendency for the gradient to
diminish as it reaches the shallow layers. This is due to the multiplication of small
numbers, especially for small loss functions and parameter values.

The number of multiplication operations will be proportional to the depth of the
network. It's also worth noting that if the gradient degrades, the parameters will not
be updated appropriately.

The reader is referred to https://keras.io/ for additional
information on the Functional API.

https://keras.io/

Deep Neural Networks

[54]

Hence, the network will fail to improve its performance.

Figure 2.2.1: A common problem in deep networks is that the gradient vanishes as it reaches
the shallow layers during backpropagation.

To alleviate the degradation of the gradient in deep networks, ResNet introduced
the concept of a deep residual learning framework. Let's analyze a block: a small
segment of our deep network.

Figure 2.2.2 shows a comparison between a typical CNN block and a ResNet residual
block. The idea of ResNet is that in order to prevent the gradient from degrading,
we'll let the information flow through the shortcut connections to reach the
shallow layers.

Figure 2.2.2: A comparison between a block in a typical CNN and a block in ResNet. To prevent the degradation
of the gradient during backpropagation, a shortcut connection is introduced.

Chapter 2

[55]

Next, we're going to look at more details within the discussion of the differences
between the two blocks. Figure 2.2.3 shows more details of the CNN block of
another commonly used deep network, VGG [3], and ResNet. We'll represent
the layer feature maps as x. The feature maps at layer l are xl. The operations in
the CNN layer are Conv2D-Batch Normalization(BN)-ReLU.

Let's suppose we represent this set of operations in the form of H() = Conv2D-Batch
Normalization(BN)-ReLU; then:

xl-1 = H(xl-2) (Equation 2.2.1)

xl = H(xl-1) (Equation 2.2.2)

In other words, the feature maps at layer l - 2 are transformed to xl-1 by H()
=Conv2D-Batch Normalization(BN)-ReLU. The same set of operations is applied to
transform xl-1 to xl. To put this another way, if we have an 18-layer VGG, then there
are 18 H() operations before the input image is transformed to the 18th layer feature
map.

Generally speaking, we can observe that the layer l output feature maps are directly
affected by the previous feature maps only. Meanwhile, for ResNet:

xl-1 = H(xl-2) (Equation 2.2.3)

xl = ReLU(F (xl-1) + xl-2) (Equation 2.2.4)

Figure 2.2.3: Detailed layer operations for a plain CNN block and a residual block

Deep Neural Networks

[56]

F(xl-1) is made of Conv2D-BN, which is also known as the residual mapping. The
+ sign is a tensor element-wise addition between the shortcut connection and the
output of F(xl-1). The shortcut connection doesn't add extra parameters nor extra
computational complexity.

The add operation can be implemented in tf.keras by the add() merge function.
However, both F(xl-1) and xl-2 should have the same dimensions.

If the dimensions are different, for example, when changing the feature maps size,
we should perform a linear projection on xl-2 as to match the size of F(xl-1). In the
original paper, the linear projection for the case, when the feature maps size is
halved, is done by a Conv2D with a 1 × 1 kernel and strides=2.

Back in Chapter 1, Introducing Advanced Deep Learning with Keras, we discussed that
stride > 1 is equivalent to skipping pixels during convolution. For example, if
strides=2, we could skip every other pixel when we slide the kernel during the
convolution process.

The preceding Equation 2.2.3 and Equation 2.2.4 both model ResNet residual block
operations. They imply that if the deeper layers can be trained to have fewer errors,
then there is no reason why the shallower layers should have higher errors.

Knowing the basic building blocks of ResNet, we're able to design a deep residual
network for image classification. This time, however, we're going to tackle a more
challenging dataset.

In our examples, we're going to consider CIFAR10, which was one of the datasets
the original paper was validated on. In this example, tf.keras provides an API to
conveniently access the CIFAR10 dataset, as shown:

from tensorflow.keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

Like MNIST, the CIFAR10 dataset has 10 categories. The dataset is a collection of
small (32 × 32) RGB real-world images of an airplane, an automobile, a bird, a cat,
a deer, a dog, a frog, a horse, a ship, and a truck corresponding to each of the 10
categories. Figure 2.2.4 shows sample images from CIFAR10.

Chapter 2

[57]

In the dataset, there are 50,000 labeled train images and 10,000 labeled test images for
validation:

Figure 2.2.4: Sample images from the CIFAR10 dataset. The full dataset has 50,000 labeled train images and
10,000 labeled test images for validation.

For the CIFAR10 data, ResNet can be built using different network architectures
as shown in Table 2.2.1. Table 2.2.1 means we have three sets of residual blocks. Each
set has 2n layers corresponding to n residual blocks. The extra layer in 32 × 32 is the
first layer for the input image.

Layers Output
Size

Filter
Size

Operations

Convolution 32 × 32 16 3 x 3 Conv2D
Residual Block (1) 32 × 32 {3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷

3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} × 𝐶𝐶

Transition Layer
(1)

32 × 32 {1 x 1 Conv2D, strides = 2}
16 × 16

Deep Neural Networks

[58]

Residual Block
(2)

16 × 16 32 {3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 𝑠𝑠𝑖𝑖 1𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷 } × 𝐶𝐶

Transition Layer
(2)

16 × 16 {1 x 1 Conv2D, strides = 2}
8 × 8

Residual Block
(3)

8 × 8 64 {3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 𝑠𝑠𝑖𝑖 1𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷 } × 𝐶𝐶

Average Pooling 1 × 1 8 x 8 AveragePooling2D

Table 2.2.1: ResNet network architecture configuration

The kernel size is 3, except for the transition between two feature maps with different
sizes, which implements a linear mapping. For example, a Conv2D with a kernel size
of 1 and strides=2. For the sake of consistency with DenseNet, we'll use the term
Transition layer when we join two residual blocks of different sizes.

ResNet uses kernel_initializer='he_normal' in order to aid the
convergence when backpropagation is taking place [1]. The last layer is made of
AveragePooling2D-Flatten-Dense. It's worth noting at this point that ResNet
does not use dropout. It also appears that the add merge operation and the 1 x 1
convolution have a self-regularizing effect. Figure 2.2.5 shows the ResNet model
architecture for the CIFAR10 dataset as described in Table 2.2.1.

Figure 2.2.5: The model architecture of ResNet for the CIFAR10 dataset classification

The following code snippet shows the partial ResNet implementation in tf.keras.
The code has been contributed to the Keras GitHub repository. From Table 2.2.2 (to
be shown shortly) we can also see that by modifying the value of n, we're able to
increase the depth of the networks.

Chapter 2

[59]

For example, for n = 18, we already have ResNet110, a deep network with 110 layers.
To build ResNet20, we use n = 3:

n = 3

model version
orig paper: version = 1 (ResNet v1),
improved ResNet: version = 2 (ResNet v2)
version = 1

computed depth from supplied model parameter n
if version == 1:
 depth = n * 6 + 2
elif version == 2:
 depth = n * 9 + 2

if version == 2:
 model = resnet_v2(input_shape=input_shape, depth=depth)
else:
 model = resnet_v1(input_shape=input_shape, depth=depth)

The resnet_v1() method is a model builder for ResNet. It uses a utility function,
resnet_layer(), to help build the stack of Conv2D-BN-ReLU.

It's referred to as version 1, as we will see in the next section, an improved
ResNet was proposed, and that has been called ResNet version 2, or v2. Over ResNet,
ResNet v2 has an improved residual block design resulting to a better performance.

The following listing shows the partial code of resnet-cifar10-2.2.1.py, which is
the tf.keras model implementation of ResNet v1.

Listing 2.2.1: resnet-cifar10-2.2.1.py

def resnet_v1(input_shape, depth, num_classes=10):
 """ResNet Version 1 Model builder [a]

 Stacks of 2 x (3 x 3) Conv2D-BN-ReLU
 Last ReLU is after the shortcut connection.
 At the beginning of each stage, the feature map size is halved
 (downsampled) by a convolutional layer with strides=2, while
 the number of filters is doubled. Within each stage,
 the layers have the same number filters and the
 same number of filters.
 Features maps sizes:
 stage 0: 32x32, 16

Deep Neural Networks

[60]

 stage 1: 16x16, 32
 stage 2: 8x8, 64
 The Number of parameters is approx the same as Table 6 of [a]:
 ResNet20 0.27M
 ResNet32 0.46M
 ResNet44 0.66M
 ResNet56 0.85M
 ResNet110 1.7M

 Arguments:
 input_shape (tensor): shape of input image tensor
 depth (int): number of core convolutional layers
 num_classes (int): number of classes (CIFAR10 has 10)

 Returns:
 model (Model): Keras model instance
 """
 if (depth - 2) % 6 != 0:
 raise ValueError('depth should be 6n+2 (eg 20, 32, in [a])')
 # Start model definition.
 num_filters = 16
 num_res_blocks = int((depth - 2) / 6)

 inputs = Input(shape=input_shape)
 x = resnet_layer(inputs=inputs)
 # instantiate the stack of residual units
 for stack in range(3):
 for res_block in range(num_res_blocks):
 strides = 1
 # first layer but not first stack
 if stack > 0 and res_block == 0:
 strides = 2 # downsample
 y = resnet_layer(inputs=x,
 num_filters=num_filters,
 strides=strides)
 y = resnet_layer(inputs=y,
 num_filters=num_filters,
 activation=None)
 # first layer but not first stack
 if stack > 0 and res_block == 0:
 # linear projection residual shortcut
 # connection to match changed dims
 x = resnet_layer(inputs=x,
 num_filters=num_filters,

Chapter 2

[61]

 kernel_size=1,
 strides=strides,
 activation=None,
 batch_normalization=False)
 x = add([x, y])
 x = Activation('relu')(x)
 num_filters *= 2

 # add classifier on top.
 # v1 does not use BN after last shortcut connection-ReLU
 x = AveragePooling2D(pool_size=8)(x)
 y = Flatten()(x)
 outputs = Dense(num_classes,
 activation='softmax',
 kernel_initializer='he_normal')(y)

 # instantiate model.
 model = Model(inputs=inputs, outputs=outputs)
 return model

The performance of ResNet on various values of n are shown in Table 2.2.2.

Layers n % Accuracy on CIFAR10
(Original paper)

% Accuracy on CIFAR10
(This book)

ResNet20 3 91.25 92.16
ResNet32 5 92.49 92.46
ResNet44 7 92.83 92.50
ResNet56 9 93.03 92.71
ResNet110 18 93.57 92.65

Table 2.2.2: ResNet architecture validated with CIFAR10 for different values of n

There are some minor differences from the original implementation of ResNet. In
particular, we don't use SGD, and instead, we'll use Adam. This is because ResNet
is easier to converge with Adam. We'll also use a learning rate (lr) scheduler, lr_
schedule(), in order to schedule the decrease in lr at 80, 120, 160, and 180 epochs
from the default 1e-3. The lr_schedule() function will be called after every epoch
during training as part of the callbacks variable.

The other callback saves the checkpoint every time there is progress made in the
validation accuracy. When training deep networks, it is a good practice to save the
model or weight checkpoint. This is because it takes a substantial amount of time to
train deep networks.

Deep Neural Networks

[62]

When you want to use your network, all you need to do is simply reload the
checkpoint, and the trained model is restored. This can be accomplished by calling
tf.keras load_model(). The lr_reducer() function is included. In case the metric
has plateaued before the scheduled reduction, this callback will reduce the learning
rate by a certain factor supplied in the argument if the validation loss has not
improved after patience = 5 epochs.

The callbacks variable is supplied when the model.fit() method is called. Similar
to the original paper, the tf.keras implementation uses data augmentation,
ImageDataGenerator(), in order to provide additional training data as part of the
regularization schemes. As the number of training data increases, generalization will
improve.

For example, a simple data augmentation is flipping a photo of a dog, as shown in
Figure 2.2.6 (horizontal_flip = True). If it is an image of a dog, then the flipped
image is still an image of a dog. You can also perform other transformation, such as
scaling, rotation, whitening, and so on, and the label will still remain the same:

Figure 2.2.6: A simple data augmentation is flipping the original image

The complete code is available on GitHub: https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

It's often difficult to exactly duplicate the implementation of the original paper. In
this book, we used a different optimizer and data augmentation. This may result in
slight differences in the performance of the tf.keras ResNet as implemented in this
book and the model in the original paper.

After the release of the second paper on ResNet [4], the original model presented
in this section is known as ResNet v1. The improved ResNet is commonly called
ResNet v2, which we will discuss in the next section.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras.
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras.

Chapter 2

[63]

3. ResNet v2
The improvements for ResNet v2 are mainly found in the arrangement of layers in
the residual block as shown in Figure 2.3.1.

The prominent changes in ResNet v2 are:

• The use of a stack of 1 x 1 – 3 x 3 – 1 × 1 BN-ReLU-Conv2D
• Batch normalization and ReLU activation come before two dimensional

convolution

Figure 2.3.1: A comparison of residual blocks between ResNet v1 and ResNet v2

ResNet v2 is also implemented in the same code as resnet-cifar10-2.2.1.py,
as can be seen in Listing 2.2.1:

Listing 2.2.1: resnet-cifar10-2.2.1.py

def resnet_v2(input_shape, depth, num_classes=10):
 """ResNet Version 2 Model builder [b]

 Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or
 also known as bottleneck layer.
 First shortcut connection per layer is 1 x 1 Conv2D.
 Second and onwards shortcut connection is identity.
 At the beginning of each stage,
 the feature map size is halved (downsampled)
 by a convolutional layer with strides=2,
 while the number of filter maps is
 doubled. Within each stage, the layers have

Deep Neural Networks

[64]

 the same number filters and the same filter map sizes.
 Features maps sizes:
 conv1 : 32x32, 16
 stage 0: 32x32, 64
 stage 1: 16x16, 128
 stage 2: 8x8, 256

 Arguments:
 input_shape (tensor): shape of input image tensor
 depth (int): number of core convolutional layers
 num_classes (int): number of classes (CIFAR10 has 10)

 Returns:
 model (Model): Keras model instance
 """
 if (depth - 2) % 9 != 0:
 raise ValueError('depth should be 9n+2 (eg 110 in [b])')
 # start model definition.
 num_filters_in = 16
 num_res_blocks = int((depth - 2) / 9)

 inputs = Input(shape=input_shape)
 # v2 performs Conv2D with BN-ReLU
 # on input before splitting into 2 paths
 x = resnet_layer(inputs=inputs,
 num_filters=num_filters_in,
 conv_first=True)

 # instantiate the stack of residual units
 for stage in range(3):
 for res_block in range(num_res_blocks):
 activation = 'relu'
 batch_normalization = True
 strides = 1
 if stage == 0:
 num_filters_out = num_filters_in * 4
 # first layer and first stage
 if res_block == 0:
 activation = None
 batch_normalization = False
 else:
 num_filters_out = num_filters_in * 2
 # first layer but not first stage
 if res_block == 0:

Chapter 2

[65]

 # downsample
 strides = 2

 # bottleneck residual unit
 y = resnet_layer(inputs=x,
 num_filters=num_filters_in,
 kernel_size=1,
 strides=strides,
 activation=activation,
 batch_normalization=batch_normalization,
 conv_first=False)
 y = resnet_layer(inputs=y,
 num_filters=num_filters_in,
 conv_first=False)
 y = resnet_layer(inputs=y,
 num_filters=num_filters_out,
 kernel_size=1,
 conv_first=False)
 if res_block == 0:
 # linear projection residual shortcut connection
 # to match changed dims
 x = resnet_layer(inputs=x,
 num_filters=num_filters_out,
 kernel_size=1,
 strides=strides,
 activation=None,
 batch_normalization=False)
 x = add([x, y])

 num_filters_in = num_filters_out

 # add classifier on top.
 # v2 has BN-ReLU before Pooling
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = AveragePooling2D(pool_size=8)(x)
 y = Flatten()(x)
 outputs = Dense(num_classes,
 activation='softmax',
 kernel_initializer='he_normal')(y)

 # instantiate model.
 model = Model(inputs=inputs, outputs=outputs)
 return model

Deep Neural Networks

[66]

ResNet v2's model builder is shown in the following code. For example, to build
ResNet110 v2, we'll use n = 12 and version = 2:

n = 12

model version
orig paper: version = 1 (ResNet v1),
improved ResNet: version = 2 (ResNet v2)
version = 2

computed depth from supplied model parameter n
if version == 1:
 depth = n * 6 + 2
elif version == 2:
 depth = n * 9 + 2

if version == 2:
 model = resnet_v2(input_shape=input_shape, depth=depth)
else:
 model = resnet_v1(input_shape=input_shape, depth=depth)

The accuracy of ResNet v2 is shown in Table 2.3.1 below:

Layers n % Accuracy on CIFAR10
(Original paper)

% Accuracy on CIFAR10
(This book)

ResNet56 9 NA 93.01
ResNet110 18 93.63 93.15

Table 2.3.1: The ResNet v2 architectures validated on the CIFAR10 dataset

In the Keras applications package, certain ResNet v1 and v2 models (for example: 50,
101, 152) have been implemented. These are alternative implementations with pre-
trained weights unclear and can be easily reused for transfer learning. The models
used in this book provide flexibility in terms of number of layers.

We have completed the discussion on one of the most commonly used deep neural
networks, ResNet v1 and v2. In the following section, DenseNet, another popular
deep neural network architecture, is covered.

Chapter 2

[67]

4. Densely Connected Convolutional
Network (DenseNet)

Figure 2.4.1: A 4-layer Dense block in DenseNet.
The input to each layer is made of all the previous feature maps.

DenseNet attacks the problem of vanishing gradient using a different approach.
Instead of using shortcut connections, all the previous feature maps will become
the input of the next layer. The preceding figure shows an example of a Dense
interconnection in one Dense block.

For simplicity, in this figure, we'll only show four layers. Notice that the input to
layer l is the concatenation of all previous feature maps. If we let BN-ReLU-Conv2D
be represented by the operation H(x), then the output of layer l is:

xl = H (x0,x1,x2, ,xl-1) (Equation 2.4.1)

Conv2D uses a kernel of size 3. The number of feature maps generated per layer is
called the growth rate, k. Normally, k = 12, but k = 24 is also used in the paper Densely
Connected Convolutional Networks by Huang et al. (2017) [5]. Therefore, if the number
of feature maps x0 is k0 , then the total number of feature maps at the end of the
4-layer Dense block in Figure 2.4.1 will be 4 x k + k0.

DenseNet recommends that the Dense block is preceded by BN-ReLU-Conv2D, along
with a number of feature maps that is twice the growth rate, k0 = 2 x k. At the end of
the Dense block, the total number of feature maps will be 4 x 12 + 2 x 12 = 72.

At the output layer, DenseNet suggests that we perform an average pooling before
the Dense() with a softmax layer. If the data augmentation is not used, a dropout
layer must follow the Dense block Conv2D.

Deep Neural Networks

[68]

As the network gets deeper, two new problems will occur. Firstly, since every layer
contributes k feature maps, the number of inputs at layer l is (l – 1) x k + k0. The
feature maps can grow rapidly within deep layers, slowing down the computation.
For example, for a 101-layer network this will be 1200 + 24 = 1224 for k = 12.

Secondly, similar to ResNet, as the network gets deeper the feature maps size
will be reduced to increase the receptive field size of the kernel. If DenseNet uses
concatenation in the merge operation, it must reconcile the differences in size.

To prevent the number of feature maps from increasing to the point of being
computationally inefficient, DenseNet introduced the Bottleneck layer as shown
in Figure 2.4.2. The idea is that after every concatenation, a 1 x 1 convolution with
a filter size equal to 4k is now applied. This dimensionality reduction technique
prevents the number of feature maps to be processed by Conv2D(3) from rapidly
increasing.

Figure 2.4.2: A layer in a Dense block of DenseNet, with and without the bottleneck layer
BN-ReLU-Conv2D(1). We'll include the kernel size as an argument of Conv2D for clarity.

The Bottleneck layer then modifies the DenseNet layer as BN-ReLU-Conv2D(1)-
BN- ReLU-Conv2D(3), instead of just BN-ReLU-Conv2D(3). We've included the
kernel size as an argument of Conv2D for clarity. With the Bottleneck layer, every
Conv2D(3) is processing just the 4k feature maps instead of (l – 1) x k + k0 for layer
l. For example, for the 101-layer network, the input of the last Conv2D(3) is still
48 feature maps for k = 12 instead of 1224 as previously computed.

To solve the problem in feature maps size mismatch, DenseNet divides a deep
network into multiple Dense blocks that are joined together by transition layers as
shown in Figure 2.4.3. Within each Dense block, the feature map size (that is, width
and height) will remain constant.

Chapter 2

[69]

The role of the transition layer is to transition from one feature map size to a
smaller feature map size between two Dense blocks. The reduction in size is
usually half. This is accomplished by the average pooling layer. For example, an
AveragePooling2D with default pool_size=2 reduces the size from (64, 64, 256) to
(32, 32, 256). The input to the transition layer is the output of the last concatenation
layer in the previous Dense block.

Figure 2.4.3: The transition layer in between two Dense blocks

However, before the feature maps are passed to average pooling, their number
will be reduced by a certain compression factor, 0 < 𝜃𝜃 < 1 , using Conv2D(1).
DenseNet uses 𝜃𝜃 = 0.5 in their experiment. For example, if the output of the last
concatenation of the previous Dense block is (64, 64, 512), then after Conv2D(1)
the new dimensions of the feature maps will be (64, 64, 256). When compression
and dimensionality reduction are put together, the transition layer is made of BN-
Conv2D(1)-AveragePooling2D layers. In practice, batch normalization precedes
the convolutional layer.

We have now covered the important concepts of DenseNet. Next, we'll build and
validate a DenseNet-BC for the CIFAR10 dataset in tf.keras.

Building a 100-layer DenseNet-BC for
CIFAR10
We're now going to build a DenseNet-BC (Bottleneck-Compression) with 100 layers
for the CIFAR10 dataset, using the design principles that we discussed above.

Deep Neural Networks

[70]

Table 2.4.1 shows the model configuration, while Figure 2.4.4 shows the model
architecture. The listing shows us the partial Keras implementation of DenseNet-BC
with 100 layers. We need to take note that we use RMSprop since it converges better
than SGD or Adam when using DenseNet.

Layers Output Size DenseNet-100 BC
Convolution 32 x 32 3 x 3 Conv2D

Dense Block (1) 32 x 32 {1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} × 16

Transition Layer (1) 32 x 32
{1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
2 × 2 𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴2𝐷𝐷} 16 x 16

Dense Block (2) 16 x 16 {1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} × 16

Transition Layer (2) 16 x 16
{1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
2 × 2 𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴2𝐷𝐷} 8 x 8

Dense Block (3) 8 x 8 {1 × 1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 × 3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} × 16

Average Pooling 1 x 1 8 x 8 AveragePooling2D

Classification Layer Flatten-Dense(10)-softmax

Table 2.4.1: DenseNet-BC with 100 layers for CIFAR10 classification

Chapter 2

[71]

Moving from configuration to architecture:

Figure 2.4.4: Model architecture of DenseNet-BC with 100 layers for CIFAR10 classification

Deep Neural Networks

[72]

Below in Listing 2.4.1 is the partial Keras implementation of DenseNet-BC with
100 layers as shown in Table 2.4.1.

Listing 2.4.1: densenet-cifar10-2.4.1.py

start model definition
densenet CNNs (composite function) are made of BN-ReLU-Conv2D
inputs = Input(shape=input_shape)
x = BatchNormalization()(inputs)
x = Activation('relu')(x)
x = Conv2D(num_filters_bef_dense_block,
 kernel_size=3,
 padding='same',
 kernel_initializer='he_normal')(x)
x = concatenate([inputs, x])

stack of dense blocks bridged by transition layers
for i in range(num_dense_blocks):
 # a dense block is a stack of bottleneck layers
 for j in range(num_bottleneck_layers):
 y = BatchNormalization()(x)
 y = Activation('relu')(y)
 y = Conv2D(4 * growth_rate,
 kernel_size=1,
 padding='same',
 kernel_initializer='he_normal')(y)
 if not data_augmentation:
 y = Dropout(0.2)(y)
 y = BatchNormalization()(y)
 y = Activation('relu')(y)
 y = Conv2D(growth_rate,
 kernel_size=3,
 padding='same',
 kernel_initializer='he_normal')(y)
 if not data_augmentation:
 y = Dropout(0.2)(y)
 x = concatenate([x, y])

 # no transition layer after the last dense block
 if i == num_dense_blocks - 1:
 continue

Chapter 2

[73]

 # transition layer compresses num of feature maps and # reduces
the size by 2
 num_filters_bef_dense_block += num_bottleneck_layers * growth_rate
 num_filters_bef_dense_block = int(num_filters_bef_dense_block *
compression_factor)
 y = BatchNormalization()(x)
 y = Conv2D(num_filters_bef_dense_block,
 kernel_size=1,
 padding='same',
 kernel_initializer='he_normal')(y)
 if not data_augmentation:
 y = Dropout(0.2)(y)
 x = AveragePooling2D()(y)

add classifier on top
after average pooling, size of feature map is 1 x 1
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
 kernel_initializer='he_normal',
 activation='softmax')(y)
instantiate and compile model
orig paper uses SGD but RMSprop works better for DenseNet
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',
 optimizer=RMSprop(1e-3),
 metrics=['accuracy'])
model.summary()

Training the tf.keras implementation of DenseNet for 200 epochs achieves a
93.74% accuracy vs. the 95.49% reported in the paper. Data augmentation is used. We
used the same callback functions in ResNet v1/v2 for DenseNet.

For the deeper layers, the growth_rate and depth variables must be changed using
the table on the Python code. However, it will take a substantial amount of time to
train the network at a depth of 190 or 250 as done in the paper. To give us an idea of
training time, each epoch runs for about an hour on a 1060Ti GPU. Similar to ResNet,
Keras applications package has pre-trained models for DenseNet 121 and higher.

DenseNet completes our discussion on deep neural networks. Together with ResNet,
the two networks have been indispensable as is or as feature extractor networks in
many downstream tasks.

Deep Neural Networks

[74]

5. Conclusion
In this chapter, we've presented the Functional API as an advanced method
for building complex deep neural network models using tf.keras. We also
demonstrated how the Functional API could be used to build the multi-input-single-
output Y-Network. This network, when compared to a single branch CNN network,
achieves better accuracy. For the rest of the book, we'll find the Functional API
indispensable in building more complex and advanced models. For example, in the
next chapter, the Functional API will enable us to build a modular encoder, decoder,
and autoencoder.

We also spent a significant amount of time exploring two important deep
networks, ResNet and DenseNet. Both of these networks have been used not only
in classification but also in other areas, such as segmentation, detection, tracking,
generation, and visual semantic understanding. In Chapter 11, Object Detection,
and Chapter 12, Semantic Segmentation, we will use ResNet for object detection and
segmentation. We need to remember that it's more important that we understand the
model design decisions in ResNet and DenseNet more closely than just following
the original implementation. In that manner, we'll be able to use the key concepts of
ResNet and DenseNet for our purposes.

6. References
1. Kaiming He et al. Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification. Proceedings of the IEEE international
conference on computer vision, 2015 (https://www.cv-foundation.
org/openaccess/content_iccv_2015/papers/He_Delving_Deep_
into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.
pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf).

2. Kaiming He et al. Deep Residual Learning for Image Recognition. Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016a
(http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_
Residual_Learning_CVPR_2016_paper.pdf).

3. Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. ICLR, 2015 (https://arxiv.org/
pdf/1409.1556/).

4. Kaiming He et al. Identity Mappings in Deep Residual Networks. European
Conference on Computer Vision. Springer International Publishing, 2016b
(https://arxiv.org/pdf/1603.05027.pdf).

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf)
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf)
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf)
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf?spm=5176.100239.blogcont55892.28.pm8zm1&file=He_Delving_Deep_into_ICCV_2015_paper.pdf)
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1409.1556/
https://arxiv.org/pdf/1409.1556/
https://arxiv.org/pdf/1603.05027.pdf

Chapter 2

[75]

5. Gao Huang et al. Densely Connected Convolutional Networks. Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017
(http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_
Densely_Connected_Convolutional_CVPR_2017_paper.pdf).

6. Saining Xie et al. Aggregated Residual Transformations for Deep Neural Networks.
Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on. IEEE, 2017 (http://openaccess.thecvf.com/content_cvpr_2017/
papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.
pdf).

7. Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks."
arXiv preprint arXiv:1605.07146 (2016).

http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.pdf

[77]

3
Autoencoders

In the previous chapter, Chapter 2, Deep Neural Networks, we introduced the concept
of deep neural networks. We're now going to move on to look at autoencoders,
which are a neural network architecture that attempts to find a compressed
representation of the given input data.

Similar to the previous chapters, the input data may be in multiple forms, including
speech, text, image, or video. An autoencoder will attempt to find a representation
or piece of code in order to perform useful transformations on the input data. As
an example, when denoising autoencoders, a neural network will attempt to find a
code that can be used to transform noisy data into clean data. Noisy data could be
in the form of an audio recording with static noise that is then converted into clear
sound. Autoencoders will learn the code automatically from the data alone without
human labeling. As such, autoencoders can be classified under unsupervised
learning algorithms.

In later chapters of this book, we will look at Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs), which are also representative
forms of unsupervised learning algorithms. This is in contrast to the supervised
learning algorithms that we discussed in the previous chapters, where human
annotations were required.

In summary, this chapter presents:

• The principles of autoencoders
• How to implement autoencoders using tf.keras
• The practical applications of denoising and colorization autoencoders

Let's begin by getting into what an autoencoder is, and the principles of autoencoders.

Autoencoders

[78]

1. Principles of autoencoders
In its simplest form, an autoencoder will learn the representation or code by trying
to copy the input to output. However, using an autoencoder is not as simple as
copying the input to output. Otherwise, the neural network would not be able to
uncover the hidden structure in the input distribution.

An autoencoder will encode the input distribution into a low-dimensional tensor,
which usually takes the form of a vector. This will approximate the hidden structure
that is commonly referred to as the latent representation, code, or vector. This
process constitutes the encoding part. The latent vector will then be decoded by
the decoder part to recover the original input.

As a result of the latent vector being a low-dimensional compressed representation
of the input distribution, it should be expected that the output recovered by the
decoder can only approximate the input. The dissimilarity between the input and
the output can be measured by a loss function.

But why would we use autoencoders? Simply put, autoencoders have practical
applications both in their original form or as part of more complex neural networks.

They're a key tool in understanding the advanced topics of deep learning as
they give us a low-dimensional representation of data that is suitable for density
estimation. Furthermore, it can be efficiently processed to perform structural
operations on the input data. Common operations include denoising, colorization,
feature-level arithmetic, detection, tracking, and segmentation, to name just a few.

In this section, we're going to go over the principles of autoencoders. We're going
to look at autoencoders with the MNIST dataset, which was introduced in the
previous chapters.

Firstly, we need to be made aware that an autoencoder has two operators, these
being:

• Encoder: This transforms the input, x, into a low-dimensional latent vector,
𝒛𝒛 = 𝑓𝑓(𝒙𝒙) . Since the latent vector is of low dimension, the encoder is forced
to learn only the most important features of the input data. For example,
in the case of MNIST digits, the important features to learn may include
writing style, tilt angle, roundness of stroke, thickness, and so on. Essentially,
these are the most important bits of information needed to represent the
digits zero to nine.

• Decoder: This tries to recover the input from the latent vector, 𝑔𝑔(𝒛𝒛) = 𝒙𝒙~ .

Chapter 3

[79]

Although the latent vector has a low dimension, it has a sufficient size to allow
the decoder to recover the input data.

The goal of the decoder is to make 𝒙𝒙~ as close as possible to x. Generally, both the
encoder and decoder are non-linear functions. The dimension of z is a measure
of the number of salient features it can represent. The dimension is usually much
smaller than the input dimensions for efficiency and in order to constrain the latent
code to learn only the most salient properties of the input distribution [1].

An autoencoder has the tendency to memorize the input when the dimension of
the latent code is significantly bigger than x.

A suitable loss function, ℒ(𝒙𝒙, 𝒙𝒙~) , is a measure of how dissimilar the input, x, is from
the output, which is the recovered input, 𝒙𝒙~ . As shown in the following equation,
the mean squared error (MSE) is an example of such a loss function:

ℒ(𝒙𝒙, 𝒙𝒙~) = 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥

~
𝑖𝑖)
2

𝑖𝑖=𝑚𝑚

𝑖𝑖=1
 (Equation 3.1.1)

In this example, m is the output dimension (for example, in MNIST m = width
× height × channels = 28 × 28 × 1 = 784). xi and 𝑥𝑥~𝑖𝑖 are the elements of x and 𝒙𝒙~ ,
respectively. Since the loss function is a measure of dissimilarity between the input
and output, we're able to use alternative reconstruction loss functions such as binary
cross entropy or the structural similarity index (SSIM).

Similar to other neural networks, an autoencoder tries to make this error or loss
function as small as possible during training. Figure 3.1.1 shows an autoencoder.
The encoder is a function that compresses the input, x, into a low-dimensional
latent vector, z. This latent vector represents the important features of the input
distribution. The decoder then tries to recover the original input from the latent
vector in the form of 𝒙𝒙~ .

Figure 3.1.1: Block diagram of an autoencoder

To put the autoencoder into context, x can be an MNIST digit that has a dimension
of 28 × 28 × 1 = 784. The encoder transforms the input into a low-dimensional z that
can be a 16-dimension latent vector. The decoder will attempt to recover the input
in the form of 𝒙𝒙~ from z.

Autoencoders

[80]

Visually, every MNIST digit x appears similar to 𝒙𝒙~ . Figure 3.1.2 demonstrates this
autoencoding process to us.

Figure 3.1.2: An autoencoder with MNIST digit input and output. The latent vector is 16-dim

We can observe that the decoded digit 7, while not exactly the same, remains close
enough.

Since both the encoder and decoder are non-linear functions, we can use neural
networks to implement both. For example, in the MNIST dataset, the autoencoder
can be implemented by MLP or CNN. The autoencoder can be trained by minimizing
the loss function through backpropagation. Similar to other neural networks, a
requirement of backpropagation is that the loss function must be differentiable.

If we treat the input as a distribution, we can interpret the encoder as an encoder
of distribution, p(z|x), and the decoder as the decoder of distribution, p(x|z).
The loss function of the autoencoder is expressed as follows:

ℒ = − log𝑝𝑝(𝒙𝒙|𝒛𝒛) (Equation 3.1.2)

The loss function simply means that we would like to maximize the chances of
recovering the input distribution given the latent vector distribution. If the decoder
output distribution is assumed to be Gaussian, then the loss function boils down to
MSE since:

ℒ = − log𝑝𝑝(𝒙𝒙|𝒛𝒛) = − log∏𝒩𝒩(𝑥𝑥𝑖𝑖; �̃�𝑥𝑖𝑖, 𝜎𝜎2)
𝑚𝑚

𝑖𝑖=1
= −∑log𝒩𝒩(𝑥𝑥𝑖𝑖; �̃�𝑥𝑖𝑖, 𝜎𝜎2) ∝

𝑚𝑚

𝑖𝑖=1
∑(𝑥𝑥𝑖𝑖 − �̃�𝑥𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

(Equation 3.1.3)

In this example, 𝒩𝒩(𝑥𝑥𝑖𝑖; �̃�𝑥𝑖𝑖, 𝜎𝜎2) represents a Gaussian distribution with a mean of �̃�𝑥𝑖𝑖
and a variance of 𝜎𝜎2 . A constant variance is assumed. The decoder output, �̃�𝑥𝑖𝑖 , is
assumed to be independent. m is the output dimension.

Understanding the principles behind autoencoders will help us in the code
implementation. In the next section, we will take a look at how to use the tf.keras
functional API to build the encoder, decoder, and autoencoder.

Chapter 3

[81]

2. Building an autoencoder using Keras
We're now going to move onto something really exciting, building an autoencoder
using the tf.keras library. For simplicity, we'll be using the MNIST dataset for the
first set of examples. The autoencoder will then generate a latent vector from the
input data and recover the input using the decoder. The latent vector in this first
example is 16-dim.

Firstly, we're going to implement the autoencoder by building the encoder.

Listing 3.2.1 shows the encoder that compresses the MNIST digit into a 16-dim
latent vector. The encoder is a stack of two Conv2D. The final stage is a Dense layer
with 16 units to generate the latent vector.

Listing 3.2.1: autoencoder-mnist-3.2.1.py

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import plot_model
from tensorflow.keras import backend as K

import numpy as np
import matplotlib.pyplot as plt

load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]

Autoencoders

[82]

build the autoencoder model
first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)

shape info needed to build decoder model
so we don't do hand computation
the input to the decoder's first
Conv2DTranspose will have this shape
shape is (7, 7, 64) which is processed by
the decoder back to (28, 28, 1)
shape = K.int_shape(x)

generate latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

instantiate encoder model
encoder = Model(inputs,
 latent,
 name='encoder')
encoder.summary()
plot_model(encoder,
 to_file='encoder.png',
 show_shapes=True)

build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,

Chapter 3

[83]

 activation='relu',
 strides=2,
 padding='same')(x)

reconstruct the input
outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 activation='sigmoid',
 padding='same',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='decoder.png', show_shapes=True)

autoencoder = encoder + decoder
instantiate autoencoder model
autoencoder = Model(inputs,
 decoder(encoder(inputs)),
 name='autoencoder')
autoencoder.summary()
plot_model(autoencoder,
 to_file='autoencoder.png',
 show_shapes=True)

Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

train the autoencoder
autoencoder.fit(x_train,
 x_train,
 validation_data=(x_test, x_test),
 epochs=1,
 batch_size=batch_size)

predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test)

display the 1st 8 test input and decoded images
imgs = np.concatenate([x_test[:8], x_decoded[:8]])
imgs = imgs.reshape((4, 4, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()

Autoencoders

[84]

plt.axis('off')
plt.title('Input: 1st 2 rows, Decoded: last 2 rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('input_and_decoded.png')
plt.show()

Figure 3.2.1 shows the architecture model diagram generated by plot_model(),
which is the same as the text version produced by encoder.summary(). The shape
of the output of the last Conv2D is saved to compute the dimensions of the decoder
input layer for easy reconstruction of the MNIST image: shape = K.int_shape(x).

Figure 3.2.1: The encoder model is made up of Conv2D(32)-Conv2D(64)-Dense(16) in order
to generate the low-dimensional latent vector

The decoder in Listing 3.2.1 decompresses the latent vector in order to recover the
MNIST digit. The decoder input stage is a Dense layer that will accept the latent
vector. The number of units is equal to the product of the saved Conv2D output
dimensions from the encoder. This is done so that we can easily resize the output of
the Dense layer for Conv2DTranspose to finally recover the original MNIST image
dimensions.

The decoder is made of a stack of three Conv2DTranspose. In our case, we're
going to use a Transposed CNN (sometimes called deconvolution), which is more
commonly used in decoders. We can imagine transposed CNN (Conv2DTranspose)
as the reversed process of CNN.

Chapter 3

[85]

In a simple example, if the CNN converts an image into feature maps, the transposed
CNN will produce an image given feature maps. Figure 3.2.2 shows the decoder
model:

Figure 3.2.2: The decoder model is made up of Dense(16)-Conv2DTranspose(64)-Conv2DTranspose(32)-
Conv2DTranspose(1). The input is the latent vector decoded to recover the original input

By joining the encoder and decoder together, we're able to build the autoencoder.
Figure 3.2.3 illustrates the model diagram of the autoencoder:

Figure 3.2.3: The autoencoder model is built by joining an encoder model and a decoder model together.
There are 178 k parameters for this autoencoder

Autoencoders

[86]

The tensor output of the encoder is also the input to a decoder that generates the
output of the autoencoder. In this example, we'll be using the MSE loss function
and Adam optimizer. During training, the input is the same as the output, x_train.
We should note that in our example, there are only a few layers that are sufficient to
drive the validation loss to 0.01 in one epoch. For more complex datasets, we may
need a deeper encoder and decoder, as well as more epochs of training.

After training the autoencoder for one epoch with a validation loss of 0.01, we're
able to verify if it can encode and decode the MNIST data that it has not seen
before. Figure 3.2.4 shows us eight samples from the test data and the corresponding
decoded images:

Figure 3.2.4: Prediction of the autoencoder from the test data. The first two rows are the
original input test data. The last two rows are the predicted data

Except for minor blurring in the images, we're able to easily recognize that the
autoencoder is able to recover the input with good quality. The results will improve
as we train for a larger number of epochs.

At this point, we may be wondering: how can we visualize the latent vector in
space? A simple method for visualization is to force the autoencoder to learn the
MNIST digits features using a 2-dim latent vector. From there, we're able to project
this latent vector on a two dimensional space in order to see how the MNIST latent
vectors are distributed. Figure 3.2.5 and Figure 3.2.6 show the distribution of MNIST
digits as a function of latent code dimensions.

Chapter 3

[87]

Figure 3.2.5: A MNIST digit distribution as a function of latent code dimensions, z[0] and z[1].
The original photo can be found in this book's GitHub repository at, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md

In Figure 3.2.5, we can see that the latent vectors for a specific digit are clustering
on a region in space. For example, digit 0 is in the lower left quadrant, while digit 1
is in the upper right quadrant. Such clustering is mirrored in the figure. In fact, the
same figure shows the result of navigating or generating new digits from the latent
space, as shown in Figure 3.2.5.

For example, starting from the center and varying the value of a 2-dim latent
vector toward the upper right quadrant, this shows us that the digit changes from
9 to 1. This is expected since, from Figure 3.2.5, we're able to see that the latent code
values for the digit 9 clusters are near the center, and digit 1 code values cluster in
the upper right quadrant.

Autoencoders

[88]

For Figure 3.2.5 and Figure 3.2.6, we've only explored the regions between -4.0 and
+4.0 for each latent vector dimension:

Figure 3.2.6: Digits generated as the 2-dim latent vector space is navigated

As can be seen in Figure 3.2.5, the latent code distribution is not continuous. Ideally,
it should look like a circle where there are valid values everywhere. Because of this
discontinuity, there are regions where, if we decode the latent vector, hardly any
recognizable digits will be produced.

Figure 3.2.5 and Figure 3.2.6 were generated after 20 epochs of training. The
autoencoder-mnist-3.2.1.py code was modified by setting latent_dim = 2.
The plot_ results() function plots the MNIST digit as a function of the 2-dim
latent vector. For convenience, the program is saved as autoencoder-2dim-
mnist-3.2.2.py with the partial code shown in Listing 3.2.2. The rest of the code is
practically similar to Listing 3.2.1 and no longer shown here.

Listing 3.2.2: autoencoder-2dim-mnist-3.2.2.py

def plot_results(models,
 data,
 batch_size=32,

Chapter 3

[89]

 model_name="autoencoder_2dim"):
 """Plots 2-dim latent values as scatter plot of digits
 then, plot MNIST digits as function of 2-dim latent vector

 Arguments:
 models (list): encoder and decoder models
 data (list): test data and label
 batch_size (int): prediction batch size
 model_name (string): which model is using this function
 """

 encoder, decoder = models
 x_test, y_test = data
 xmin = ymin = -4
 xmax = ymax = +4
 os.makedirs(model_name, exist_ok=True)

 filename = os.path.join(model_name, "latent_2dim.png")
 # display a 2D plot of the digit classes in the latent space
 z = encoder.predict(x_test,
 batch_size=batch_size)
 plt.figure(figsize=(12, 10))

 # axes x and y ranges
 axes = plt.gca()
 axes.set_xlim([xmin,xmax])
 axes.set_ylim([ymin,ymax])

 # subsample to reduce density of points on the plot
 z = z[0::2]
 y_test = y_test[0::2]
 plt.scatter(z[:, 0], z[:, 1], marker="")
 for i, digit in enumerate(y_test):
 axes.annotate(digit, (z[i, 0], z[i, 1]))
 plt.xlabel("z[0]")
 plt.ylabel("z[1]")
 plt.savefig(filename)
 plt.show()

 filename = os.path.join(model_name, "digits_over_latent.png")
 # display a 30x30 2D manifold of the digits
 n = 30
 digit_size = 28
 figure = np.zeros((digit_size * n, digit_size * n))

Autoencoders

[90]

 # linearly spaced coordinates corresponding to the 2D plot
 # of digit classes in the latent space
 grid_x = np.linspace(xmin, xmax, n)
 grid_y = np.linspace(ymin, ymax, n)[::-1]

 for i, yi in enumerate(grid_y):
 for j, xi in enumerate(grid_x):
 z = np.array([[xi, yi]])
 x_decoded = decoder.predict(z)
 digit = x_decoded[0].reshape(digit_size, digit_size)
 figure[i * digit_size: (i + 1) * digit_size,
 j * digit_size: (j + 1) * digit_size] = digit

 plt.figure(figsize=(10, 10))
 start_range = digit_size // 2
 end_range = n * digit_size + start_range + 1
 pixel_range = np.arange(start_range, end_range, digit_size)
 sample_range_x = np.round(grid_x, 1)
 sample_range_y = np.round(grid_y, 1)
 plt.xticks(pixel_range, sample_range_x)
 plt.yticks(pixel_range, sample_range_y)
 plt.xlabel("z[0]")
 plt.ylabel("z[1]")
 plt.imshow(figure, cmap='Greys_r')
 plt.savefig(filename)
 plt.show()

This completes the implementation and examination of autoencoders. The upcoming
chapters focus on their practical applications. We will start with denoising
autoencoders.

3. Denoising autoencoders (DAEs)
We're now going to build an autoencoder with a practical application. Firstly,
let's paint a picture and imagine that the MNIST digit images were corrupted by
noise, thus making it harder for humans to read. We're able to build a denoising
autoencoder (DAE) to remove the noise from these images. Figure 3.3.1 shows us
three sets of MNIST digits. The top rows of each set (for example, MNIST digits 7, 2,
1, 9, 0, 6, 3, 4, and 9) are the original images. The middle rows show the inputs to the
DAE, which are the original images corrupted by noise. As humans, we can find that
it is difficult to read the corrupted MNIST digits. The last rows show the outputs of
the DAE.

Chapter 3

[91]

Figure 3.3.1: Original MNIST digits (top rows), corrupted original images (middle rows),
and denoised images (last rows)

As shown in Figure 3.3.2, the denoising autoencoder has practically the same
structure as the autoencoder for MNIST that we presented in the previous section.

Figure 3.3.2: The input to the denoising autoencoder is the corrupted image.
The output is the clean or denoised image. The latent vector is assumed to be 16-dim

The input in Figure 3.3.2 is defined as:

x = xorig + noise (Equation 3.3.1)

In this formula, xorig represents the original MNIST image corrupted by noise. The
objective of the encoder is to discover how to produce the latent vector, z, which will
enable the decoder to recover such as MSE, as shown through: xorig by minimizing the
dissimilarity loss function:

ℒ(𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, �̃�𝒙) = 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚∑(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑥𝑥~𝑜𝑜)

2
𝑜𝑜=𝑚𝑚

𝑜𝑜=1
 (Equation 3.3.2)

In this example, m is the output dimension (for example, in MNIST, m = width ×
height × channels = 28 × 28 × 1 = 784). 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 and 𝑥𝑥~𝑖𝑖 are the elements of xorig and 𝒙𝒙~ ,
respectively.

Autoencoders

[92]

To implement theDAE, we're going to need to make a few changes to the
autoencoder presented in the previous section. Firstly, the training input data should
be corrupted MNIST digits. The training output data is the same original clean
MNIST digits. This is like telling the autoencoder what the corrected images should
be or asking it to figure out how to remove noise given a corrupted image. Lastly, we
must validate the autoencoder on the corrupted MNIST test data.

The MNIST digit 7 shown on the left of Figure 3.3.2 is an actual corrupted image
input. The one on the right is the clean image output of a trained denoising
autoencoder.

Listing 3.3.1: denoising-autoencoder-mnist-3.3.1.py

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

np.random.seed(1337)

load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

generate corrupted MNIST images by adding noise with normal dist
centered at 0.5 and std=0.5
noise = np.random.normal(loc=0.5, scale=0.5, size=x_train.shape)
x_train_noisy = x_train + noise
noise = np.random.normal(loc=0.5, scale=0.5, size=x_test.shape)
x_test_noisy = x_test + noise

adding noise may exceed normalized pixel values>1.0 or <0.0
clip pixel values >1.0 to 1.0 and <0.0 to 0.0
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)

Chapter 3

[93]

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]

build the autoencoder model
first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

shape info needed to build decoder model so we don't do hand
computation
the input to the decoder's first Conv2DTranspose will have this
shape
shape is (7, 7, 64) which can be processed by the decoder back to
(28, 28, 1)
shape = K.int_shape(x)

generate the latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
 x = Conv2DTranspose(filters=filters,

Autoencoders

[94]

 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

reconstruct the denoised input
outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 padding='same',
 activation='sigmoid',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

autoencoder = encoder + decoder
instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)),
name='autoencoder')
autoencoder.summary()

Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

train the autoencoder
autoencoder.fit(x_train_noisy,
 x_train,
 validation_data=(x_test_noisy, x_test),
 epochs=10,
 batch_size=batch_size)

predict the autoencoder output from corrupted test images
x_decoded = autoencoder.predict(x_test_noisy)

3 sets of images with 9 MNIST digits
1st rows - original images
2nd rows - images corrupted by noise
3rd rows - denoised images
rows, cols = 3, 9
num = rows * cols
imgs = np.concatenate([x_test[:num], x_test_noisy[:num], x_
decoded[:num]])
imgs = imgs.reshape((rows * 3, cols, image_size, image_size))
imgs = np.vstack(np.split(imgs, rows, axis=1))
imgs = imgs.reshape((rows * 3, -1, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])

Chapter 3

[95]

imgs = (imgs * 255).astype(np.uint8)
plt.figure()
plt.axis('off')
plt.title('Original images: top rows, '
 'Corrupted Input: middle rows, '
 'Denoised Input: third rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
Image.fromarray(imgs).save('corrupted_and_denoised.png')
plt.show()

Listing 3.3.1 shows the denoising autoencoder, which has been contributed to
the official Keras GitHub repository. Using the same MNIST dataset, we're able
to simulate corrupted images by adding random noise. The noise added is a
Gaussian distribution with a mean of 𝜇𝜇 = 0.5 and a standard deviation of 𝜎𝜎 = 0.5 .
Since adding random noise may push the pixel data into invalid values of less
than 0 or greater than 1, the pixel values are clipped to the [0.1, 1.0] range.

Everything else will remain practically the same as the autoencoder from the
previous section. We'll use the same MSE loss function and Adam optimizer.
However, the number of epochs for training has increased to 10. This is to allow
sufficient parameter optimization.

Figure 3.3.3 shows a certain level of robustness of the DAE as the level of noise is
increased from 𝜎𝜎 = 0.5 to 𝜎𝜎 = 0.75 and 𝜎𝜎 = 1.0 . At 𝜎𝜎 = 0.75 , the DAE is still able
to recover the original images. However, at 𝜎𝜎 = 1.0 , a few digits, such as 4 and 5 in
the second and third sets, can no longer be recovered correctly.

Figure 3.3.3: Performance of the denoising autoencoder as the noise level is increased

Autoencoders

[96]

We have completed the discussion and implementation of denoising autoencoders.
Although the concept was demonstrated on MNIST digits, the idea is applicable to
other signals as well. In the next section, we will cover another practical application
of autoencoders called the colorization autoencoder.

4. Automatic colorization autoencoder
We're now going to work on another practical application of autoencoders. In this
case, we're going to imagine that we have a grayscale photo and that we want to
build a tool that will automatically add color to it. We would like to replicate the
human abilities in identifying that the sea and sky are blue, the grass field and
trees are green, while the clouds are white, and so on.

As shown in Figure 3.4.1, if we are given a grayscale photo (left) of a rice field in
the foreground, a volcano in the background, and sky on the top, we're able to add
the appropriate colors (right).

Figure 3.4.1: Adding color to a grayscale photo of the Mayon Volcano. A colorization network should replicate
human abilities by adding color to a grayscale photo. The left photo is grayscale. The right photo is color. The
original color photo can be found in this book's GitHub repository at, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md

A simple automatic colorization algorithm seems like a suitable problem for
autoencoders. If we can train the autoencoder with a sufficient number of grayscale
photos as input and the corresponding colored photos as output, it could possibly
discover the hidden structure on properly applying colors. Roughly, it is the reverse
process of denoising. The question is, can an autoencoder add color (good noise)
to the original grayscale image?

Chapter 3

[97]

Listing 3.4.1 shows the colorization autoencoder network. The colorization
autoencoder network is a modified version of the denoising autoencoder that
we used for the MNIST dataset. Firstly, we need a dataset of grayscale to colored
photos. The CIFAR10 database, which we have used before, has 50,000 training
and 10,000 testing 32 × 32 RGB photos that can be converted to grayscale. As shown
in the following listing, we're able to use the rgb2gray() function to apply weights
on R, G, and B components to convert from color to grayscale:

Listing 3.4.1: colorization-autoencoder-cifar10-3.4.1.py

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import plot_model
from tensorflow.keras import backend as K

import numpy as np
import matplotlib.pyplot as plt
import os

def rgb2gray(rgb):
 """Convert from color image (RGB) to grayscale.
 Source: opencv.org
 grayscale = 0.299*red + 0.587*green + 0.114*blue
 Argument:
 rgb (tensor): rgb image
 Return:
 (tensor): grayscale image
 """
 return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

load the CIFAR10 data
(x_train, _), (x_test, _) = cifar10.load_data()

input image dimensions
we assume data format "channels_last"
img_rows = x_train.shape[1]
img_cols = x_train.shape[2]
channels = x_train.shape[3]

Autoencoders

[98]

create saved_images folder
imgs_dir = 'saved_images'
save_dir = os.path.join(os.getcwd(), imgs_dir)
if not os.path.isdir(save_dir):
 os.makedirs(save_dir)

display the 1st 100 input images (color and gray)
imgs = x_test[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test color images (Ground Truth)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/test_color.png' % imgs_dir)
plt.show()

convert color train and test images to gray
x_train_gray = rgb2gray(x_train)
x_test_gray = rgb2gray(x_test)

display grayscale version of test images
imgs = x_test_gray[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test gray images (Input)')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('%s/test_gray.png' % imgs_dir)
plt.show()

normalize output train and test color images
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

normalize input train and test grayscale images
x_train_gray = x_train_gray.astype('float32') / 255
x_test_gray = x_test_gray.astype('float32') / 255

reshape images to row x col x channel for CNN output/validation
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols,

Chapter 3

[99]

channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)

reshape images to row x col x channel for CNN input
x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows,
img_cols, 1)
x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows, img_
cols, 1)

network parameters
input_shape = (img_rows, img_cols, 1)
batch_size = 32
kernel_size = 3
latent_dim = 256
encoder/decoder number of CNN layers and filters per layer
layer_filters = [64, 128, 256]

build the autoencoder model
first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
stack of Conv2D(64)-Conv2D(128)-Conv2D(256)
for filters in layer_filters:
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

shape info needed to build decoder model so we don't do hand
computation
the input to the decoder's first Conv2DTranspose will have this
shape
shape is (4, 4, 256) which is processed by the decoder back to (32,
32, 3)
shape = K.int_shape(x)

generate a latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

Autoencoders

[100]

build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
x = Dense(shape[1]*shape[2]*shape[3])(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

stack of Conv2DTranspose(256)-Conv2DTranspose(128)-
Conv2DTranspose(64)
for filters in layer_filters[::-1]:
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=2,
 activation='relu',
 padding='same')(x)

outputs = Conv2DTranspose(filters=channels,
 kernel_size=kernel_size,
 activation='sigmoid',
 padding='same',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

autoencoder = encoder + decoder
instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)),
name='autoencoder')
autoencoder.summary()

prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'colorized_ae_model.{epoch:03d}.h5'
if not os.path.isdir(save_dir):
 os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)

reduce learning rate by sqrt(0.1) if the loss does not improve in 5
epochs
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
 cooldown=0,
 patience=5,
 verbose=1,
 min_lr=0.5e-6)

Chapter 3

[101]

save weights for future use (e.g. reload parameters w/o training)
checkpoint = ModelCheckpoint(filepath=filepath,
 monitor='val_loss',
 verbose=1,
 save_best_only=True)

Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

called every epoch
callbacks = [lr_reducer, checkpoint]

train the autoencoder
autoencoder.fit(x_train_gray,
 x_train,
 validation_data=(x_test_gray, x_test),
 epochs=30,
 batch_size=batch_size,
 callbacks=callbacks)

predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test_gray)

display the 1st 100 colorized images
imgs = x_decoded[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Colorized test images (Predicted)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/colorized.png' % imgs_dir)
plt.show()

We've increased the capacity of the autoencoder by adding one more block of
convolution and transposed convolution. We've also doubled the number of filters
at each CNN block. The latent vector is now 256-dim in order to increase the number
of salient properties it can represent, as discussed in the autoencoder section. Finally,
the output filter size has increased to three, or is equal to the number of channels in
RGB of the expected colored output.

Autoencoders

[102]

The colorization autoencoder is now trained with the grayscale as inputs and
original RGB images as outputs. The training will take more epochs and uses the
learning rate reducer to scale down the learning rate when the validation loss is
not improving. This can be easily done by telling the callbacks argument in the
tf.keras fit() function to call the lr_reducer() function.

Figure 3.4.2 demonstrates the colorization of grayscale images from the test dataset of
CIFAR10.

Figure 3.4.2: Automatic grayscale to color image conversion using the autoencoder. CIFAR10 test grayscale
input images (left) and predicted color images (right). The original color photo can be found in this Book's
GitHub repository at, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/

master/chapter3-autoencoders/README.md

Figure 3.4.3 compares the ground truth with the colorization autoencoder prediction:

Chapter 3

[103]

Figure 3.4.3: A side-by-side comparison of ground truth color images and predicted colorized images. The
original color photos can be found in this book's GitHub repository at, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md

The autoencoder performs an acceptable colorization job. The sea or sky is predicted
to be blue, animals have varying shades of brown, the cloud is white, and so on.

There are some noticeable incorrect predictions, such as red vehicles have become
blue or blue vehicles have become red, and the occasional green field has been
mistaken as blue skies, and dark or golden skies are converted into blue skies.

This is the last section on autoencoders. In the following chapters, we will revisit
the concept of encoding and decoding in one form or another. The concept of
representation learning is very fundamental in deep learning.

Autoencoders

[104]

5. Conclusion
In this chapter, we've been introduced to autoencoders, which are neural networks
that compress input data into low-dimensional representations in order to efficiently
perform structural transformations, such as denoising and colorization. We've laid
the foundations to the more advanced topics of GANs and VAEs, which we will
introduce in later chapters. We've demonstrated how to implement an autoencoder
from two building block models, both encoders and decoders. We've also learned
how the extraction of a hidden structure of input distribution is one of the common
tasks in AI.

Once the latent code has been learned, there are many structural operations that
can be performed on the original input distribution. In order to gain a better
understanding of the input distribution, the hidden structure in the form of the
latent vector can be visualized using low-level embedding, similar to what we did
in this chapter, or through more sophisticated dimensionality reduction techniques
such as t-SNE or PCA.

Apart from denoising and colorization, autoencoders are used in converting input
distribution into low-dimensional latent vectors that can be further processed for
other tasks such as segmentation, detection, tracking, reconstruction, and visual
understanding. In Chapter 8, Variational Autoencoders (VAEs), we will discuss VAEs,
which are structurally the same as autoencoders but differ by having interpretable
latent code that can produce a continuous latent vector projection.

In the next chapter, we will embark on one of the most important recent
breakthroughs in AI, the introduction of GANs. In the next chapter, we will learn
about the core strength of GANs, which is their ability to synthesize data that looks
real.

6. References
1. Ian Goodfellow et al.: Deep Learning. Vol. 1. Cambridge: MIT press, 2016

(http://www.deeplearningbook.org/).

http://www.deeplearningbook.org/

[105]

4
Generative Adversarial

Networks (GANs)
In this chapter, we'll be investigating generative adversarial networks (GANs) [1].
GANs belong to the family of generative models. However, unlike autoencoders,
generative models are able to create new and meaningful outputs given arbitrary
encodings.

In this chapter, the working principles of GANs will be discussed. We'll also review
the implementations of several early GANs using tf.keras, while, later on in
the chapter, we'll demonstrate the techniques needed to achieve stable training.
The scope of this chapter covers two popular examples of GAN implementations,
Deep Convolutional GAN (DCGAN) [2] and Conditional GAN (CGAN) [3].

In summary, the goals of this chapter are:

• To introduce the principles of GAN
• To present one of the early working implementations of GAN, called

DCGAN
• An improved DCGAN called CGAN, which uses a condition
• To implement DCGAN and CGAN in tf.keras

Let's begin with an overview of GANs.

Generative Adversarial Networks (GANs)

[106]

1. An Overview of GANs
Before we move into the more advanced concepts of GANs, let's start by going
over GANs and introducing the underlying concepts behind them. GANs are very
powerful; this simple statement is proven by the fact that they can generate new
human faces that are not of real people by performing latent space interpolations.

The advanced features of GANs can be seen in these YouTube videos:

• Progressive GAN [4]: https://youtu.be/G06dEcZ-QTg
• StyleGAN v1 [5]: https://youtu.be/kSLJriaOumA
• StyleGAN v2 [6]: https://youtu.be/c-NJtV9Jvp0

The videos that show how GANs can be utilized to produce realistic faces
demonstrate how powerful they can be. This topic is much more advanced than
anything we've looked at before in this book. For example, the above videos
demonstrate things that can't be accomplished easily by autoencoders, which we
covered in Chapter 3, Autoencoders.

GANs are able to learn how to model the input distribution by training two
competing (and cooperating) networks referred to as generator and discriminator
(sometimes known as critic). The role of the generator is to keep on figuring out
how to generate fake data or signals (this includes audio and images) that can fool
the discriminator. Meanwhile, the discriminator is trained to distinguish between
fake and real signals. As the training progresses, the discriminator will no longer be
able to see the difference between the synthetically generated data and the real data.
From there, the discriminator can be discarded, and the generator can then be used
to create new realistic data that have never been observed before.

The underlying concept of GANs is straightforward. However, one thing we'll
find is that the most challenging question is how do we achieve stable training
of the generator-discriminator network? There must be a healthy competition
between the generator and discriminator in order for both networks to be able to
learn simultaneously. Since the loss function is computed from the output of the
discriminator, its parameters update quickly. When the discriminator converges
faster, the generator no longer receives sufficient gradient updates for its parameters
and fails to converge. Other than being hard to train, GANs can also suffer from
either a partial or total modal collapse, a situation wherein the generator is
producing almost similar outputs for different latent encodings.

https://youtu.be/G06dEcZ-QTg
https://youtu.be/kSLJriaOumA
https://youtu.be/c-NJtV9Jvp0

Chapter 4

[107]

Principles of GANs
As shown in Figure 4.1.1, a GAN is analogous to a counterfeiter (generator)–police
(discriminator) scenario. At the academy, the police are taught how to determine
whether a dollar bill is either genuine or fake. Samples of real dollar bills from the
bank and fake money from the counterfeiter are used to train the police. However,
from time to time, the counterfeiter will attempt to pretend that he printed real dollar
bills. Initially, the police will not be fooled and will tell the counterfeiter why the
money is fake. Taking into consideration this feedback, the counterfeiter hones his
skills again and attempts to produce new fake dollar bills. As expected, the police
will be able to both spot the money as fake and justify why the dollar bills are fake:

Figure 4.1.1: The generator and discriminator of GANs are analogous to the counterfeiter and the police.
The goal of the counterfeiter is to fool the police into believing that the dollar bill is real

Generative Adversarial Networks (GANs)

[108]

This process continues indefinitely, but it will come to a point where the
counterfeiter has mastered the creation of fake money to the extent that the fakes
are indistinguishable from real money – even to the most highly practiced of police.
The counterfeiter can then infinitely print dollar bills without getting caught by the
police as they are no longer identifiable as counterfeit.

As shown in Figure 4.1.2, a GAN is made up of two networks, a generator and
a discriminator:

Figure 4.1.2: A GAN is made up of two networks, a generator and a discriminator.
The discriminator is trained to distinguish between real and fake signals or data.

The generator's job is to generate fake signals or data that can eventually fool the discriminator

The input to the generator is noise, and the output is synthesized data. Meanwhile,
the discriminator's input will either be real or synthesized data. Genuine data comes
from the true sampled data, while the fake data comes from the generator. All of
the valid data is labeled 1.0 (that is, a 100 % probability of being real), while all the
synthesized data is labeled 0.0 (that is, a 0 % probability of being real). Since the
labeling process is automated, GANs are still considered part of the unsupervised
learning approach in deep learning.

The objective of the discriminator is to learn from this supplied dataset on how
to distinguish real data from fake data. During this part of GAN training, only
the discriminator parameters will be updated. Like a typical binary classifier, the
discriminator is trained to predict on a range of 0.0 to 1.0 in confidence values on
how close the given input data is to the real data. However, this is only half of
the story.

At regular intervals, the generator will pretend that its output is genuine data and
will ask the GAN to label it as 1.0. When the fake data is then presented to the
discriminator, naturally it will be classified as fake with a label close to 0.0.

Chapter 4

[109]

The optimizer computes the generator parameter updates based on the presented
label (that is, 1.0). It also takes its own prediction into account when training on
this new data. In other words, the discriminator has some doubts regarding its
prediction, and so, the GAN takes that into consideration. This time, the GAN will
let the gradients backpropagate from the last layer of the discriminator down to the
first layer of the generator. However, in most practices, during this phase of training,
the discriminator parameters are temporarily frozen. The generator will use the
gradients to update its parameters and improve its ability to synthesize fake data.

Overall, the whole process is akin to two networks competing with one another
while still cooperating at the same time. When the GAN training converges, the end
result is a generator that can synthesize data that appears genuine. The discriminator
thinks this synthesized data is real or with a label near 1.0, which means the
discriminator can then be discarded. The generator part will be useful in producing
meaningful outputs from arbitrary noise inputs.

The process is outlined in Figure 4.1.3 below:

Figure 4.1.3: Training the discriminator is similar to training a binary classifier network using binary
cross-entropy loss. The fake data is supplied by the generator, while the real data is from true samples

As shown in the preceding figure, the discriminator can be trained by minimizing
the loss function in the following equation:

ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛))) (Equation 4.1.1)

The equation is just the standard binary cross-entropy cost function. The loss is the
negative sum of the expectation of correctly identifying real data, 𝒟𝒟(𝒙𝒙) , and the
expectation of 1.0 minus correctly identifying synthetic data, 1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛)) . The log
does not change the location of the local minima.

Generative Adversarial Networks (GANs)

[110]

Two mini-batches of data are supplied to the discriminator during training:

1. x, real data from the sampled data (in other words, 𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) with a label 1.0
2. 𝒙𝒙′ = 𝒢𝒢(𝒛𝒛) , fake data from the generator with a label 0.0

In order to minimize the loss function, the discriminator parameters, 𝜽𝜽(𝐷𝐷) , will be
updated through backpropagation by correctly identifying the genuine data, 𝒟𝒟(𝒙𝒙) ,
and synthetic data, 1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛)) . Correctly identifying real data is equivalent to
𝒟𝒟(𝒙𝒙) → 1.0 , while correctly classifying fake data is the same as 𝒟𝒟(𝒢𝒢(𝒛𝒛)) → 0.0
or (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛))) → 1.0 . In this equation, z is the arbitrary encoding or noise
vector that is used by the generator to synthesize new signals. Both contribute
to minimizing the loss function.

To train the generator, GAN considers the total of the discriminator and generator
losses as a zero-sum game. The generator loss function is simply the negative of the
discriminator loss function:

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) (Equation 4.1.2)

This can then be rewritten more aptly as a value function:

𝒱𝒱(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) (Equation 4.1.3)

From the perspective of the generator, Equation 4.1.3 should be minimized. From
the point of view of the discriminator, the value function should be maximized.
Therefore, the generator training criterion can be written as a minimax problem:

𝜽𝜽(𝐺𝐺)∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝜽𝜽(𝐺𝐺)

max
𝜽𝜽(𝐷𝐷)

𝒱𝒱(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) (Equation 4.1.4)

Occasionally, we'll try to fool the discriminator by pretending that the synthetic
data is real with a label 1.0. By maximizing with respect to 𝜽𝜽(𝐷𝐷) , the optimizer sends
gradient updates to the discriminator parameters to consider this synthetic data as
real. At the same time, by minimizing with respect to 𝜽𝜽(𝐺𝐺) , the optimizer will train
the generator's parameters on how to trick the discriminator. However, in practice,
the discriminator is confident in its prediction in classifying the synthetic data as
fake and will not update the GAN parameters. Furthermore, the gradient updates
are small and have diminished significantly as they propagate to the generator
layers. As a result, the generator fails to converge.

Chapter 4

[111]

Figure 4.1.4: Training the generator is like training a network using a binary cross-entropy loss function.
The fake data from the generator is presented as genuine

The solution is to reformulate the loss function of the generator in the
following form:

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛)) (Equation 4.1.5)

The loss function simply maximizes the chance of the discriminator believing that
the synthetic data is real by training the generator. The new formulation is no longer
zero-sum and is purely heuristics-driven. Figure 4.1.4 shows the generator during
training. In this figure, the generator parameters are only updated when the whole
adversarial network is trained. This is because the gradients are passed down from
the discriminator to the generator. However, in practice, the discriminator weights
are only temporarily frozen during adversarial training.

In deep learning, both the generator and discriminator can be implemented using
a suitable neural network architecture. If the data or signal is an image, both the
generator and discriminator networks will use a CNN. For single-dimensional
sequences such as audio, both networks are usually recurrent (RNN, LSTM, or GRU).

In this section, we learned that the principles behind GANs are straightforward.
We also learned how GANs can be implemented by familiar network layers.
What differentiates GANs from other networks is they are notoriously difficult to
train. Something as simple as a minor change in the layers can drive the network
to training instability. In the following section, we'll examine one of the early
successful implementations of GANs using deep CNNs. It is called DCGAN [3].

Generative Adversarial Networks (GANs)

[112]

2. Implementing DCGAN in Keras
Figure 4.2.1 shows DCGAN that is used to generate fake MNIST images:

Figure 4.2.1: A DCGAN model

DCGAN implements the following design principles:

• Use strides > 1, and a convolution instead of MaxPooling2D or UpSampling2D.
With strides > 1, the CNN learns how to resize the feature maps.

• Avoid using Dense layers. Use CNN in all layers. The Dense layer is utilized
only as the first layer of the generator to accept the z-vector. The output of
the Dense layer is resized and becomes the input of the succeeding CNN
layers.

• Use Batch Normalization (BN) to stabilize learning by normalizing the input
to each layer to have zero mean and unit variance. There is no BN in the
generator output layer and discriminator input layer. In the implementation
example to be presented here, no batch normalization is used in the
discriminator.

Chapter 4

[113]

• Rectified Linear Unit (ReLU) is used in all layers of the generator except in
the output layer, where the tanh activation is utilized. In the implementation
example to be presented here, sigmoid is used instead of tanh in the output
of the generator since it generally results in more stable training for MNIST
digits.

• Use Leaky ReLU in all layers of the discriminator. Unlike ReLU, instead
of zeroing out all outputs when the input is less than zero, Leaky ReLU
generates a small gradient equal to alpha x input. In the following example,
alpha = 0.2.

The generator learns to generate fake images from 100-dim input vectors ([-1.0, 1.0]
range 100-dim random noise with uniform distribution). The discriminator classifies
real from fake images, but inadvertently coaches the generator in terms of how to
generate real images when the adversarial network is trained. The kernel size used
in our DCGAN implementation is 5. This is to allow it to increase the receptive field
size and expressive power of the convolution.

The generator accepts the 100-dim z-vector generated by a uniform distribution with
a range of -1.0 to 1.0. The first layer of the generator is a 7 x 7 x 128 = 6,272-unit Dense
layer. The number of units is computed based on the intended ultimate dimensions
of the output image (28 x 28 x 1, 28 being a multiple of 7) and the number of filters
of the first Conv2DTranspose, which is equal to 128.

We can imagine transposed CNNs (Conv2DTranspose) as the reversed process
of CNN. In a simple example, if a CNN converts an image to feature maps, a
transposed CNN will produce an image given feature maps. Hence, transposed
CNNs were used in the decoder in the previous chapter and on generators in this
chapter.

After undergoing two Conv2DTranspose with strides = 2, the feature maps will
have a size of 28 x 28 x number of filters. Each Conv2DTranspose is preceded by batch
normalization and ReLU. The final layer has sigmoid activation, which generates the
28 x 28 x 1 fake MNIST images. Each pixel is normalized to [0.0, 1.0] corresponding
to [0, 255] grayscale levels. Listing 4.2.1 below shows the implementation of the
generator network in tf.keras. A function is defined to build the generator model.
Due to the length of the entire code, we will limit the listing to the particular lines
being discussed.

The complete code is available on GitHub: https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Generative Adversarial Networks (GANs)

[114]

Listing 4.2.1: dcgan-mnist-4.2.1.py

def build_generator(inputs, image_size):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 Arguments:
 inputs (Layer): Input layer of the generator
 the z-vector)
 image_size (tensor): Target size of one side
 (assuming square image)

 Returns:
 generator (Model): Generator Model
 """

 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 x = Dense(image_resize * image_resize * layer_filters[0])(inputs)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Activation('sigmoid')(x)
 generator = Model(inputs, x, name='generator')
 return generator

Chapter 4

[115]

The discriminator is similar to many CNN-based classifiers. The input is a 28 x 28
x 1 MNIST image that is classified as either real (1.0) or fake (0.0). There are four
CNN layers. Except for the last convolution, each Conv2D uses strides = 2 to
downsample the feature maps by two. Each Conv2D is then preceded by a Leaky
ReLU layer. The final filter size is 256, while the initial filter size is 32 and doubles
every convolution layer. The final filter size of 128 also works. However, we'll find
that the generated images look better with 256. The final output layer is flattened,
and a single unit Dense layer generates the prediction between 0.0 and 1.0 after
scaling by the sigmoid activation layer. The output is modeled as a Bernoulli
distribution. Hence, the binary cross-entropy loss function is used.

After building the generator and discriminator models, the adversarial model is
made by concatenating the generator and discriminator networks. Both discriminator
and adversarial networks use the RMSprop optimizer. The learning rate for the
discriminator is 2e-4, while for the adversarial network, it is 1e-4. RMSprop decay
rates of 6e-8 for the discriminator, and 3e-8 for the adversarial network, are applied.

Setting the learning rate of the adversarial equal to half of the discriminator will
result in more stable training. You'll recall from Figure 4.1.3 and Figure 4.1.4 that the
GAN training has two parts: discriminator training and generator training, which is
adversarial training with discriminator weights frozen.

Listing 4.2.2 shows the implementation of the discriminator in tf.keras. A function
is defined to build the discriminator model.

Listing 4.2.2: dcgan-mnist-4.2.1.py

def build_discriminator(inputs):
 """Build a Discriminator Model

 Stack of LeakyReLU-Conv2D to discriminate real from fake.
 The network does not converge with BN so it is not used here
 unlike in [1] or original paper.

 Arguments:
 inputs (Layer): Input layer of the discriminator (the image)

 Returns:
 discriminator (Model): Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs
 for filters in layer_filters:

Generative Adversarial Networks (GANs)

[116]

 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 x = Dense(1)(x)
 x = Activation('sigmoid')(x)
 discriminator = Model(inputs, x, name='discriminator')
 return discriminator

In Listing 4.2.3, we'll illustrate how to build GAN models. Firstly, the discriminator
model is built and, following on from that, the generator model is instantiated. The
adversarial model is just the generator and the discriminator put together. Across
many GANs, the batch size of 64 appears to be the most common. The network
parameters are shown in Listing 4.2.3.

Listing 4.2.3: dcgan-mnist-4.2.1.py

Function to build DCGAN models and call the training routine:

def build_and_train_models():
 # load MNIST dataset
 (x_train, _), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 model_name = "dcgan_mnist"
 # network parameters
 # the latent or z vector is 100-dim
 latent_size = 100
 batch_size = 64
 train_steps = 40000
 lr = 2e-4
 decay = 6e-8

Chapter 4

[117]

 input_shape = (image_size, image_size, 1)

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 discriminator = build_discriminator(inputs)
 # [1] or original paper uses Adam,
 # but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 discriminator.compile(loss='binary_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 generator = build_generator(inputs, image_size)
 generator.summary()

 # build adversarial model
 optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5)
 # freeze the weights of discriminator during adversarial training
 discriminator.trainable = False
 # adversarial = generator + discriminator
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 adversarial.compile(loss='binary_crossentropy',
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 params = (batch_size, latent_size, train_steps, model_name)
 train(models, x_train, params)

As can be seen in Listing 4.2.1 and Listing 4.2.2, the DCGAN models are
straightforward. What makes them difficult to build is the fact that small changes in
the network design can easily break the training convergence. For example, if batch
normalization is used in the discriminator, or if strides = 2 in the generator is
transferred to the latter CNN layers, DCGAN will fail to converge.

Generative Adversarial Networks (GANs)

[118]

Listing 4.2.4 shows the function dedicated to training the discriminator and
adversarial networks. Due to custom training, the usual fit() function is not going
to be used. Instead, train_on_batch() is called up to run a single gradient update
for the given batch of data. The generator is then trained via an adversarial network.
The training first randomly picks a batch of real images from the dataset. This is
labeled as real (1.0). Then, a batch of fake images will be generated by the generator.
This is labeled as fake (0.0). The two batches are concatenated and are used to train
the discriminator.

After this is complete, a new batch of fake images will be generated by the generator
and labeled as real (1.0). This batch will be used to train the adversarial network. The
two networks are trained alternately for about 40,000 steps. At regular intervals, the
generated MNIST digits based on a certain noise vector are saved on the filesystem.
At the last training step, the network has converged. The generator model is also
saved on a file so we can easily reuse the trained model for future MNIST digit
generation. However, only the generator model is saved since that is the useful part
of this DCGAN in the generation of new MNIST digits. For example, we can generate
new and random MNIST digits by executing:

python3 dcgan-mnist-4.2.1.py --generator=dcgan_mnist.h5

Listing 4.2.4: dcgan-mnist-4.2.1.py

Function to train the discriminator and adversarial networks:

def train(models, x_train, params):
 """Train the Discriminator and Adversarial Networks

 Alternately train Discriminator and Adversarial networks by batch.
 Discriminator is trained first with properly real and fake images.
 Adversarial is trained next with fake images pretending to be real
 Generate sample images per save_interval.

 Arguments:
 models (list): Generator, Discriminator, Adversarial models
 x_train (tensor): Train images
 params (list) : Networks parameters

 """
 # the GAN component models
 generator, discriminator, adversarial = models
 # network parameters
 batch_size, latent_size, train_steps, model_name = params
 # the generator image is saved every 500 steps
 save_interval = 500

Chapter 4

[119]

 # noise vector to see how the generator output evolves during
training
 noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
 # number of elements in train dataset
 train_size = x_train.shape[0]
 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0, train_size, size=batch_
size)
 real_images = x_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # generate fake images
 fake_images = generator.predict(noise)
 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0.0
 # train discriminator network, log the loss and accuracy
 loss, acc = discriminator.train_on_batch(x, y)
 log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0
 # since the discriminator weights
 # are frozen in adversarial network
 # only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # label fake images as real or 1.0
 y = np.ones([batch_size, 1])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable

Generative Adversarial Networks (GANs)

[120]

 # the fake images go to the discriminator input of the
adversarial
 # for classification
 # log the loss and accuracy
 loss, acc = adversarial.train_on_batch(noise, y)
 log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
 print(log)
 if (i + 1) % save_interval == 0:
 # plot generator images on a periodic basis
 plot_images(generator,
 noise_input=noise_input,
 show=False,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for
 # future MNIST digit generation
 generator.save(model_name + ".h5")

Figure 4.2.2 shows the evolution of fake images from the generator as a function
of training steps. At 5,000 steps, the generator is already producing recognizable
images. It's very much like having an agent that knows how to draw digits. It's
worth noting that some digits change from one recognizable form (for example,
8 in the second column of the last row) to another (for example, 0). When the
training converges, the discriminator loss approaches 0.5, while the adversarial loss
approaches 1.0 as follows:

39997: [discriminator loss: 0.423329, acc: 0.796875] [adversarial loss:

0.819355, acc: 0.484375]

39998: [discriminator loss: 0.471747, acc: 0.773438] [adversarial loss:

1.570030, acc: 0.203125]

39999: [discriminator loss: 0.532917, acc: 0.742188] [adversarial loss:

0.824350, acc: 0.453125]

We can see the outcome below:

Chapter 4

[121]

Figure 4.2.2: The fake images generated by the DCGAN generator at different training steps

In this section, the fake images generated by the DCGAN are random.

There is no control over which specific digits will be produced by the generator.
There is no mechanism for how to request a particular digit from the generator. This
problem can be addressed by a variation of GAN called CGAN [4], as we will discuss
in the next section.

3. Conditional GAN
Using the same GAN as in the previous section, a condition is imposed on both the
generator and discriminator inputs. The condition is in the form of a one-hot vector
version of the digit. This is associated with the image to be produced (generator) or
classified as real or fake (discriminator). The CGAN model is shown in Figure 4.3.1.

Generative Adversarial Networks (GANs)

[122]

CGAN is similar to DCGAN except for the additional one-hot vector input. For the
generator, the one-hot label is concatenated with the latent vector before the Dense
layer. For the discriminator, a new Dense layer is added. The new layer is used to
process the one-hot vector and reshape it so that it is suitable for concatenation to
the other input of the succeeding CNN layer.

Figure 4.3.1: The CGAN model is similar to DCGAN except for the one-hot vector,
which is used to condition the generator and discriminator outputs

Chapter 4

[123]

The generator learns to generate fake images from a 100-dim input vector and
a specified digit. The discriminator classifies real from fake images based on real
and fake images and their corresponding labels.

The basis of a CGAN is still the same as the original GAN principle except that the
discriminator and generator inputs are conditioned on one-hot labels, y.

By incorporating this condition in Equation 4.1.1 and Equation 4.1.5, the loss functions
for the discriminator and generator are shown in Equation 4.3.1 and Equation 4.3.2,
respectively:

ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚′))) (Equation 4.3.1)

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒛𝒛 log𝒟𝒟 (𝒢𝒢(𝒛𝒛|𝒚𝒚′′)) (Equation 4.3.2)

Given Figure 4.3.2, it may be more appropriate to write the loss functions as:

ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log(1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚′)|𝒚𝒚′)) (Equation 4.3.3)

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚′)|𝒚𝒚′) (Equation 4.3.4)

The new loss function of the discriminator aims to minimize the error of predicting
real images coming from the dataset and fake images coming from the generator
given their one-hot labels. Figure 4.3.2 shows how to train the discriminator.

Figure 4.3.2: Training the CGAN discriminator is similar to training the GAN discriminator.
The only difference is that both the generated fake and the dataset's real images are conditioned

with their corresponding one-hot labels

Generative Adversarial Networks (GANs)

[124]

The new loss function of the generator minimizes the correct prediction of the
discriminator on fake images conditioned on the specified one-hot labels. The
generator learns how to generate the specific MNIST digit given its one-hot vector,
which can fool the discriminator. Figure 4.3.3 shows how to train the generator.

Figure 4.3.3: Training the CGAN generator through the adversarial network is similar to training the GAN
generator. The only difference is that the generated fake images are conditioned with one-hot labels

Listing 4.3.1 highlights the minor changes needed in the discriminator model. The
code processes the one-hot vector using a Dense layer and concatenates it with the
input image. The Model instance is modified for the image and one-hot vector inputs.

Listing 4.3.1: cgan-mnist-4.3.1.py

Highlighted are the changes made in DCGAN:

def build_discriminator(inputs, labels, image_size):
 """Build a Discriminator Model

 Inputs are concatenated after Dense layer.
 Stack of LeakyReLU-Conv2D to discriminate real from fake.
 The network does not converge with BN so it is not used here
 unlike in DCGAN paper.

 Arguments:
 inputs (Layer): Input layer of the discriminator (the image)

 labels (Layer): Input layer for one-hot vector to
condition

 the inputs

 image_size: Target size of one side (assuming square image)

Chapter 4

[125]

 Returns:
 discriminator (Model): Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs

 y = Dense(image_size * image_size)(labels)

 y = Reshape((image_size, image_size, 1))(y)

 x = concatenate([x, y])

 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 x = Dense(1)(x)
 x = Activation('sigmoid')(x)

 # input is conditioned by labels

 discriminator = Model([inputs, labels], x,
name='discriminator')

 return discriminator

The following Listing 4.3.2 highlights the code changes to incorporate the
conditioning one-hot labels in the generator builder function. The Model instance is
modified for the z-vector and one-hot vector inputs.

Listing 4.3.2: cgan-mnist-4.3.1.py

Highlighted are the changes made in DCGAN:

def build_generator(inputs, labels, image_size):
 """Build a Generator Model

Generative Adversarial Networks (GANs)

[126]

 Inputs are concatenated before Dense layer.
 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in orig DCGAN.
 Sigmoid converges easily.

 Arguments:
 inputs (Layer): Input layer of the generator (the z-vector)

 labels (Layer): Input layer for one-hot vector to
condition the inputs

 image_size: Target size of one side (assuming square image)

 Returns:
 generator (Model): Generator Model
 """
 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 x = concatenate([inputs, labels], axis=1)

 x = Dense(image_resize * image_resize * layer_filters[0])(x)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Activation('sigmoid')(x)

 # input is conditioned by labels

 generator = Model([inputs, labels], x, name='generator')

 return generator

Chapter 4

[127]

Listing 4.3.3 highlights the changes made in the train() function to accommodate
the conditioning one-hot vector for the discriminator and the generator. The CGAN
discriminator is firstly trained with one batch of real and fake data conditioned
on their respective one-hot labels. Then, the generator parameters are updated
by training the adversarial network given one-hot label conditioned fake data
pretending to be real. Similar to DCGAN, the discriminator weights are frozen
during adversarial training.

Listing 4.3.3: cgan-mnist-4.3.1.py

Highlighted are the changes made in DCGAN:

def train(models, data, params):
 """Train the Discriminator and Adversarial Networks

 Alternately train Discriminator and Adversarial networks by batch.
 Discriminator is trained first with properly labelled real and
fake images.
 Adversarial is trained next with fake images pretending to be
real.
 Discriminator inputs are conditioned by train labels for real
images,
 and random labels for fake images.
 Adversarial inputs are conditioned by random labels.
 Generate sample images per save_interval.

 Arguments:
 models (list): Generator, Discriminator, Adversarial models
 data (list): x_train, y_train data
 params (list): Network parameters

 """
 # the GAN models
 generator, discriminator, adversarial = models
 # images and labels
 x_train, y_train = data
 # network parameters
 batch_size, latent_size, train_steps, num_labels, model_name =
params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output evolves during
training
 noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])

 # one-hot label the noise will be conditioned to

Generative Adversarial Networks (GANs)

[128]

 noise_class = np.eye(num_labels)[np.arange(0, 16) % num_
labels]

 # number of elements in train dataset
 train_size = x_train.shape[0]

 print(model_name,

 "Labels for generated images: ",

 np.argmax(noise_class, axis=1))

 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0, train_size, size=batch_
size)
 real_images = x_train[rand_indexes]

 # corresponding one-hot labels of real images

 real_labels = y_train[rand_indexes]

 # generate fake images from noise using generator
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])

 # assign random one-hot labels

 fake_labels = np.eye(num_labels)[np.random.choice(num_
labels,batch_size)]

 # generate fake images conditioned on fake labels

 fake_images = generator.predict([noise, fake_labels])

 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))

 # real + fake one-hot labels = 1 batch of train one-hot
labels

 labels = np.concatenate((real_labels, fake_labels))

 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0.0
 # train discriminator network, log the loss and accuracy

 loss, acc = discriminator.train_on_batch([x, labels], y)

 log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

Chapter 4

[129]

 # train the adversarial network for 1 batch

 # 1 batch of fake images conditioned on fake 1-hot labels

 # w/ label=1.0

 # since the discriminator weights are frozen in
 # adversarial network only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])

 # assign random one-hot labels

 fake_labels = np.eye(num_labels)[np.random.choice(num_
labels,batch_size)]

 # label fake images as real or 1.0
 y = np.ones([batch_size, 1])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input of the
adversarial
 # for classification
 # log the loss and accuracy

 loss, acc = adversarial.train_on_batch([noise, fake_
labels], y)

 log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
 print(log)
 if (i + 1) % save_interval == 0:
 # plot generator images on a periodic basis
 plot_images(generator,
 noise_input=noise_input,
 noise_class=noise_class,
 show=False,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for
 # future MNIST digit generation
 generator.save(model_name + ".h5")

Generative Adversarial Networks (GANs)

[130]

Figure 4.3.4 shows the evolution of MNIST digits generated when the generator is
conditioned to produce digits with the following labels:

[0 1 2 3

4 5 6 7

8 9 0 1

2 3 4 5]

We can see the results below:

Figure 4.3.4: The fake images generated by CGAN at different training steps
when conditioned with labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

You're encouraged to run the trained generator model to see new synthesized
MNIST digit images:

python3 cgan-mnist-4.3.1.py --generator=cgan_mnist.h5

Chapter 4

[131]

Alternatively, a specific digit (for example, 8) to be generated can also be requested:

python3 cgan-mnist-4.3.1.py --generator=cgan_mnist.h5 --digit=8

With CGAN, it's like having an agent that we can ask to draw digits similar to how
humans write digits. The key advantage of CGAN over DCGAN is that we can
specify which digit we want the agent to draw.

4. Conclusion
This chapter discussed the general principles behind GANs so as to give you a
foundation for the more advanced topics we'll now move on to, including improved
GANs, disentangled representation GANs, and cross-domain GANs. We started this
chapter by understanding how GANs are made up of two networks, called generator
and discriminator. The role of the discriminator is to discriminate between real and
fake signals. The aim of the generator is to fool the discriminator. The generator
is normally combined with the discriminator to form an adversarial network. It is
through training the adversarial network that the generator learns how to produce
fake data that can trick the discriminator.

We also learned how GANs are easy to build but notoriously difficult to train.
Two example implementations in tf.keras were presented. DCGAN demonstrated
that it is possible to train GANs to generate fake images using deep CNNs. The fake
images were MNIST digits. However, the DCGAN generator had no control over
which specific digit it should draw. CGAN addressed this problem by conditioning
the generator to draw a specific digit. The condition was in the form of a one-hot
label. CGAN is useful if we want to build an agent that can generate data of a specific
class.

In the next chapter, improvements on the DCGAN and CGAN will be introduced.
In particular, the focus will be on how to stabilize the training of DCGAN and how
to improve the perceptive quality of CGAN. This will be done by introducing new
loss functions and slightly different model architectures.

5. References
1. Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.

arXiv preprint arXiv:1701.00160, 2016 (https://arxiv.org/
pdf/1701.00160.pdf).

2. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial
Networks. arXiv preprint arXiv:1511.06434, 2015 (https://arxiv.org/
pdf/1511.06434.pdf).

https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf

Generative Adversarial Networks (GANs)

[132]

3. Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
arXiv preprint arXiv:1411.1784, 2014 (https://arxiv.org/pdf/1411.1784.
pdf).

4. Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability,
and Variation. ICLR, 2018 (https://arxiv.org/pdf/1710.10196.pdf).

5. Tero Karras, , Samuli Laine, and Timo Aila. A Style-Based Generator
Architecture for Generative Adversarial Networks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019.

6. Tero Karras et al. Analyzing and Improving the Image Quality of StyleGAN. 2019
(https://arxiv.org/abs/1912.04958).

https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1710.10196.pdf
https://arxiv.org/abs/1912.04958

[133]

5
Improved GANs

Since the introduction of Generative Adversarial Networks (GANs) in 2014[1],
their popularity has rapidly increased. GANs have proven to be a useful generative
model that can synthesize new data that looks real. Many of the research papers
in deep learning that followed proposed measures to address the difficulties and
limitations of the original GAN.

As we discussed in previous chapters, GANs can be notoriously difficult to train,
and are prone to mode collapse. Mode collapse is a situation where the generator
is producing outputs that look the same even though the loss functions are already
optimized. In the context of MNIST digits, with mode collapse, the generator may
only be producing digits 4 and 9 since they look similar. The Wasserstein GAN
(WGAN)[2] addressed these problems by arguing that stable training and mode
collapse can be avoided by simply replacing the GAN loss function based on
Wasserstein 1, also known as the Earth Mover's Distance (EMD).

However, the issue of stability is not the only problem with GANs. There is also
the increasing need to improve the perceptive quality of the generated images.
The Least Squares GAN (LSGAN)[3] proposed addressing both these problems
simultaneously. The basic premise is that sigmoid cross-entropy loss leads to
a vanishing gradient during training. This results in poor image quality. Least
squares loss does not induce vanishing gradients. The resulting generated images
are of higher perceptive quality when compared to vanilla GAN-generated images.

In the previous chapter, CGAN introduced a method for conditioning the output
of the generator. For example, if we wanted to get digit 8, we would include the
conditioning label in the input to the generator. Inspired by CGAN, the Auxiliary
Classifier GAN (ACGAN)[4] proposed a modified conditional algorithm that
results in better perceptive quality and diversity of the outputs.

Improved GANs

[134]

In summary, the goal of this chapter is to present:

• The theoretical formulation of WGAN
• An understanding of the principles of LSGAN
• An understanding of the principles of ACGAN
• The tf.keras implementation of improved GANs – WGAN, LSGAN, and

ACGAN

Let's start off by discussing WGAN.

1. Wasserstein GAN
As we've mentioned before, GANs are notoriously hard to train. The opposing
objectives of the two networks, the discriminator and the generator, can easily cause
training instability. The discriminator attempts to correctly classify the fake data
from the real data. Meanwhile, the generator tries its best to trick the discriminator.
If the discriminator learns faster than the generator, the generator parameters will
fail to optimize. On the other hand, if the discriminator learns more slowly, then
the gradients may vanish before reaching the generator. In the worst case, if the
discriminator is unable to converge, the generator is not going to be able to get
any useful feedback.

WGAN argued that a GAN's inherent instability is due to its loss function, which
is based on the Jensen-Shannon (JS) distance. In a GAN, the objective of the
generator is to learn how to transform from one source distribution (for example,
noise) to an estimated target distribution (for example, MNIST digits). Using the
original formulation of a GAN, the loss function is actually minimizing the distance
between the target distribution and its estimate. The problem is, for some pairs
of distributions, there is no smooth path to minimize this JS distance. Hence, the
training will fail to converge.

In the following section, we will investigate three distance functions and analyze
what could be a good substitute for the JS distance function that is more suitable
for GAN optimization.

Distance functions
The stability in training a GAN can be understood by examining its loss functions. To
better understand GAN loss functions, we're going to review the common distance
or divergence functions between two probability distributions.

Chapter 5

[135]

Our concern is the distance between pdata for true data distribution, and pg for
generator data distribution. The goal of GANs is to make 𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Table 5.1.1
shows the divergence functions.

In most maximum likelihood tasks, we'll use Kullback-Leibler (KL) divergence,
or DKL , in the loss function as a measure of how far our neural network model
prediction is from the true distribution function. As shown in Equation 5.1.1, DKL is
not symmetric since 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) ≠𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) .

JS, or DJS, is a divergence that is based on DKL. However, unlike DKL, DJS is
symmetrical and is finite. In this section, we'll demonstrate that optimizing GAN loss
functions is equivalent to optimizing DJS:

Divergence Expression
Kullback-
Leibler (KL)
Equation 5.1.1

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑝𝑝𝑔𝑔(𝑥𝑥)

≠ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔 log
𝑝𝑝𝑔𝑔(𝑥𝑥)

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

Jensen-
Shannon (JS)
Equation 5.1.2

𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) =
1
2𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)

2
+1
2𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔 log

𝑝𝑝𝑔𝑔(𝑥𝑥)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)

2
= 𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

Earth Mover's
Distance
(EMD) or
Wasserstein 1
Equation 5.1.3

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) =
𝑖𝑖𝑖𝑖𝑖𝑖

𝛾𝛾 ∈ ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔)
𝔼𝔼(𝑥𝑥,𝑦𝑦)~γ[‖𝑥𝑥 − 𝑦𝑦‖]

where ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) is the set of all joint distributions 𝛾𝛾(𝑥𝑥, 𝑦𝑦)

whose marginals are pdata and pg.

Table 5.1.1: The divergence functions between two probability distribution functions, pdata and pg

The idea behind EMD is that it is a measure of how much mass 𝛾𝛾(𝑥𝑥, 𝑦𝑦) should
be transported by 𝑑𝑑 = ‖𝑥𝑥 − 𝑦𝑦‖ for the probability distribution pdata in order to
match the probability distribution pg. 𝛾𝛾(𝑥𝑥, 𝑦𝑦) is a joint distribution in the space of

all possible joint distributions ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) . 𝛾𝛾(𝑥𝑥, 𝑦𝑦) is also known as a transport
plan, to reflect the strategy for transporting masses to match the two probability
distributions. There are many possible transport plans given the two probability
distributions. Roughly speaking, inf indicates a transport plan with the minimum
cost.

Improved GANs

[136]

For example, Figure 5.1.1 shows us two simple discrete distributions x and y:

Figure 5.1.1: The EMD is the weighted amount of mass from x to be transported in order to match the target
distribution, y

x has masses mi for i = 1, 2, 3, and 4 at locations xi for i = 1, 2, 3, and 4. Meanwhile, y
has masses mi for i = 1 and 2 at locations yi for i = 1 and 2. To match the distribution y
the arrows show the minimum transport plan to move each mass xi by di. The EMD
is computed as:

𝐸𝐸𝐸𝐸𝐸𝐸 =∑𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖
4

𝑖𝑖=1
= 0.2(0.4) + 0.3(0.5) + 0.1(0.3) + 0.4(0.7) = 0.54 (Equation 5.1.4)

In Figure 5.1.1, the EMD can be interpreted as the least amount of work needed
to move the pile of dirt x to fill the holes y. While in this example, the inf can also
be deduced from the figure, in most cases, especially in continuous distributions,
it is intractable to exhaust all possible transport plans. We will come back to this
problem later on in this chapter. In the meantime, we'll show how the GAN loss
functions are, in fact, minimizing the JS divergence.

Distance function in GANs
We're now going to compute the optimal discriminator given any generator from
the loss function in the previous chapter. We'll recall the following equation from
the previous chapter:

Chapter 5

[137]

ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛))) (Equation 4.1.1)

Instead of sampling from the noise distribution, the preceding equation can also be
expressed as sampling from the generator distribution:

ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒙𝒙~𝑝𝑝𝑔𝑔 log(1 − 𝒟𝒟(𝒙𝒙)) (Equation 5.1.5)

To find the minimum ℒ(𝐷𝐷) :

ℒ(𝐷𝐷) = −∫ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑥𝑥

log𝒟𝒟(𝒙𝒙)𝑑𝑑𝑥𝑥 −∫ 𝑝𝑝𝑔𝑔(𝑥𝑥)log(1 −𝒟𝒟(𝒙𝒙))𝑑𝑑𝑥𝑥
𝑥𝑥

 (Equation 5.1.6)

ℒ(𝐷𝐷) = −∫ (𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) log𝒟𝒟(𝒙𝒙) +𝑝𝑝𝑔𝑔(𝑥𝑥)log(1 − 𝒟𝒟(𝒙𝒙)))𝑑𝑑𝑥𝑥
𝑥𝑥

 (Equation 5.1.7)

The term inside the integral is in the form 𝑦𝑦 → 𝑎𝑎 log𝑦𝑦 + 𝑏𝑏 log(1 − 𝑦𝑦) , which has

a known maximum value at
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 for 𝑦𝑦 ∈ [0, 1] for any 𝑎𝑎, 𝑏𝑏 ∈ ℝ2 not including
{0, 0} . Since the integral does not change the location of the maximum value
(or the minimum value of ℒ(𝐷𝐷)) for this expression, the optimal discriminator is:

𝒟𝒟∗(𝑥𝑥) = 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

 (Equation 5.1.8)

Consequently, the loss function given the optimal discriminator is:

ℒ(𝐷𝐷∗) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔
− 𝔼𝔼𝒙𝒙~𝑝𝑝𝑔𝑔 log(1 −

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

) (Equation 5.1.9)

ℒ(𝐷𝐷∗) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔
− 𝔼𝔼𝒙𝒙~𝑝𝑝𝑔𝑔 log(

𝑝𝑝𝑔𝑔
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

) (Equation 5.1.10)

ℒ(𝐷𝐷∗) = 2log2−𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ‖
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

2)−𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝𝑔𝑔 ‖
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

2) (Equation 5.1.11)

ℒ(𝐷𝐷∗) = 2log2−2𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) (Equation 5.1.12)

We can observe from Equation 5.1.12 that the loss function of the optimal
discriminator is a constant minus twice the JS divergence between the true
distribution, 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , and any generator distribution, pg. Minimizing ℒ(𝐷𝐷∗) implies
maximizing 𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) or the discriminator must correctly classify fake from
real data.

Improved GANs

[138]

Meanwhile, we can safely argue that the optimal generator is when the generator
distribution is equal to the true data distribution:

𝒢𝒢∗(𝑥𝑥) → 𝑝𝑝𝑔𝑔 = 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (Equation 5.1.13)

This makes sense since the objective of the generator is to fool the discriminator
by learning the true data distribution. Effectively, we can arrive at the optimal
generator by minimizing DJS or by making 𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Given an optimal generator,

the optimal discriminator is 𝒟𝒟∗(𝑥𝑥) = 1
2 with ℒ(𝐷𝐷∗) = 2log2 = 0.60 .

The problem is that when the two distributions have no overlap, there's no smooth
function that will help to close the gap between them. Training GANs will not
converge by gradient descent. For example, let's suppose:

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =(𝑥𝑥, 𝑦𝑦) where 𝑥𝑥 = 0, 𝑦𝑦~𝑈𝑈(0, 1) (Equation 5.1.14)

𝑝𝑝𝑔𝑔 =(𝑥𝑥, 𝑦𝑦) where 𝑥𝑥 = 𝜃𝜃, 𝑦𝑦~𝑈𝑈(0, 1) (Equation 5.1.15)

These two distributions are shown in Figure 5.1.2:

Figure 5.1.2: An example of two distributions with no overlap. θ = 0.5 for pg

Chapter 5

[139]

𝑈𝑈(0, 1) is the uniform distribution. The divergence for each distance function is as
follows:

• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) = 𝔼𝔼𝑥𝑥=0,𝑦𝑦~𝑈𝑈(0,1) log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

=∑1 log10 = +∞

• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝔼𝔼𝑥𝑥=𝜃𝜃,𝑦𝑦~𝑈𝑈(0,1) log
𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
=∑1 log10 = +∞

•

𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) =
1
2𝔼𝔼𝑥𝑥=0,𝑦𝑦~𝑈𝑈(0,1) log

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

2
+1
2𝔼𝔼𝑥𝑥=𝜃𝜃,𝑦𝑦~𝑈𝑈(0,1) log

𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

2
= 1
2∑1 log 11

2
+ 1
2∑1 log 11

2
= log2

• 𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = |𝜃𝜃|

Since DJS is a constant, the GAN will not have a sufficient gradient to drive
𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . We'll also find that DKL, or reverse DKL , is not helpful either. However,
with W(pdata,pg), we can have a smooth function in order to attain 𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by
gradient descent. The EMD or Wasserstein 1 seems to be a more logical loss function
in order to optimize GANs since DJS fails in situations when two distributions have
minimal to no overlap.

To aid understanding further, an excellent discussion on distance functions can be
found at: https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-
WGAN.html.

In the next section, we will focus on using the EMD or the Wasserstein 1 distance
function to develop an alternative loss function that will encourage stable training
of GANs.

Use of Wasserstein loss
Before using EMD or Wasserstein 1, there is one more problem to overcome. It

is intractable to exhaust the space of ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) to find
𝑖𝑖𝑖𝑖𝑖𝑖

𝛾𝛾 ∈ ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔)

. The

proposed solution is to use its Kantorovich-Rubinstein dual:

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = 1
𝐾𝐾 sup

‖𝑓𝑓‖𝐿𝐿≤𝐾𝐾
𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑓𝑓(𝑥𝑥)] − 𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔[𝑓𝑓(𝑥𝑥)] (Equation 5.1.16)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html.
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html.

Improved GANs

[140]

Equivalently, EMD,
sup

‖𝑓𝑓‖𝐿𝐿≤1

, is the supremum (roughly, maximum value) over all

K-Lipschitz functions: 𝑓𝑓: 𝒳𝒳 → ℝ . K-Lipschitz functions satisfy the constraint:

|𝑓𝑓(𝑥𝑥1) − 𝑓𝑓(𝑥𝑥2)| ≤ 𝐾𝐾|𝑥𝑥1 − 𝑥𝑥2| (Equation 5.1.17)

for all 𝑥𝑥1, 𝑥𝑥2 ∈ ℝ . K-Lipschitz functions have bounded derivatives and are almost
always continuously differentiable (for example, 𝑓𝑓(𝑥𝑥) = |𝑥𝑥| has bounded derivatives
and is continuous but not differentiable at x = 0).

Equation 5.1.16 can be solved by finding a family of K-Lipschitz functions {𝑓𝑓𝑤𝑤}𝑤𝑤∈𝒲𝒲 :

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = max
𝑤𝑤∈𝒲𝒲

𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑓𝑓𝑤𝑤(𝑥𝑥)] − 𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔[𝑓𝑓𝑤𝑤(𝑥𝑥)] (Equation 5.1.18)

In the context of GANs, Equation 5.1.18 can be rewritten by sampling from z-noise
distribution and replacing fw with the discriminator function, Dw:

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = max
𝑤𝑤∈𝒲𝒲

𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝒟𝒟𝑤𝑤(𝒙𝒙)] − 𝔼𝔼𝒛𝒛[𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))] (Equation 5.1.19)

where we use bold letters to highlight the generality to multi-dimensional samples.
The last problem is how to find the family of functions, 𝑤𝑤 ∈ 𝒲𝒲 . The proposed
solution is at every gradient update; the weights of the discriminator w are clipped
between lower and upper bounds (for example, -0.01 and 0.01):

𝑤𝑤 ⟵ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−0.01,0.01) (Equation 5.1.20)

The small values of w constrain the discriminator to a compact parameter space,
thus ensuring Lipschitz continuity.

We can use Equation 5.1.19 as the basis of our new GAN loss functions. EMD or
Wasserstein 1 is the loss function that the generator aims to minimize and the cost
function that the discriminator tries to maximize (or minimize -W(pdata,pg)):

ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒟𝒟𝑤𝑤(𝒙𝒙) + 𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) (Equation 5.1.21)

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) (Equation 5.1.22)

In the generator loss function, the first term disappears since it is not directly
optimizing with respect to the real data.

Chapter 5

[141]

Table 5.1.2 shows the difference between the loss functions of a GAN and a WGAN.
For conciseness, we simplified the notation for ℒ(𝐷𝐷) and ℒ(𝐺𝐺) :

Network Loss Functions Equation
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛)))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛))

4.1.1

4.1.5

WGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒟𝒟𝑤𝑤(𝒙𝒙) + 𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))

𝑤𝑤 ⟵ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−0.01,0.01)

5.1.21

5.1.22

5.1.20

Table 5.1.2: A comparison between the loss functions of a GAN and a WGAN

These loss functions are used in training a WGAN, as shown in Algorithm 5.1.1.

Algorithm 5.1.1 WGAN. The values of the parameters are 𝛼𝛼 = 0.00005 , 𝑐𝑐 = 0.01 ,
𝑚𝑚 = 64 , and 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 5 .

Require: 𝛼𝛼 , the learning rate. c, the clipping parameter. m, the batch size. 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , the
number of the critic (discriminator) iterations per generator iteration.

Require: 𝑤𝑤0 , initial critic (discriminator) parameters. 𝜃𝜃0 , initial generator parameters:

1. while 𝜃𝜃 has not converged do
2. for 𝑡𝑡 = 1,… , 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 do

3. Sample a batch {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1
𝑚𝑚 ~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 from real data

4. Sample a batch {𝑧𝑧(𝑖𝑖)}𝑖𝑖=1
𝑚𝑚 ~𝑝𝑝(𝑧𝑧) from uniform noise distribution

5. 𝑔𝑔𝑤𝑤 ← 𝛻𝛻𝑤𝑤 [−
1
𝑚𝑚∑ 𝒟𝒟𝑤𝑤(𝑥𝑥(𝑖𝑖)) +

𝑚𝑚

𝑖𝑖=1

1
𝑚𝑚∑ 𝒟𝒟𝑤𝑤 (𝒢𝒢𝜃𝜃(𝑧𝑧(𝑖𝑖)))

𝑚𝑚

𝑖𝑖=1
] , compute

discriminator gradients
6. 𝑤𝑤 ← 𝑤𝑤 − 𝛼𝛼 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑤𝑤, 𝑔𝑔𝑤𝑤) , update discriminator parameters
7. 𝑤𝑤 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−𝑐𝑐, 𝑐𝑐) , clip discriminator weights
8. end for

Improved GANs

[142]

9. Sample a batch {𝑧𝑧(𝑖𝑖)}𝑖𝑖=1
𝑚𝑚 ~𝑝𝑝(𝑧𝑧) from uniform noise distribution

10. 𝑔𝑔𝜃𝜃 ← −𝛻𝛻𝜃𝜃
1
𝑚𝑚∑ 𝒟𝒟𝑤𝑤 (𝒢𝒢𝜃𝜃(𝑧𝑧(𝑖𝑖)))

𝑚𝑚

𝑖𝑖=1
 , compute generator gradients

11. 𝜃𝜃 ← 𝜃𝜃 − 𝛼𝛼 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜃𝜃, 𝒢𝒢𝜃𝜃) , update generator parameters
12. end while

Figure 5.1.3 illustrates that a WGAN model is practically the same as a DCGAN
except for the fake/true data labels and loss functions:

Figure 5.1.3: Top: Training the WGAN discriminator requires fake data from the generator and real data from
the true distribution. Bottom: Training the WGAN generator requires fake data from the generator pretending

to be real

Chapter 5

[143]

Similar to GANs, WGAN alternately trains the discriminator and generator
(through adversarial). However, in WGAN, the discriminator (also called the critic)
trains ncritic iterations (lines 2 to 8) before training the generator for one iteration
(lines 9 to 11). This is in contrast to GANs with an equal number of training iterations
for both the discriminator and generator. In other words, in GANs, ncritic = 1.

Training the discriminator means learning the parameters (weights and biases)
of the discriminator. This requires sampling a batch from the real data (line 3) and
a batch from the fake data (line 4) and computing the gradient of discriminator
parameters (line 5) after feeding the sampled data to the discriminator network.
The discriminator parameters are optimized using RMSProp (line 6). Both lines 5
and 6 are the optimization of Equation 5.1.21.

Lastly, the Lipschitz constraint in the EM distance optimization is imposed by
clipping the discriminator parameters (line 7). Line 7 is the implementation of
Equation 5.1.20. After ncritic iterations of discriminator training, the discriminator
parameters are frozen. The generator training starts by sampling a batch of
fake data (line 9). The sampled data is labeled as real (1.0), endeavoring to fool
the discriminator network. The generator gradients are computed in line 10
and optimized using the RMSProp in line 11. Lines 10 and 11 perform gradient
updates to optimize Equation 5.1.22.

After training the generator, the discriminator parameters are unfrozen, and another
ncritic discriminator training iteration starts. We should note that there is no need to
freeze the generator parameters during discriminator training as the generator is
only involved in the fabrication of data. Similar to GANs, the discriminator can be
trained as a separate network. However, training the generator always requires the
participation of the discriminator through the adversarial network since the loss is
computed from the output of the generator network.

Unlike GANs, in a WGAN, real data is labeled 1.0, while fake data is labeled -1.0
as a workaround in computing the gradient in line 5. Lines 5-6 and 10-11 perform
gradient updates to optimize Equations 5.1.21 and 5.1.22, respectively. Each term in
lines 5 and 10 is modeled as:

ℒ = −𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
1
𝑚𝑚∑𝑦𝑦𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝

𝑚𝑚

𝑖𝑖=1
 (Equation 5.1.23)

Where ylabel = 1.0 for the real data and ylabel = -1.0 for the fake data. We removed the
superscript (i) for simplicity of notation. For the discriminator, WGAN increases
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒟𝒟𝑤𝑤(𝒙𝒙) to minimize the loss function when training using the real data.

Improved GANs

[144]

When training using fake data, WGAN decreases 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) to minimize
the loss function. For the generator, WGAN increases 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))) as to
minimize the loss function when the fake data is labeled as real during training.
Note that ylabel has no direct contribution in the loss function other than its sign.
In tf.keras, Equation 5.1.23 is implemented as:

def wasserstein_loss(y_label, y_pred):
 return -K.mean(y_label * y_pred)

The most important part of this section is the new loss function for the stable training
of GANs. It is based on the EMD or Wasserstein 1. Algorithm 5.1.1 formalizes the
complete training algorithm of WGAN, including the loss function. In the next
section, the implementation of the training algorithm in tf.keras is presented.

WGAN implementation using Keras
To implement WGAN in tf.keras, we can reuse the DCGAN implementation of
GANs, something we introduced in the previous chapter. The DCGAN builder and
utility functions are implemented in gan.py in the lib folder as a module.

The functions include:

• generator(): A generator model builder
• discriminator(): A discriminator model builder
• train(): A DCGAN trainer
• plot_images(): A generic generator outputs plotter
• test_generator(): A generic generator test utility

As shown in Listing 5.1.1, we can build a discriminator by simply calling:

discriminator = gan.discriminator(inputs, activation='linear')

WGAN uses linear output activation. For the generator, we execute:

generator = gan.generator(inputs, image_size)

The overall network model in tf.keras is similar to the one seen in Figure 4.2.1 for
DCGAN.

Listing 5.1.1 highlights the use of the RMSprop optimizer and Wasserstein loss
function. The hyperparameters in Algorithm 5.1.1 are used during training.

Chapter 5

[145]

Listing 5.1.1: wgan-mnist-5.1.2.py

def build_and_train_models():
 """Load the dataset, build WGAN discriminator,
 generator, and adversarial models.
 Call the WGAN train routine.
 """
 # load MNIST dataset
 (x_train, _), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 model_name = "wgan_mnist"
 # network parameters
 # the latent or z vector is 100-dim
 latent_size = 100
 # hyper parameters from WGAN paper [2]
 n_critic = 5
 clip_value = 0.01
 batch_size = 64
 lr = 5e-5
 train_steps = 40000
 input_shape = (image_size, image_size, 1)

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 # WGAN uses linear activation in paper [2]
 discriminator = gan.discriminator(inputs, activation='linear')
 optimizer = RMSprop(lr=lr)
 # WGAN discriminator uses wassertein loss
 discriminator.compile(loss=wasserstein_loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

The complete code is available on GitHub: https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Improved GANs

[146]

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 generator = gan.generator(inputs, image_size)
 generator.summary()

 # build adversarial model = generator + discriminator
 # freeze the weights of discriminator during adversarial training
 discriminator.trainable = False
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 adversarial.compile(loss=wasserstein_loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 params = (batch_size,
 latent_size,
 n_critic,
 clip_value,
 train_steps,
 model_name)
 train(models, x_train, params)

Listing 5.1.2 is the training function that closely follows Algorithm 5.1.1. However,
there is a minor tweak in the training of the discriminator. Instead of training the
weights in a single combined batch of both real and fake data, we'll train with one
batch of real data first and then a batch of fake data. This tweak will prevent the
gradient from vanishing because of the opposite sign in the label of real and fake
data and the small magnitude of weights due to clipping.

Listing 5.1.2: wgan-mnist-5.1.2.py

Training algorithm for WGAN:

def train(models, x_train, params):
 """Train the Discriminator and Adversarial Networks
 Alternately train Discriminator and Adversarial
 networks by batch.
 Discriminator is trained first with properly labelled
 real and fake images for n_critic times.
 Discriminator weights are clipped as a requirement
 of Lipschitz constraint.

Chapter 5

[147]

 Generator is trained next (via Adversarial) with
 fake images pretending to be real.
 Generate sample images per save_interval
 Arguments:
 models (list): Generator, Discriminator,
 Adversarial models
 x_train (tensor): Train images
 params (list) : Networks parameters
 """
 # the GAN models
 generator, discriminator, adversarial = models
 # network parameters
 (batch_size, latent_size, n_critic,
 clip_value, train_steps, model_name) = params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the
 # generator output evolves during training
 noise_input = np.random.uniform(-1.0,
 1.0,
 size=[16, latent_size])
 # number of elements in train dataset
 train_size = x_train.shape[0]
 # labels for real data
 real_labels = np.ones((batch_size, 1))
 for i in range(train_steps):
 # train discriminator n_critic times
 loss = 0
 acc = 0
 for _ in range(n_critic):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and
 # fake images (label=-1.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0,
 train_size,
 size=batch_size)
 real_images = x_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 fake_images = generator.predict(noise)

 # train the discriminator network
 # real data label=1, fake data label=-1

Improved GANs

[148]

 # instead of 1 combined batch of real and fake images,
 # train with 1 batch of real data first, then 1 batch
 # of fake images.
 # this tweak prevents the gradient
 # from vanishing due to opposite
 # signs of real and fake data labels (i.e. +1 and -1) and
 # small magnitude of weights due to clipping.
 real_loss, real_acc = \
 discriminator.train_on_batch(real_images,
 real_labels)
 fake_loss, fake_acc = \
 discriminator.train_on_batch(fake_images,
 -real_labels)
 # accumulate average loss and accuracy
 loss += 0.5 * (real_loss + fake_loss)
 acc += 0.5 * (real_acc + fake_acc)

 # clip discriminator weights to satisfy Lipschitz
constraint
 for layer in discriminator.layers:
 weights = layer.get_weights()
 weights = [np.clip(weight,
 -clip_value,
 clip_value) for weight in weights]
 layer.set_weights(weights)

 # average loss and accuracy per n_critic training iterations
 loss /= n_critic
 acc /= n_critic
 log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0
 # since the discriminator weights are frozen in
 # adversarial network only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator
 # input of the adversarial for classification
 # fake images are labelled as real
 # log the loss and accuracy
 loss, acc = adversarial.train_on_batch(noise, real_labels)

Chapter 5

[149]

 log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
 print(log)
 if (i + 1) % save_interval == 0:
 # plot generator images on a periodic basis
 gan.plot_images(generator,
 noise_input=noise_input,
 show=False,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded
 # for future MNIST digit generation
 generator.save(model_name + ".h5")

Figure 5.1.4 shows the evolution of the WGAN outputs on the MNIST dataset:

Figure 5.1.4: The sample outputs of WGAN versus training steps. WGAN does not suffer mode collapse in any
of the outputs during training and testing

Improved GANs

[150]

The WGAN is stable even under network configuration changes. For example,
DCGAN is known to be unstable when batch normalization is inserted before the
ReLU in the discriminator network. The same configuration is stable in WGAN.

The following Figure 5.1.5 shows us the outputs of both DCGAN and WGAN with
batch normalization on the discriminator network:

Figure 5.1.5: A comparison of the output of the DCGAN (left) and WGAN (right) when batch normalization is
inserted before the ReLU activation in the discriminator network

Similar to the GAN training in the previous chapter, the trained model is saved on
a file after 40,000 training steps. Using the trained generator model, new synthesized
MNIST digit images are generated by running the following command:

python3 wgan-mnist-5.1.2.py --generator=wgan_mnist.h5

As we have discussed, the original GAN is difficult to train. The problem arises
when the GAN optimizes its loss function; it's actually optimizing the JS divergence,
DJS. It is difficult to optimize DJS when there is little to no overlap between two
distribution functions.

WGAN proposed to address the problem by using the EMD or Wasserstein 1 loss
function, which has a smooth differentiable function even when there is little or
no overlap between the two distributions. However, WGAN is not concerned with
the generated image quality. Apart from stability issues, there are still areas of
improvement in terms of perceptive quality in the generated images of the original
GAN. LSGAN theorizes that the twin problems can be solved simultaneously.
We'll take a look at LSGAN in the following section.

Chapter 5

[151]

2. Least-squares GAN (LSGAN)
LSGAN proposes the least squares loss. Figure 5.2.1 demonstrates why the use of
a sigmoid cross-entropy loss in GANs results in poorly generated data quality:

Figure 5.2.1: Both real and fake sample distributions divided by their respective decision boundaries: sigmoid
and least squares

Ideally, the fake sample distribution should be as close as possible to the true
samples' distribution. However, for GANs, once the fake samples are already on
the correct side of the decision boundary, the gradients vanish.

This prevents the generator from having enough motivation to improve the
quality of the generated fake data. Fake samples far from the decision boundary
will no longer attempt to move closer to the true samples' distribution. Using the
least squares loss function, the gradients do not vanish as long as the fake sample
distribution is far from the real samples' distribution. The generator will strive to
improve its estimate of real density distribution even if the fake samples are already
on the correct side of the decision boundary.

Table 5.2.1 shows the comparison of the loss functions between GAN, WGAN, and
LSGAN:

Network Loss Functions Equation
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛)))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛))

4.1.1

4.1.5

Improved GANs

[152]

WGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒟𝒟𝑤𝑤(𝒙𝒙) + 𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))
𝑤𝑤 ⟵ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−0.01,0.01)

5.1.21

5.1.22

5.1.20

LSGAN ℒ(𝐷𝐷) = 𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒟𝒟(𝒙𝒙) − 1)2 + 𝔼𝔼𝒛𝒛𝒟𝒟(𝒢𝒢(𝒛𝒛))2

ℒ(𝐺𝐺) = 𝔼𝔼𝒛𝒛(𝒟𝒟(𝒢𝒢(𝒛𝒛)) − 1)2

5.2.1

5.2.2

Table 5.2.1: A comparison between the loss functions of GAN, WGAN, and LSGAN

Minimizing Equation 5.2.1 or the discriminator loss function implies that the MSE
between real data classification and the true label 1.0 should be close to zero. In
addition, the MSE between the fake data classification and the true label 0.0 should
be close to zero.

Similar to other GANs, the LSGAN discriminator is trained to classify real from
fake data samples. Minimizing Equation 5.2.2 means fooling the discriminator to
think that the generated fake sample data is real with the help of label 1.0.

Implementing LSGAN using the DCGAN code in the previous chapter as the basis
only requires a few changes. As shown in Listing 5.2.1, the discriminator sigmoid
activation is removed. The discriminator is built by calling:

discriminator = gan.discriminator(inputs, activation=None)

The generator is similar to the original DCGAN:

generator = gan.generator(inputs, image_size)

Both the discriminator and adversarial loss functions are replaced by mse. All the
network parameters are the same as in DCGAN. The network model of LSGAN
in tf.keras is similar to Figure 4.2.1 except that there is linear or no output
activation. The training process is similar to that seen in DCGAN and is provided
by the utility function:

gan.train(models, x_train, params)

Listing 5.2.1: lsgan-mnist-5.2.1.py

def build_and_train_models():
 """Load the dataset, build LSGAN discriminator,
 generator, and adversarial models.
 Call the LSGAN train routine.
 """
 # load MNIST dataset
 (x_train, _), (_, _) = mnist.load_data()

Chapter 5

[153]

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train,
 [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 model_name = "lsgan_mnist"
 # network parameters
 # the latent or z vector is 100-dim
 latent_size = 100
 input_shape = (image_size, image_size, 1)
 batch_size = 64
 lr = 2e-4
 decay = 6e-8
 train_steps = 40000

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 discriminator = gan.discriminator(inputs, activation=None)
 # [1] uses Adam, but discriminator easily
 # converges with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # LSGAN uses MSE loss [2]
 discriminator.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 generator = gan.generator(inputs, image_size)
 generator.summary()

 # build adversarial model = generator + discriminator
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 # freeze the weights of discriminator
 # during adversarial training
 discriminator.trainable = False
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 # LSGAN uses MSE loss [2]
 adversarial.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks

Improved GANs

[154]

 models = (generator, discriminator, adversarial)
 params = (batch_size, latent_size, train_steps, model_name)
 gan.train(models, x_train, params)

Figure 5.2.2 shows generated samples after training LSGAN using the MNIST dataset
for 40,000 training steps:

Figure 5.2.2: Sample outputs of LSGAN versus training steps

Chapter 5

[155]

The output images have better perceptual quality compared to Figure 4.2.1 in
DCGAN seen in the previous chapter.

Using the trained generator model, new synthesized MNIST digit images are
generated by running the following command:

python3 lsgan-mnist-5.2.1.py --generator=lsgan_mnist.h5

In this section, we discussed another improvement in the loss function. With
the use of MSE or L2, we addressed the twin problems of training the stability
and perceptive quality of the GANs. In the next section, another improvement
is proposed, this time in relation to CGAN, which was discussed in the previous
chapter.

3. Auxiliary Classifier GAN (ACGAN)
ACGAN is similar in principle to the Conditional GAN (CGAN) that we discussed
in the previous chapter. We're going to compare both CGAN and ACGAN. For both
CGAN and ACGAN, the generator inputs are noise and its label. The output is a fake
image belonging to the input class label. For CGAN, the inputs to the discriminator
are an image (fake or real) and its label. The output is the probability that the image
is real. For ACGAN, the input to the discriminator is an image, whilst the output is
the probability that the image is real and its class is a label.

Improved GANs

[156]

Figure 5.3.1 highlights the difference between CGAN and ACGAN during generator
training:

Figure 5.3.1: CGAN versus ACGAN generator training.
The main difference is the input and output of the discriminator

Essentially, in CGAN we feed the network with side information (label). In ACGAN,
we try to reconstruct the side information using an auxiliary class decoder network.
ACGAN theory argues that forcing the network to do additional tasks is known
to improve the performance of the original task. In this case, the additional task is
image classification. The original task is the generation of fake images.

Chapter 5

[157]

Table 5.3.1 shows ACGAN loss functions as compared to CGAN loss functions:

Network Loss Functions Number
CGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚)))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚))

4.3.1

4.3.2

ACGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚))) − 𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒫𝒫(𝑐𝑐|𝒙𝒙) − 𝔼𝔼𝒛𝒛 log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚)) − 𝔼𝔼𝒛𝒛log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚))

5.3.1

5.3.2

Table 5.3.1: A comparison between the loss functions of CGAN and ACGAN

ACGAN loss functions are the same as CGAN except for the additional classifier
loss functions. Apart from the original task of identifying real from fake images
(−𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log (1 −𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚)))), Equation 5.3.1 of the discriminator
has the additional task of correctly classifying real and fake images
(−𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒫𝒫(𝑐𝑐|𝒙𝒙) − 𝔼𝔼𝒛𝒛 log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚))). Equation 5.3.2 of the generator means
that apart from trying to fool the discriminator with fake images (−𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚))),
it is asking the discriminator to correctly classify those fake images
(−𝔼𝔼𝒛𝒛 log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚))).

Starting with the CGAN code, only the discriminator and the training function
are modified to implement an ACGAN. The discriminator and generator
builder functions are also provided by gan.py. To see the changes made on the
discriminator, Listing 5.3.1 shows the builder function, where the auxiliary decoder
network that performs image classification and the dual outputs are highlighted.

Listing 5.3.1: gan.py

def discriminator(inputs,
 activation='sigmoid',
 num_labels=None,
 num_codes=None):
 """Build a Discriminator Model

 Stack of LeakyReLU-Conv2D to discriminate real from fake
 The network does not converge with BN so it is not used here
 unlike in [1]

Improved GANs

[158]

 Arguments:
 inputs (Layer): Input layer of the discriminator (the image)
 activation (string): Name of output activation layer
 num_labels (int): Dimension of one-hot labels for ACGAN &
InfoGAN
 num_codes (int): num_codes-dim Q network as output
 if StackedGAN or 2 Q networks if InfoGAN

 Returns:
 Model: Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs
 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 # default output is probability that the image is real
 outputs = Dense(1)(x)
 if activation is not None:
 print(activation)
 outputs = Activation(activation)(outputs)

 if num_labels:
 # ACGAN and InfoGAN have 2nd output
 # 2nd output is 10-dim one-hot vector of label
 layer = Dense(layer_filters[-2])(x)
 labels = Dense(num_labels)(layer)
 labels = Activation('softmax', name='label')(labels)
 if num_codes is None:
 outputs = [outputs, labels]

Chapter 5

[159]

 else:
 # InfoGAN have 3rd and 4th outputs
 # 3rd output is 1-dim continous Q of 1st c given x
 code1 = Dense(1)(layer)
 code1 = Activation('sigmoid', name='code1')(code1)

 # 4th output is 1-dim continuous Q of 2nd c given x
 code2 = Dense(1)(layer)
 code2 = Activation('sigmoid', name='code2')(code2)

 outputs = [outputs, labels, code1, code2]
 elif num_codes is not None:
 # StackedGAN Q0 output
 # z0_recon is reconstruction of z0 normal distribution
 z0_recon = Dense(num_codes)(x)
 z0_recon = Activation('tanh', name='z0')(z0_recon)
 outputs = [outputs, z0_recon]

 return Model(inputs, outputs, name='discriminator')

The discriminator is then built by calling:

discriminator = gan.discriminator(inputs, num_labels=num_labels)

The generator is the same as the one in WGAN and LSGAN. To recall, the
generator builder is shown in the following Listing 5.3.2. We should note that both
Listings 5.3.1 and 5.3.2 are the same builder functions used by WGAN and LSGAN
in the previous sections. Highlighted are the parts applicable to LSGAN.

Listing 5.3.2: gan.py

def generator(inputs,
 image_size,
 activation='sigmoid',
 labels=None,
 codes=None):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 Arguments:
 inputs (Layer): Input layer of the generator (the z-vector)
 image_size (int): Target size of one side
 (assuming square image)

Improved GANs

[160]

 activation (string): Name of output activation layer
 labels (tensor): Input labels
 codes (list): 2-dim disentangled codes for InfoGAN

 Returns:
 Model: Generator Model
 """
 image_resize = image_size // 4
 # network parameters
 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 if labels is not None:
 if codes is None:
 # ACGAN labels
 # concatenate z noise vector and one-hot labels
 inputs = [inputs, labels]
 else:
 # infoGAN codes
 # concatenate z noise vector,
 # one-hot labels and codes 1 & 2
 inputs = [inputs, labels] + codes
 x = concatenate(inputs, axis=1)
 elif codes is not None:
 # generator 0 of StackedGAN
 inputs = [inputs, codes]
 x = concatenate(inputs, axis=1)
 else:
 # default input is just 100-dim noise (z-code)
 x = inputs

 x = Dense(image_resize * image_resize * layer_filters[0])(x)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,

Chapter 5

[161]

 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 if activation is not None:
 x = Activation(activation)(x)

 # generator output is the synthesized image x
 return Model(inputs, x, name='generator')

In ACGAN, the generator is instantiated as:

generator = gan.generator(inputs, image_size, labels=labels)

Figure 5.3.2 shows the network model of ACGAN in tf.keras:

Figure 5.3.2: The tf.keras model of ACGAN

As shown in Listing 5.3.3, the discriminator and adversarial models are modified
to accommodate the changes in the discriminator network. We now have two loss
functions. The first is the original binary cross-entropy to train the discriminator in
estimating the probability of the input image being real.

Improved GANs

[162]

The second is the image classifier predicting the class label. The output is a one-hot
vector of 10 dimensions.

Listing 5.3.3: acgan-mnist-5.3.1.py

Highlighted are the changes implemented in the discriminator and adversarial
networks:

def build_and_train_models():
 """Load the dataset, build ACGAN discriminator,
 generator, and adversarial models.
 Call the ACGAN train routine.
 """
 # load MNIST dataset
 (x_train, y_train), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train,
 [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 # train labels
 num_labels = len(np.unique(y_train))
 y_train = to_categorical(y_train)

 model_name = "acgan_mnist"
 # network parameters
 latent_size = 100
 batch_size = 64
 train_steps = 40000
 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)
 label_shape = (num_labels,)

 # build discriminator Model
 inputs = Input(shape=input_shape,
 name='discriminator_input')
 # call discriminator builder
 # with 2 outputs, pred source and labels
 discriminator = gan.discriminator(inputs,
 num_labels=num_labels)
 # [1] uses Adam, but discriminator
 # easily converges with RMSprop

Chapter 5

[163]

 optimizer = RMSprop(lr=lr, decay=decay)
 # 2 loss fuctions: 1) probability image is real
 # 2) class label of the image
 loss = ['binary_crossentropy', 'categorical_crossentropy']
 discriminator.compile(loss=loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 labels = Input(shape=label_shape, name='labels')
 # call generator builder with input labels
 generator = gan.generator(inputs,
 image_size,
 labels=labels)
 generator.summary()

 # build adversarial model = generator + discriminator
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 # freeze the weights of discriminator
 # during adversarial training
 discriminator.trainable = False
 adversarial = Model([inputs, labels],
 discriminator(generator([inputs, labels])),
 name=model_name)
 # same 2 loss fuctions: 1) probability image is real
 # 2) class label of the image
 adversarial.compile(loss=loss,
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 data = (x_train, y_train)
 params = (batch_size, latent_size, \
 train_steps, num_labels, model_name)
 train(models, data, params)

In Listing 5.3.4, we highlight the changes implemented in the training routine. The
main difference compared to CGAN code is that the output label must be supplied
during discriminator and adversarial training.

Improved GANs

[164]

Listing 5.3.4: acgan-mnist-5.3.1.py

def train(models, data, params):
 """Train the discriminator and adversarial Networks
 Alternately train discriminator and adversarial
 networks by batch.
 Discriminator is trained first with real and fake
 images and corresponding one-hot labels.
 Adversarial is trained next with fake images pretending
 to be real and corresponding one-hot labels.
 Generate sample images per save_interval.
 # Arguments
 models (list): Generator, Discriminator,
 Adversarial models
 data (list): x_train, y_train data
 params (list): Network parameters
 """
 # the GAN models
 generator, discriminator, adversarial = models
 # images and their one-hot labels
 x_train, y_train = data
 # network parameters
 batch_size, latent_size, train_steps, num_labels, model_name \
 = params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator
 # output evolves during training
 noise_input = np.random.uniform(-1.0,
 1.0,
 size=[16, latent_size])
 # class labels are 0, 1, 2, 3, 4, 5,
 # 6, 7, 8, 9, 0, 1, 2, 3, 4, 5
 # the generator must produce these MNIST digits
 noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 # number of elements in train dataset
 train_size = x_train.shape[0]
 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_label, axis=1))

 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)

Chapter 5

[165]

 # randomly pick real images and
 # corresponding labels from dataset
 rand_indexes = np.random.randint(0,
 train_size,
 size=batch_size)
 real_images = x_train[rand_indexes]
 real_labels = y_train[rand_indexes]
 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # randomly pick one-hot labels
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 # generate fake images
 fake_images = generator.predict([noise, fake_labels])
 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 # real + fake labels = 1 batch of train data labels
 labels = np.concatenate((real_labels, fake_labels))

 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0
 # train discriminator network, log the loss and accuracy
 # ['loss', 'activation_1_loss',
 # 'label_loss', 'activation_1_acc', 'label_acc']
 metrics = discriminator.train_on_batch(x, [y, labels])
 fmt = "%d: [disc loss: %f, srcloss: %f,"
 fmt += "lblloss: %f, srcacc: %f, lblacc: %f]"
 log = fmt % (i, metrics[0], metrics[1], \
 metrics[2], metrics[3], metrics[4])

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0 and
 # corresponding one-hot label or class
 # since the discriminator weights are frozen
 # in adversarial network only the generator is trained
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,

Improved GANs

[166]

 size=[batch_size, latent_size])
 # randomly pick one-hot labels
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 # label fake images as real
 y = np.ones([batch_size, 1])
 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator input
 # of the adversarial for classification
 # log the loss and accuracy
 metrics = adversarial.train_on_batch([noise, fake_labels],
 [y, fake_labels])
 fmt = "%s [advr loss: %f, srcloss: %f,"
 fmt += "lblloss: %f, srcacc: %f, lblacc: %f]"
 log = fmt % (log, metrics[0], metrics[1],\
 metrics[2], metrics[3], metrics[4])
 print(log)
 if (i + 1) % save_interval == 0:
 # plot generator images on a periodic basis
 gan.plot_images(generator,
 noise_input=noise_input,
 noise_label=noise_label,
 show=False,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded
 # for future MNIST digit generation
 generator.save(model_name + ".h5")

It transpires that with the additional task, the performance improvement in ACGAN
is significant compared to all GANs that we have discussed previously. ACGAN
training is stable, as shown in Figure 5.3.3 sample outputs of ACGAN for the
following labels:

[0 1 2 3

 4 5 6 7

 8 9 0 1

 2 3 4 5]

Chapter 5

[167]

Unlike in CGAN, the appearance of the sample outputs does not vary widely during
training. The MNIST digit image perceptive quality is also better.

Figure 5.3.3: The sample outputs generated by the ACGAN as a function
of training steps for labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

Using the trained generator model, new synthesized MNIST digit images are
generated by running:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5

Alternatively, the generation of a specific digit (for example, 3) to be generated can
also be requested:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5 --digit=3

Improved GANs

[168]

Figure 5.3.4 shows a side-by-side comparison of every MNIST digit produced by
both CGAN and ACGAN. Digits 2-6 are of better quality in ACGAN than in CGAN:

Figure 5.3.4: A side-by-side comparison of outputs of CGAN and ACGAN conditioned with digits 0 to 9

Similar to WGAN and LSGAN, ACGAN provided an improvement in an existing
GAN, CGAN, by fine-tuning its loss function. In the chapters to come, we will
discover new loss functions that will enable GANs to perform new useful tasks.

Chapter 5

[169]

4. Conclusion
In this chapter, we've presented various improvements to the original GAN
algorithm, first introduced in the previous chapter. WGAN proposed an algorithm
to improve the stability of training by using the EMD or Wasserstein 1 loss. LSGAN
argued that the original cross-entropy function of GANs is prone to vanishing
gradients, unlike least squares loss. LSGAN proposed an algorithm to achieve stable
training and quality outputs. ACGAN convincingly improved the quality of the
conditional generation of MNIST digits by requiring the discriminator to perform a
classification task on top of determining whether the input image was fake or real.

In the next chapter, we'll study how to control the attributes of generator outputs.
Whilst CGAN and ACGAN are able to indicate the desired digits to produce, we
have not analyzed GANs that can specify the attributes of outputs. For example,
we may want to control the writing style of the MNIST digits, such as roundness,
tilt angle, and thickness. Therefore, the goal will be to introduce GANs with
disentangled representations to control the specific attributes of the generator
outputs.

5. References
1. Ian Goodfellow et al.: Generative Adversarial Nets. Advances in neural

information processing systems, 2014 (http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf).

2. Martin Arjovsky, Soumith Chintala, and Léon Bottou: Wasserstein GAN. arXiv
preprint, 2017 (https://arxiv.org/pdf/1701.07875.pdf).

3. Xudong Mao et al.: Least Squares Generative Adversarial Networks. 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE 2017 (http://
openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_
Squares_Generative_ICCV_2017_paper.pdf).

4. Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Image
Synthesis with Auxiliary Classifier GANs. ICML, 2017 (http://proceedings.
mlr.press/v70/odena17a/odena17a.pdf).

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1701.07875.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://proceedings.mlr.press/v70/odena17a/odena17a.pdf
http://proceedings.mlr.press/v70/odena17a/odena17a.pdf

[171]

6
Disentangled

Representation GANs
As we've explored, GANs can generate meaningful outputs by learning the data
distribution. However, there was no control over the attributes of the generated
outputs. Some variations of GANs, like conditional GAN (CGAN) and auxiliary
classifier GAN (ACGAN), as discussed in the previous two chapters, are able to
train a generator that is conditioned to synthesize specific outputs. For example,
both CGAN and ACGAN can induce the generator to produce a specific MNIST
digit. This is achieved by using both a 100-dim noise code and the corresponding
one-hot label as inputs. However, other than the one-hot label, we have no other
ways to control the properties of generated outputs.

In this chapter, we will be covering the variations of GANs that enable us to
modify the generator outputs. In the context of the MNIST dataset, apart from
which number to produce, we may find that we want to control the writing style.
This could involve the tilt or the width of the desired digit. In other words, GANs
can also learn disentangled latent codes or representations that we can use to vary
the attributes of the generator outputs. A disentangled code or representation is
a tensor that can change a specific feature or attribute of the output data while not
affecting the other attributes.

For a review of CGAN and ACGAN, please refer to Chapter 4,
Generative Adversarial Networks (GANs), and Chapter 5, Improved
GANs.

Disentangled Representation GANs

[172]

In the first section of this chapter, we will be discussing InfoGAN: Interpretable
Representation Learning by Information Maximizing Generative Adversarial Nets [1],
an extension to GANs. InfoGAN learns the disentangled representations in an
unsupervised manner by maximizing the mutual information between the input
codes and the output observation. On the MNIST dataset, InfoGAN disentangles
the writing styles from the digits dataset.

In the following part of the chapter, we'll also be discussing the Stacked Generative
Adversarial Networks or StackedGAN [2], another extension to GANs.

StackedGAN uses a pretrained encoder or classifier in order to aid in disentangling
the latent codes. StackedGAN can be viewed as a stack of models, with each being
made of an encoder and a GAN. Each GAN is trained in an adversarial manner by
using the input and output data of the corresponding encoder.

In summary, the goal of this chapter is to present:

• The concepts of disentangled representations
• The principles of both InfoGAN and StackedGAN
• Implementation of both InfoGAN and StackedGAN using tf.keras

Let's begin by discussing disentangled representations.

1. Disentangled representations
The original GAN was able to generate meaningful outputs, but the downside
was that its attributes couldn't be controlled. For example, if we trained a GAN
to learn a distribution of celebrity faces, the generator would produce new images
of celebrity-looking people. However, there is no way to influence the generator
regarding the specific attributes of the face that we want. For example, we're
unable to ask the generator for a face of a female celebrity with long black hair,
a fair complexion, brown eyes, and who is smiling. The fundamental reason for
this is because the 100-dim noise code that we use entangles all of the salient
attributes of the generator outputs. We can recall that in tf.keras, the 100-dim
code was generated by the random sampling of uniform noise distribution:

 # generate fake images from noise using generator
 # generate noise using uniform distribution
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 # generate fake images
 fake_images = generator.predict(noise)

Chapter 6

[173]

If we are able to modify the original GAN such that the representation is separated
into entangled and disentangled interpretable latent code vectors, we would be able
to tell the generator what to synthesize.

Figure 6.1.1 shows us a GAN with an entangled code and its variation with a mixture
of entangled and disentangled representations. In the context of the hypothetical
celebrity face generation, with the disentangled codes, we are able to indicate the
gender, hairstyle, facial expression, skin complexion, and eye color of the face we
wish to generate. The n–dim entangled code is still needed to represent all the other
facial attributes that we have not disentangled, such as the face shape, facial hair,
eye-glasses, as just three examples. The concatenation of entangled and disentangled
code vectors serves as the new input to the generator. The total dimension of the
concatenated code may not be necessarily 100:

Figure 6.1.1: The GAN with the entangled code and its variation with both entangled and disentangled codes.
This example is shown in the context of celebrity face generation

Looking at the preceding figure, it appears that GANs with disentangled
representations can also be optimized in the same way as a vanilla GAN can be.
This is because the generator output can be represented as:

𝒢𝒢(𝑧𝑧, 𝑐𝑐) = 𝒢𝒢(𝒛𝒛) (Equation 6.1.1)

The code z = (z, c) comprises two elements:

• Incompressible entangled noise code similar to GANs z or noise vector.
• Latent codes, c1,c2,…,cL, which represent the interpretable disentangled codes

of the data distribution. Collectively, all latent codes are represented by c.

For simplicity, all the latent codes are assumed to be independent:

𝑝𝑝(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿) =∏𝑝𝑝(𝑐𝑐𝑖𝑖)
𝐿𝐿

𝑖𝑖=1
 (Equation 6.1.2)

The generator function 𝒙𝒙 = 𝒢𝒢(𝑧𝑧, 𝑐𝑐) = 𝒢𝒢(𝒛𝒛) is provided with both the incompressible
noise code and the latent codes. From the point of view of the generator, optimizing
z = (z, c) is the same as optimizing z.

Disentangled Representation GANs

[174]

The generator network will simply ignore the constraint imposed by the
disentangled codes when coming up with a solution.

The generator learns the distribution 𝑝𝑝𝑔𝑔(𝒙𝒙|𝑐𝑐) = 𝑝𝑝𝑔𝑔(𝒙𝒙) . This will practically defeat
the objective of disentangled representations.

The key idea of InfoGAN is to force the GAN not to ignore the latent code c. This
is done by maximizing the mutual information between c and 𝒢𝒢(𝑧𝑧, 𝑐𝑐) . In the next
section, we will formulate the loss function of InfoGAN.

InfoGAN
To enforce the disentanglement of codes, InfoGAN proposed a regularizer to the
original loss function that maximizes the mutual information between the latent
codes c and 𝒢𝒢(𝑧𝑧, 𝑐𝑐) :

𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) = 𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝒛𝒛)) (Equation 6.1.3)

The regularizer forces the generator to consider the latent codes when it formulates
a function that synthesizes the fake images. In the field of information theory, the
mutual information between latent codes c and 𝒢𝒢(𝑧𝑧, 𝑐𝑐) is defined as:

𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) = 𝐻𝐻(𝑐𝑐) − 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐)) (Equation 6.1.4)

Where H(c) is the entropy of latent code, c, and 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐)) is the conditional
entropy of c after observing the output of the generator, 𝒢𝒢(𝑧𝑧, 𝑐𝑐) . Entropy is a
measure of uncertainty of a random variable or an event. For example, information
such as the sun rises in the east has a low entropy, whereas winning the jackpot in
the lottery has a high entropy. A more detailed discussion on mutual information
can be found in Chapter 13, Unsupervised Learning Using Mutual Information.

In Equation 6.1.4, maximizing the mutual information means minimizing 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐))
or decreasing the uncertainty in the latent code upon observing the generated
output. This makes sense since, for example, in the MNIST dataset, the generator
becomes more confident in synthesizing the digit 8 if the GAN sees that it observed
the digit 8.

Chapter 6

[175]

However, it is hard to estimate 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐)) since it requires knowledge of the
posterior 𝑃𝑃(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐)) = 𝑃𝑃(𝑐𝑐|𝑥𝑥) , which is something that we don't have access to.
For simplicity, we will use the regular letter x to represent the data distribution.

The workaround is to estimate the lower bound of mutual information by
estimating the posterior with an auxiliary distribution 𝑄𝑄(𝑐𝑐|𝑥𝑥) . InfoGAN estimates
the lower bound of mutual information as:

𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) ≥ 𝐿𝐿𝐼𝐼(𝒢𝒢, 𝑄𝑄) = 𝐸𝐸𝑐𝑐~𝑃𝑃(𝑐𝑐),𝑥𝑥~𝒢𝒢(𝑧𝑧,𝑐𝑐)[log𝑄𝑄(𝑐𝑐|𝑥𝑥)] + 𝐻𝐻(𝑐𝑐) (Equation 6.1.5)

In InfoGAN, H(c) is assumed to be a constant. Therefore, maximizing the mutual
information is a matter of maximizing the expectation. The generator must be
confident that it has generated an output with the specific attributes. We should
note that the maximum value of this expectation is zero. Therefore, the maximum
of the lower bound of the mutual information is H(c). In InfoGAN, 𝑄𝑄(𝑐𝑐|𝑥𝑥) for
discrete latent codes can be represented by softmax nonlinearity. The expectation
is the negative categorical_crossentropy loss in tf.keras.

For continuous codes of a single dimension, the expectation is a double integral
over c and x. This is due to the expectation that samples from both disentangled
code distribution and generator distribution. One way of estimating the expectation
is by assuming the samples as a good measure of continuous data. Therefore, the
loss is estimated as 𝑐𝑐 log𝑄𝑄(𝑐𝑐|𝑥𝑥) . In Chapter 13, Unsupervised Learning Using Mutual
Information, we will present a more precise estimation of mutual information.

To complete the network of an InfoGAN, we should have an implementation of
𝑄𝑄(𝑐𝑐|𝑥𝑥) . For simplicity, the network Q is an auxiliary network attached to the second
to last layer of the discriminator. Therefore, this has a minimal impact on the
training of the original GAN.

Disentangled Representation GANs

[176]

Figure 6.1.2 shows the InfoGAN network diagram:

Figure 6.1.2 Network diagram showing discriminator and generator training in InfoGAN

Chapter 6

[177]

Table 6.1.1 shows the loss functions of InfoGAN as compared to GAN:

Network Loss Functions Number
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛)))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛))

4.1.1

4.1.5

InfoGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝑧𝑧,𝑐𝑐 log (1 − 𝒟𝒟(𝒢𝒢(𝑧𝑧, 𝑐𝑐))) − 𝜆𝜆𝜆𝜆(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐))

ℒ(𝐺𝐺) = −𝔼𝔼𝑧𝑧,𝑐𝑐 log𝒟𝒟(𝒢𝒢(𝑧𝑧, 𝑐𝑐)) − 𝜆𝜆𝜆𝜆(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐))

For continuous codes, InfoGAN recommends a value of 𝜆𝜆 < 1 . In our
example, we set 𝜆𝜆 = 0.5 . For discrete codes, InfoGAN recommends
𝜆𝜆 = 1 .

6.1.1

6.1.2

Table 6.1.1: A comparison between the loss functions of GAN and InfoGAN

The loss functions of InfoGAN differ from GANs by an additional term,
−𝜆𝜆𝜆𝜆(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) , where 𝜆𝜆 is a small positive constant. Minimizing the loss function of
an InfoGAN translates to minimizing the loss of the original GAN and maximizing
the mutual information 𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) .

If applied to the MNIST dataset, InfoGAN can learn the disentangled discrete and
continuous codes in order to modify the generator output attributes. For example,
like CGAN and ACGAN, the discrete code in the form of a 10-dim one-hot label will
be used to specify the digit to generate. However, we can add two continuous codes,
one for controlling the angle of writing style and another for adjusting the stroke
width. Figure 6.1.3 shows the codes for the MNIST digit in InfoGAN. We retain the
entangled code with a smaller dimensionality to represent all other attributes:

Figure 6.1.3: The codes for both GAN and InfoGAN in the context of the MNIST dataset

Having discussed some of the concepts behind InfoGAN, let's take a look at
InfoGAN implementation in tf.keras.

Disentangled Representation GANs

[178]

Implementation of InfoGAN in Keras
To implement an InfoGAN on the MNIST dataset, there are some changes that
need to be made in the base code of the ACGAN. As highlighted in Listing 6.1.1, the
generator concatenates both entangled (z noise code) and disentangled codes (one-
hot label and continuous codes) to serve as input:

inputs = [inputs, labels] + codes

The builder functions for the generator and discriminator are also implemented
in gan.py in the lib folder.

Listing 6.1.1: infogan-mnist-6.1.1.py

Highlighted are the lines that are specific to InfoGAN:

def generator(inputs,
 image_size,
 activation='sigmoid',
 labels=None,
 codes=None):
 """Build a Generator Model

 Stack of BN-ReLU-Conv2DTranpose to generate fake images.
 Output activation is sigmoid instead of tanh in [1].
 Sigmoid converges easily.

 Arguments:
 inputs (Layer): Input layer of the generator (the z-vector)
 image_size (int): Target size of one side
 (assuming square image)
 activation (string): Name of output activation layer
 labels (tensor): Input labels
 codes (list): 2-dim disentangled codes for InfoGAN

 Returns:
 Model: Generator Model
 """
 image_resize = image_size // 4
 # network parameters

The complete code is available on GitHub: https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 6

[179]

 kernel_size = 5
 layer_filters = [128, 64, 32, 1]

 if labels is not None:
 if codes is None:
 # ACGAN labels
 # concatenate z noise vector and one-hot labels
 inputs = [inputs, labels]
 else:
 # infoGAN codes
 # concatenate z noise vector,
 # one-hot labels and codes 1 & 2
 inputs = [inputs, labels] + codes
 x = concatenate(inputs, axis=1)
 elif codes is not None:
 # generator 0 of StackedGAN
 inputs = [inputs, codes]
 x = concatenate(inputs, axis=1)
 else:
 # default input is just 100-dim noise (z-code)
 x = inputs

 x = Dense(image_resize * image_resize * layer_filters[0])(x)
 x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

 for filters in layer_filters:
 # first two convolution layers use strides = 2
 # the last two use strides = 1
 if filters > layer_filters[-2]:
 strides = 2
 else:
 strides = 1
 x = BatchNormalization()(x)
 x = Activation('relu')(x)
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')(x)

 if activation is not None:
 x = Activation(activation)(x)

 # generator output is the synthesized image x
 return Model(inputs, x, name='generator')

Disentangled Representation GANs

[180]

Listing 6.1.2 shows the discriminator and Q network with the original default GAN
output. The three auxiliary outputs corresponding to discrete code (for one-hot label)
softmax prediction and the continuous code probabilities given the input MNIST
digit image are highlighted.

Listing 6.1.2: infogan-mnist-6.1.1.py

Highlighted are the lines that are specific to InfoGAN:

def discriminator(inputs,
 activation='sigmoid',
 num_labels=None,
 num_codes=None):
 """Build a Discriminator Model

 Stack of LeakyReLU-Conv2D to discriminate real from fake
 The network does not converge with BN so it is not used here
 unlike in [1]

 Arguments:
 inputs (Layer): Input layer of the discriminator (the image)
 activation (string): Name of output activation layer
 num_labels (int): Dimension of one-hot labels for ACGAN &
InfoGAN
 num_codes (int): num_codes-dim Q network as output
 if StackedGAN or 2 Q networks if InfoGAN

 Returns:
 Model: Discriminator Model
 """
 kernel_size = 5
 layer_filters = [32, 64, 128, 256]

 x = inputs
 for filters in layer_filters:
 # first 3 convolution layers use strides = 2
 # last one uses strides = 1
 if filters == layer_filters[-1]:
 strides = 1
 else:
 strides = 2
 x = LeakyReLU(alpha=0.2)(x)
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,

Chapter 6

[181]

 strides=strides,
 padding='same')(x)

 x = Flatten()(x)
 # default output is probability that the image is real
 outputs = Dense(1)(x)
 if activation is not None:
 print(activation)
 outputs = Activation(activation)(outputs)

 if num_labels:
 # ACGAN and InfoGAN have 2nd output
 # 2nd output is 10-dim one-hot vector of label
 layer = Dense(layer_filters[-2])(x)
 labels = Dense(num_labels)(layer)
 labels = Activation('softmax', name='label')(labels)
 if num_codes is None:
 outputs = [outputs, labels]
 else:
 # InfoGAN have 3rd and 4th outputs
 # 3rd output is 1-dim continous Q of 1st c given x
 code1 = Dense(1)(layer)
 code1 = Activation('sigmoid', name='code1')(code1)

 # 4th output is 1-dim continuous Q of 2nd c given x
 code2 = Dense(1)(layer)
 code2 = Activation('sigmoid', name='code2')(code2)

 outputs = [outputs, labels, code1, code2]
 elif num_codes is not None:
 # StackedGAN Q0 output
 # z0_recon is reconstruction of z0 normal distribution
 z0_recon = Dense(num_codes)(x)
 z0_recon = Activation('tanh', name='z0')(z0_recon)
 outputs = [outputs, z0_recon]

 return Model(inputs, outputs, name='discriminator')

Disentangled Representation GANs

[182]

Figure 6.1.4 shows the InfoGAN model in tf.keras:

Figure 6.1.4: The InfoGAN Keras model

Building the discriminator and adversarial models also requires a number of
changes. The changes are on the loss functions used. The original discriminator
loss function, binary_crossentropy, the categorical_crossentropy for discrete
code, and the mi_loss function for each continuous code comprise the overall loss
function. Each loss function is given a weight of 1.0, except for the mi_loss function,
which is given 0.5, corresponding to 𝜆𝜆 = 0.5 for the continuous code.

Chapter 6

[183]

Listing 6.1.3 highlights the changes made. However, we should note that by using the
builder function, the discriminator is instantiated as:

 # call discriminator builder with 4 outputs:
 # source, label, and 2 codes
 discriminator = gan.discriminator(inputs,
 num_labels=num_labels,
 num_codes=2)

The generator is created by:

 # call generator with inputs,
 # labels and codes as total inputs to generator
 generator = gan.generator(inputs,
 image_size,
 labels=labels,
 codes=[code1, code2])

Listing 6.1.3: infogan-mnist-6.1.1.py

Mutual information loss function as well as building and training the InfoGAN
discriminator and adversarial networks is demonstrated in the following code:

def mi_loss(c, q_of_c_given_x):
 """ Mutual information, Equation 5 in [2],
 assuming H(c) is constant
 """
 # mi_loss = -c * log(Q(c|x))
 return K.mean(-K.sum(K.log(q_of_c_given_x + K.epsilon()) * c,
 axis=1))

def build_and_train_models(latent_size=100):
 """Load the dataset, build InfoGAN discriminator,
 generator, and adversarial models.
 Call the InfoGAN train routine.
 """

 # load MNIST dataset
 (x_train, y_train), (_, _) = mnist.load_data()

 # reshape data for CNN as (28, 28, 1) and normalize
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 # train labels
 num_labels = len(np.unique(y_train))

Disentangled Representation GANs

[184]

 y_train = to_categorical(y_train)

 model_name = "infogan_mnist"
 # network parameters
 batch_size = 64
 train_steps = 40000
 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)
 label_shape = (num_labels,)
 code_shape = (1,)

 # build discriminator model
 inputs = Input(shape=input_shape, name='discriminator_input')
 # call discriminator builder with 4 outputs:
 # source, label, and 2 codes
 discriminator = gan.discriminator(inputs,
 num_labels=num_labels,
 num_codes=2)
 # [1] uses Adam, but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # loss functions: 1) probability image is real
 # (binary crossentropy)
 # 2) categorical cross entropy image label,
 # 3) and 4) mutual information loss
 loss = ['binary_crossentropy',
 'categorical_crossentropy',
 mi_loss,
 mi_loss]
 # lamda or mi_loss weight is 0.5
 loss_weights = [1.0, 1.0, 0.5, 0.5]
 discriminator.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 discriminator.summary()

 # build generator model
 input_shape = (latent_size,)
 inputs = Input(shape=input_shape, name='z_input')
 labels = Input(shape=label_shape, name='labels')
 code1 = Input(shape=code_shape, name="code1")
 code2 = Input(shape=code_shape, name="code2")
 # call generator with inputs,

Chapter 6

[185]

 # labels and codes as total inputs to generator
 generator = gan.generator(inputs,
 image_size,
 labels=labels,
 codes=[code1, code2])
 generator.summary()

 # build adversarial model = generator + discriminator
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 discriminator.trainable = False
 # total inputs = noise code, labels, and codes
 inputs = [inputs, labels, code1, code2]
 adversarial = Model(inputs,
 discriminator(generator(inputs)),
 name=model_name)
 # same loss as discriminator
 adversarial.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 adversarial.summary()

 # train discriminator and adversarial networks
 models = (generator, discriminator, adversarial)
 data = (x_train, y_train)
 params = (batch_size,
 latent_size,
 train_steps,
 num_labels,
 model_name)
 train(models, data, params)

As far as the training is concerned, we can see that the InfoGAN is similar to
ACGAN, except that we need to supply c for the continuous code. c is drawn from
normal distribution with a standard deviation of 0.5 and a mean of 0.0. We'll use
randomly sampled labels for the fake data and dataset class labels for the real data
to represent discrete latent code.

Listing 6.1.4 highlights the changes made to the training function. Similar to all
previous GANs, the discriminator and generator (through adversarial training) are
alternately trained. During adversarial training, the discriminator weights are frozen.

Disentangled Representation GANs

[186]

Sample generator output images are saved every 500 interval steps by using the gan.
py plot_images() function.

Listing 6.1.4: infogan-mnist-6.1.1.py

def train(models, data, params):
 """Train the Discriminator and Adversarial networks

 Alternately train discriminator and adversarial networks by batch.
 Discriminator is trained first with real and fake images,
 corresponding one-hot labels and continuous codes.
 Adversarial is trained next with fake images pretending
 to be real, corresponding one-hot labels and continous codes.
 Generate sample images per save_interval.

 # Arguments
 models (Models): Generator, Discriminator, Adversarial models
 data (tuple): x_train, y_train data
 params (tuple): Network parameters
 """
 # the GAN models
 generator, discriminator, adversarial = models
 # images and their one-hot labels
 x_train, y_train = data
 # network parameters
 batch_size, latent_size, train_steps, num_labels, model_name = \
 params
 # the generator image is saved every 500 steps
 save_interval = 500
 # noise vector to see how the generator output
 # evolves during training
 noise_input = np.random.uniform(-1.0,
 1.0,
 size=[16, latent_size])
 # random class labels and codes
 noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 noise_code1 = np.random.normal(scale=0.5, size=[16, 1])
 noise_code2 = np.random.normal(scale=0.5, size=[16, 1])
 # number of elements in train dataset
 train_size = x_train.shape[0]
 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_label, axis=1))

 for i in range(train_steps):
 # train the discriminator for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)

Chapter 6

[187]

 # randomly pick real images and
 # corresponding labels from dataset
 rand_indexes = np.random.randint(0,
 train_size,
 size=batch_size)
 real_images = x_train[rand_indexes]
 real_labels = y_train[rand_indexes]
 # random codes for real images
 real_code1 = np.random.normal(scale=0.5,
 size=[batch_size, 1])
 real_code2 = np.random.normal(scale=0.5,
 size=[batch_size, 1])
 # generate fake images, labels and codes
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 fake_code1 = np.random.normal(scale=0.5,
 size=[batch_size, 1])
 fake_code2 = np.random.normal(scale=0.5,
 size=[batch_size, 1])
 inputs = [noise, fake_labels, fake_code1, fake_code2]
 fake_images = generator.predict(inputs)

 # real + fake images = 1 batch of train data
 x = np.concatenate((real_images, fake_images))
 labels = np.concatenate((real_labels, fake_labels))
 codes1 = np.concatenate((real_code1, fake_code1))
 codes2 = np.concatenate((real_code2, fake_code2))

 # label real and fake images
 # real images label is 1.0
 y = np.ones([2 * batch_size, 1])
 # fake images label is 0.0
 y[batch_size:, :] = 0

 # train discriminator network,
 # log the loss and label accuracy
 outputs = [y, labels, codes1, codes2]
 # metrics = ['loss', 'activation_1_loss', 'label_loss',
 # 'code1_loss', 'code2_loss', 'activation_1_acc',
 # 'label_acc', 'code1_acc', 'code2_acc']
 # from discriminator.metrics_names
 metrics = discriminator.train_on_batch(x, outputs)
 fmt = "%d: [discriminator loss: %f, label_acc: %f]"
 log = fmt % (i, metrics[0], metrics[6])

Disentangled Representation GANs

[188]

 # train the adversarial network for 1 batch
 # 1 batch of fake images with label=1.0 and
 # corresponding one-hot label or class + random codes
 # since the discriminator weights are frozen
 # in adversarial network only the generator is trained
 # generate fake images, labels and codes
 noise = np.random.uniform(-1.0,
 1.0,
 size=[batch_size, latent_size])
 fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
 batch_size)]
 fake_code1 = np.random.normal(scale=0.5,
 size=[batch_size, 1])
 fake_code2 = np.random.normal(scale=0.5,
 size=[batch_size, 1])
 # label fake images as real
 y = np.ones([batch_size, 1])

 # train the adversarial network
 # note that unlike in discriminator training,
 # we do not save the fake images in a variable
 # the fake images go to the discriminator
 # input of the adversarial for classification
 # log the loss and label accuracy
 inputs = [noise, fake_labels, fake_code1, fake_code2]
 outputs = [y, fake_labels, fake_code1, fake_code2]
 metrics = adversarial.train_on_batch(inputs, outputs)
 fmt = "%s [adversarial loss: %f, label_acc: %f]"
 log = fmt % (log, metrics[0], metrics[6])

 print(log)
 if (i + 1) % save_interval == 0:
 # plot generator images on a periodic basis
 gan.plot_images(generator,
 noise_input=noise_input,
 noise_label=noise_label,
 noise_codes=[noise_code1, noise_code2],
 show=False,
 step=(i + 1),
 model_name=model_name)

 # save the model after training the generator
 # the trained generator can be reloaded for
 # future MNIST digit generation
 generator.save(model_name + ".h5")

Chapter 6

[189]

Given the tf.keras implementation of InfoGAN, the next section presents the
generator MNIST outputs with disentangled attributes.

Generator outputs of InfoGAN
Similar to all previous GANs that have been presented to us, we've trained our
InfoGAN for 40,000 steps. After the training is completed, we're able to run the
InfoGAN generator to generate new outputs using the model saved on the infogan_
mnist.h5 file. The following validations are conducted:

1. Generate digits 0 to 9 by varying the discrete labels from 0 to 9. Both
continuous codes are set to zero. The results are shown in Figure 6.1.5. We
can see that the InfoGAN discrete code can control the digits produced by
the generator:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=0 --code1=0 --code2=0

to

python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=9 --code1=0 --code2=0

In Figure 6.1.5 we can see the images generated by the InfoGAN:

Figure 6.1.5: The images generated by the InfoGAN as the discrete code is varied from 0 to 9. Both continuous
codes are set to zero

Disentangled Representation GANs

[190]

2. Examine the effect of the first continuous code to understand which attribute
has been affected. We vary the first continuous code from -2.0 to 2.0 for digits
0 to 9. The second continuous code is set to 0.0. Figure 6.1.6 shows that the
first continuous code controls the thickness of the digit:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=0 --code1=0 --code2=0 --p1

Figure 6.1.6: The images generated by InfoGAN as the first continuous code is varied from -2.0 to 2.0 for digits 0
to 9. The second continuous code is set to zero. The first continuous code controls the thickness of the digit

3. Similar to the previous step, but instead focusing more on the second
continuous code. Figure 6.1.7 shows that the second continuous code controls
the rotation angle (tilt) of the writing style:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=0 --code1=0 --code2=0 --p2

Chapter 6

[191]

Figure 6.1.7: The images generated by InfoGAN as the second continuous code is varied from -2.0 to 2.0 for
digits 0 to 9. The first continuous code is set to zero. The second continuous code controls the rotation angle

(tilt) of the writing style

From these validation results, we can see that apart from the ability to generate
MNIST-looking digits, InfoGAN expands the ability of conditional GANs such as
CGAN and ACGAN. The network automatically learned two arbitrary codes that
can control the specific attributes of the generator output. It would be interesting
to see what additional attributes could be controlled if we increased the number of
continuous codes beyond 2. This could be accomplished by augmenting the list of
codes in the highlighted lines of Listing 6.1.1 to Listing 6.1.4.

The results in this section demonstrated that the attributes of the generator
outputs can be disentangled by maximizing the mutual information between the
code and the data distribution. In the following section, a different approach on
disentanglement is presented. The idea of StackedGAN is to inject the code at the
feature level.

Disentangled Representation GANs

[192]

2. StackedGAN
In the same spirit as InfoGAN, StackedGAN proposes a method for disentangling
latent representations for conditioning generator outputs. However, StackedGAN
uses a different approach to the problem. Instead of learning how to condition the
noise to produce the desired output, StackedGAN breaks down a GAN into a stack
of GANs. Each GAN is trained independently in the usual discriminator-adversarial
manner with its own latent code.

Figure 6.2.1 shows us how StackedGAN works in the context of hypothetical
celebrity face generation, assuming that the Encoder network has been trained
to classify celebrity faces:

Figure 6.2.1: The basic idea of StackedGAN in the context of celebrity face generation. Assuming that there is
a hypothetical deep encoder network that can perform classification on celebrity faces, a StackedGAN simply

inverts the process of the encoder

Chapter 6

[193]

The Encoder network is composed of a stack of simple encoders, Encoderi where i = 0
… n - 1 corresponding to n features. Each encoder extracts certain facial features. For
example, Encoder0 may be the encoder for hairstyle features, Features1. All the simple
encoders contribute to making the overall Encoder perform correct predictions.

The idea behind StackedGAN is that if we would like to build a GAN that generates
fake celebrity faces, we should simply invert the Encoder. StackedGAN consists
of a stack of simpler GANs, GANi where i = 0 … n - 1 corresponding to n features.
Each GANi learns to invert the process of its corresponding encoder, Encoderi. For
example, GAN0 generates fake celebrity faces from fake hairstyle features, which is
the inverse of the Encoder0 process.

Each GANi uses a latent code, zi, that conditions its generator output. For example,
the latent code, z0, can alter the hairstyle from curly to wavy. The stack of GANs
can also act as one to synthesize fake celebrity faces, completing the inverse process
of the whole Encoder. The latent code of each GANi, zi, can be used to alter specific
attributes of fake celebrity faces.

With the key idea of how the StackedGAN works, let's proceed to the next section
and see how it is implemented in tf.keras.

Implementation of StackedGAN in Keras
The detailed network model of a StackedGAN can be seen in Figure 6.2.2. For
conciseness, only two encoder-GANs per stack are shown. The figure may initially
appear complex, but it is just a repetition of an encoder-GAN, meaning that if we
understood how to train one encoder-GAN, the remainder utilize the same concept.

Disentangled Representation GANs

[194]

In this section, we assume that the StackedGAN is designed for MNIST digit
generation.

Figure 6.2.2: A StackedGAN comprises a stack of an encoder and a GAN. The encoder is pretrained to perform
classification. Generator1, G1, learns to synthesize f1f features conditioned on the fake label, yf, and latent code, z1f.

Generator0, G0, produces fake images using both the fake features, f1f and latent code, z0f

Chapter 6

[195]

StackedGAN starts with an Encoder. It could be a trained classifier that predicts
the correct labels. The intermediate features vector, f1r, is made available for
GAN training. For MNIST, we can use a CNN-based classifier similar to what we
discussed in Chapter 1, Introducing Advanced Deep Learning with Keras.

Figure 6.2.3 shows the Encoder and its network model implementation in tf.keras:

Figure 6.2.3: The encoder in StackedGAN is a simple CNN-based classifier

Listing 6.2.1 shows the tf.keras code for the preceding figure. It is similar to the
CNN-based classifier in Chapter 1, Introducing Advanced Deep Learning with Keras,
except that we use a Dense layer to extract the 256-dim feature. There are two
output models, Encoder0 and Encoder1. Both will be used to train the StackedGAN.

Listing 6.2.1: stackedgan-mnist-6.2.1.py

def build_encoder(inputs, num_labels=10, feature1_dim=256):
 """ Build the Classifier (Encoder) Model sub networks

 Two sub networks:
 1) Encoder0: Image to feature1 (intermediate latent feature)
 2) Encoder1: feature1 to labels

 # Arguments
 inputs (Layers): x - images, feature1 -
 feature1 layer output
 num_labels (int): number of class labels
 feature1_dim (int): feature1 dimensionality

Disentangled Representation GANs

[196]

 # Returns
 enc0, enc1 (Models): Description below
 """
 kernel_size = 3
 filters = 64

 x, feature1 = inputs
 # Encoder0 or enc0
 y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',
 activation='relu')(x)
 y = MaxPooling2D()(y)
 y = Conv2D(filters=filters,
 kernel_size=kernel_size,
 padding='same',
 activation='relu')(y)
 y = MaxPooling2D()(y)
 y = Flatten()(y)
 feature1_output = Dense(feature1_dim, activation='relu')(y)
 # Encoder0 or enc0: image (x or feature0) to feature1
 enc0 = Model(inputs=x, outputs=feature1_output, name="encoder0")

 # Encoder1 or enc1
 y = Dense(num_labels)(feature1)
 labels = Activation('softmax')(y)
 # Encoder1 or enc1: feature1 to class labels (feature2)
 enc1 = Model(inputs=feature1, outputs=labels, name="encoder1")

 # return both enc0 and enc1
 return enc0, enc1

The Encoder0 output, f1r, is the 256-dim feature vector that we want Generator1 to learn
to synthesize. It is available as an auxiliary output of Encoder0, E0. The overall Encoder
is trained to classify MNIST digits, xr. The correct labels, yr, are predicted by Encoder1,
E1. In the process, the intermediate set of features, f1r, is learned and made available
for Generator0 training. Subscript r is used to emphasize and distinguish real data
from fake data when the GAN is trained against this encoder.

Chapter 6

[197]

Given that the Encoder inputs (xr) intermediate features (f1r) and labels (yr), each
GAN is trained in the usual discriminator–adversarial manner. The loss functions
are given by Equation 6.2.1 to Equation 6.2.5 in Table 6.2.1. Equation 6.2.1 and Equation
6.2.2 are the usual loss functions of the generic GAN. StackedGAN has two
additional loss functions, Conditional and Entropy.

Network Loss Functions Number
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛)))

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛))

4.1.1

4.1.5

StackedGAN ℒ𝑖𝑖
(𝐷𝐷) = −𝔼𝔼𝑓𝑓𝑖𝑖~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝒟𝒟(𝑓𝑓𝑖𝑖) − 𝔼𝔼𝑓𝑓𝑖𝑖+1~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑧𝑧𝑖𝑖 log (1 − 𝒟𝒟(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖)))

ℒ𝑖𝑖
(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 = −𝔼𝔼𝑓𝑓𝑖𝑖+1~𝑝𝑝𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎, 𝑧𝑧𝑖𝑖 log 𝒟𝒟(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖))

ℒ𝑖𝑖
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ‖𝐸𝐸𝑖𝑖(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖)), 𝑓𝑓𝑖𝑖‖2

ℒ𝑖𝑖
(𝐺𝐺)𝑒𝑒𝑒𝑒𝑒𝑒 = ‖𝒬𝒬𝑖𝑖(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖)), 𝑧𝑧𝑖𝑖‖2

ℒ𝑖𝑖
(𝐺𝐺) = 𝜆𝜆1ℒ𝑖𝑖

(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆2ℒ𝑖𝑖
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 + 𝜆𝜆3ℒ𝑖𝑖

(𝐺𝐺)𝑒𝑒𝑐𝑐𝑒𝑒

where 𝜆𝜆1, 𝜆𝜆2, 𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆3 are weights and i = Encoder and GAN
id

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Table 6.2.1: A comparison between the loss functions of GAN and StackedGAN. ~pdata means sampling from
the corresponding encoder data (input, feature, or output)

The conditional loss function, ℒ𝑖𝑖
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in Equation 6.2.3, ensures that the generator

does not ignore the input, fi+1, when synthesizing the output, fi, from the input
noise code, zi. The encoder, Encoderi, must be able to recover the generator input
by inverting the process of the generator, Generatori. The difference between the
generator input and the recovered input using the encoder is measured by L2 or
Euclidean distance (mean squared error (MSE)).

Disentangled Representation GANs

[198]

Figure 6.2.4 shows the network elements involved in the computation of ℒ0
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 :

Figure 6.2.4: A simpler version of Figure 6.2.3 showing only the network elements involved in the computation

of ℒ0
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

The conditional loss function, however, introduces a new problem. The generator
ignores the input noise code, zi and simply relies on fi+1. Entropy loss function,
ℒ𝑖𝑖
(𝐺𝐺)𝑒𝑒𝑒𝑒𝑒𝑒 in Equation 6.2.4, ensures that the generator does not ignore the noise code,

zi. The Q network recovers the noise code from the output of the generator. The
difference between the recovered noise and the input noise is also measured by L2
or Euclidean distance (MSE).

Figure 6.2.5 shows the network elements involved in the computation of ℒ0
(𝐺𝐺)𝑒𝑒𝑒𝑒𝑡𝑡 :

Chapter 6

[199]

Figure 6.2.5: A simpler version of Figure 6.2.3 only showing us the network elements involved in the
computation of ℒ0

(𝐺𝐺)𝑒𝑒𝑒𝑒𝑒𝑒

The last loss function is similar to the usual GAN loss. It comprises discriminator
loss, ℒ𝑖𝑖

(𝐷𝐷) , and generator (through adversarial) loss, ℒ𝑖𝑖
(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 . Figure 6.2.6 shows the

elements involved in the GAN loss.

Figure 6.2.6: A simpler version of Figure 6.2.3 showing only the network elements involved in the computation

of ℒ𝑖𝑖
(𝐷𝐷) and ℒ0

(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎

Disentangled Representation GANs

[200]

In Equation 6.2.5, the weighted sum of the three generator loss functions is the final
generator loss function. In the Keras code that we will present, all the weights are
set to 1.0, except for the entropy loss, which is set to 10.0. In Equation 6.2.1 to Equation
6.2.5, i refers to the encoder and GAN group ID or level. In the original paper, the
network is first trained independently and then jointly. During independent training,
the encoder is trained first. During joint training, both real and fake data are used.

The implementation of the StackedGAN generator and discriminator in tf.keras
requires few changes to provide auxiliary points to access the intermediate features.
Figure 6.2.7 shows the generator tf.keras model.:

Figure 6.2.7: A StackedGAN generator model in Keras

Chapter 6

[201]

Listing 6.2.2 illustrates the function that builds two generators (gen0 and gen1)
corresponding to Generator0 and Generator1. The gen1 generator is made of three
Dense layers with labels and the noise code z1f as inputs. The third layer generates
the fake f1f feature. The gen0 generator is similar to other GAN generators that we've
presented and can be instantiated using the generator builder in gan.py:

gen0: feature1 + z0 to feature0 (image)
gen0 = gan.generator(feature1, image_size, codes=z0)

The gen0 input is f1 features and the noise code z0. The output is the generated fake
image, xf:

Listing 6.2.2: stackedgan-mnist-6.2.1.py

def build_generator(latent_codes, image_size, feature1_dim=256):
 """Build Generator Model sub networks

 Two sub networks: 1) Class and noise to feature1
 (intermediate feature)
 2) feature1 to image

 # Arguments
 latent_codes (Layers): dicrete code (labels),
 noise and feature1 features
 image_size (int): Target size of one side
 (assuming square image)
 feature1_dim (int): feature1 dimensionality

 # Returns
 gen0, gen1 (Models): Description below
 """

 # Latent codes and network parameters
 labels, z0, z1, feature1 = latent_codes
 # image_resize = image_size // 4
 # kernel_size = 5
 # layer_filters = [128, 64, 32, 1]

 # gen1 inputs
 inputs = [labels, z1] # 10 + 50 = 62-dim
 x = concatenate(inputs, axis=1)
 x = Dense(512, activation='relu')(x)
 x = BatchNormalization()(x)
 x = Dense(512, activation='relu')(x)
 x = BatchNormalization()(x)

Disentangled Representation GANs

[202]

 fake_feature1 = Dense(feature1_dim, activation='relu')(x)
 # gen1: classes and noise (feature2 + z1) to feature1
 gen1 = Model(inputs, fake_feature1, name='gen1')

 # gen0: feature1 + z0 to feature0 (image)
 gen0 = gan.generator(feature1, image_size, codes=z0)

 return gen0, gen1

Figure 6.2.8 shows the discriminator tf.keras model:

Figure 6.2.8: A StackedGAN discriminator model in Keras

We provide the functions to build Discriminator0 and Discriminator1 (dis0 and dis1).
The dis0 discriminator is similar to a GAN discriminator, except for the feature
vector input and the auxiliary network Q0 that recovers z0. The builder function in
gan.py is used to create dis0:

dis0 = gan.discriminator(inputs, num_codes=z_dim)

The dis1 discriminator is made of a three-layer MLP, as shown in Listing 6.2.3. The
last layer discriminates between the real and fake f1. Q1 network shares the first two
layers of dis1. Its third layer recovers z1.

Chapter 6

[203]

Listing 6.2.3: stackedgan-mnist-6.2.1.py

def build_discriminator(inputs, z_dim=50):
 """Build Discriminator 1 Model

 Classifies feature1 (features) as real/fake image and recovers
 the input noise or latent code (by minimizing entropy loss)

 # Arguments
 inputs (Layer): feature1
 z_dim (int): noise dimensionality

 # Returns
 dis1 (Model): feature1 as real/fake and recovered latent code
 """

 # input is 256-dim feature1
 x = Dense(256, activation='relu')(inputs)
 x = Dense(256, activation='relu')(x)

 # first output is probability that feature1 is real
 f1_source = Dense(1)(x)
 f1_source = Activation('sigmoid',
 name='feature1_source')(f1_source)

 # z1 reonstruction (Q1 network)
 z1_recon = Dense(z_dim)(x)
 z1_recon = Activation('tanh', name='z1')(z1_recon)

 discriminator_outputs = [f1_source, z1_recon]
 dis1 = Model(inputs, discriminator_outputs, name='dis1')
 return dis1

With all builder functions available, StackedGAN is assembled in Listing 6.2.4.
Before training StackedGAN, the encoder is pretrained. Note that we already
incorporated the three generator loss functions (adversarial, conditional, and
entropy) in the adversarial model training. The Q network shares some common
layers with the discriminator model. Therefore, its loss function is also incorporated
in the discriminator model training.

Listing 6.2.4: stackedgan-mnist-6.2.1.py

def build_and_train_models():
 """Load the dataset, build StackedGAN discriminator,
 generator, and adversarial models.

Disentangled Representation GANs

[204]

 Call the StackedGAN train routine.
 """

 # load MNIST dataset
 (x_train, y_train), (x_test, y_test) = mnist.load_data()

 # reshape and normalize images
 image_size = x_train.shape[1]
 x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
 x_train = x_train.astype('float32') / 255

 x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
 x_test = x_test.astype('float32') / 255

 # number of labels
 num_labels = len(np.unique(y_train))
 # to one-hot vector
 y_train = to_categorical(y_train)
 y_test = to_categorical(y_test)

 model_name = "stackedgan_mnist"
 # network parameters
 batch_size = 64
 train_steps = 10000
 lr = 2e-4
 decay = 6e-8
 input_shape = (image_size, image_size, 1)
 label_shape = (num_labels,)
 z_dim = 50
 z_shape = (z_dim,)
 feature1_dim = 256
 feature1_shape = (feature1_dim,)

 # build discriminator 0 and Q network 0 models
 inputs = Input(shape=input_shape, name='discriminator0_input')
 dis0 = gan.discriminator(inputs, num_codes=z_dim)
 # [1] uses Adam, but discriminator converges easily with RMSprop
 optimizer = RMSprop(lr=lr, decay=decay)
 # loss fuctions: 1) probability image is real (adversarial0 loss)
 # 2) MSE z0 recon loss (Q0 network loss or entropy0 loss)
 loss = ['binary_crossentropy', 'mse']
 loss_weights = [1.0, 10.0]
 dis0.compile(loss=loss,
 loss_weights=loss_weights,

Chapter 6

[205]

 optimizer=optimizer,
 metrics=['accuracy'])
 dis0.summary() # image discriminator, z0 estimator

 # build discriminator 1 and Q network 1 models
 input_shape = (feature1_dim,)
 inputs = Input(shape=input_shape, name='discriminator1_input')
 dis1 = build_discriminator(inputs, z_dim=z_dim)
 # loss fuctions: 1) probability feature1 is real
 # (adversarial1 loss)
 # 2) MSE z1 recon loss (Q1 network loss or entropy1 loss)
 loss = ['binary_crossentropy', 'mse']
 loss_weights = [1.0, 1.0]
 dis1.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 dis1.summary() # feature1 discriminator, z1 estimator

 # build generator models
 feature1 = Input(shape=feature1_shape, name='feature1_input')
 labels = Input(shape=label_shape, name='labels')
 z1 = Input(shape=z_shape, name="z1_input")
 z0 = Input(shape=z_shape, name="z0_input")
 latent_codes = (labels, z0, z1, feature1)
 gen0, gen1 = build_generator(latent_codes, image_size)
 gen0.summary() # image generator
 gen1.summary() # feature1 generator

 # build encoder models
 input_shape = (image_size, image_size, 1)
 inputs = Input(shape=input_shape, name='encoder_input')
 enc0, enc1 = build_encoder((inputs, feature1), num_labels)
 enc0.summary() # image to feature1 encoder
 enc1.summary() # feature1 to labels encoder (classifier)
 encoder = Model(inputs, enc1(enc0(inputs)))
 encoder.summary() # image to labels encoder (classifier)

 data = (x_train, y_train), (x_test, y_test)
 train_encoder(encoder, data, model_name=model_name)

 # build adversarial0 model =
 # generator0 + discriminator0 + encoder0
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)

Disentangled Representation GANs

[206]

 # encoder0 weights frozen
 enc0.trainable = False
 # discriminator0 weights frozen
 dis0.trainable = False
 gen0_inputs = [feature1, z0]
 gen0_outputs = gen0(gen0_inputs)
 adv0_outputs = dis0(gen0_outputs) + [enc0(gen0_outputs)]
 # feature1 + z0 to prob feature1 is
 # real + z0 recon + feature0/image recon
 adv0 = Model(gen0_inputs, adv0_outputs, name="adv0")
 # loss functions: 1) prob feature1 is real (adversarial0 loss)
 # 2) Q network 0 loss (entropy0 loss)
 # 3) conditional0 loss
 loss = ['binary_crossentropy', 'mse', 'mse']
 loss_weights = [1.0, 10.0, 1.0]
 adv0.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 adv0.summary()

 # build adversarial1 model =
 # generator1 + discriminator1 + encoder1
 # encoder1 weights frozen
 enc1.trainable = False
 # discriminator1 weights frozen
 dis1.trainable = False
 gen1_inputs = [labels, z1]
 gen1_outputs = gen1(gen1_inputs)
 adv1_outputs = dis1(gen1_outputs) + [enc1(gen1_outputs)]
 # labels + z1 to prob labels are real + z1 recon + feature1 recon
 adv1 = Model(gen1_inputs, adv1_outputs, name="adv1")
 # loss functions: 1) prob labels are real (adversarial1 loss)
 # 2) Q network 1 loss (entropy1 loss)
 # 3) conditional1 loss (classifier error)
 loss_weights = [1.0, 1.0, 1.0]
 loss = ['binary_crossentropy',
 'mse',
 'categorical_crossentropy']
 adv1.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 adv1.summary()

Chapter 6

[207]

 # train discriminator and adversarial networks
 models = (enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1)
 params = (batch_size, train_steps, num_labels, z_dim, model_name)
 train(models, data, params)

Finally, the training function bears a resemblance to a typical GAN training, except
that we only train one GAN at a time (that is, GAN1 and then GAN0). The code is
shown in Listing 6.2.5. It's worth noting that the training sequence is:

1. Discriminator1 and Q1 networks by minimizing the discriminator and entropy
losses

2. Discriminator0 and Q0 networks by minimizing the discriminator and entropy
losses

3. Adversarial1 network by minimizing the adversarial, entropy, and conditional
losses

4. Adversarial0 network by minimizing the adversarial, entropy, and conditional
losses

Listing 6.2.5: stackedgan-mnist-6.2.1.py

def train(models, data, params):
 """Train the discriminator and adversarial Networks

 Alternately train discriminator and adversarial networks by batch.
 Discriminator is trained first with real and fake images,
 corresponding one-hot labels and latent codes.
 Adversarial is trained next with fake images pretending
 to be real, corresponding one-hot labels and latent codes.
 Generate sample images per save_interval.

 # Arguments
 models (Models): Encoder, Generator, Discriminator,
 Adversarial models
 data (tuple): x_train, y_train data
 params (tuple): Network parameters

 """
 # the StackedGAN and Encoder models
 enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1 = models
 # network parameters
 batch_size, train_steps, num_labels, z_dim, model_name = params
 # train dataset

Disentangled Representation GANs

[208]

 (x_train, y_train), (_, _) = data
 # the generator image is saved every 500 steps
 save_interval = 500

 # label and noise codes for generator testing
 z0 = np.random.normal(scale=0.5, size=[16, z_dim])
 z1 = np.random.normal(scale=0.5, size=[16, z_dim])
 noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
 noise_params = [noise_class, z0, z1]
 # number of elements in train dataset
 train_size = x_train.shape[0]
 print(model_name,
 "Labels for generated images: ",
 np.argmax(noise_class, axis=1))

 for i in range(train_steps):
 # train the discriminator1 for 1 batch
 # 1 batch of real (label=1.0) and fake feature1 (label=0.0)
 # randomly pick real images from dataset
 rand_indexes = np.random.randint(0,
 train_size,
 size=batch_size)
 real_images = x_train[rand_indexes]
 # real feature1 from encoder0 output
 real_feature1 = enc0.predict(real_images)
 # generate random 50-dim z1 latent code
 real_z1 = np.random.normal(scale=0.5,
 size=[batch_size, z_dim])
 # real labels from dataset
 real_labels = y_train[rand_indexes]

 # generate fake feature1 using generator1 from
 # real labels and 50-dim z1 latent code
 fake_z1 = np.random.normal(scale=0.5,
 size=[batch_size, z_dim])
 fake_feature1 = gen1.predict([real_labels, fake_z1])

 # real + fake data
 feature1 = np.concatenate((real_feature1, fake_feature1))
 z1 = np.concatenate((fake_z1, fake_z1))

 # label 1st half as real and 2nd half as fake
 y = np.ones([2 * batch_size, 1])
 y[batch_size:, :] = 0

Chapter 6

[209]

 # train discriminator1 to classify feature1 as
 # real/fake and recover
 # latent code (z1). real = from encoder1,
 # fake = from genenerator1
 # joint training using discriminator part of
 # advserial1 loss and entropy1 loss
 metrics = dis1.train_on_batch(feature1, [y, z1])
 # log the overall loss only
 log = "%d: [dis1_loss: %f]" % (i, metrics[0])

 # train the discriminator0 for 1 batch
 # 1 batch of real (label=1.0) and fake images (label=0.0)
 # generate random 50-dim z0 latent code
 fake_z0 = np.random.normal(scale=0.5, size=[batch_size, z_
dim])
 # generate fake images from real feature1 and fake z0
 fake_images = gen0.predict([real_feature1, fake_z0])

 # real + fake data
 x = np.concatenate((real_images, fake_images))
 z0 = np.concatenate((fake_z0, fake_z0))

 # train discriminator0 to classify image
 # as real/fake and recover latent code (z0)
 # joint training using discriminator part of advserial0 loss
 # and entropy0 loss
 metrics = dis0.train_on_batch(x, [y, z0])
 # log the overall loss only (use dis0.metrics_names)
 log = "%s [dis0_loss: %f]" % (log, metrics[0])

 # adversarial training
 # generate fake z1, labels
 fake_z1 = np.random.normal(scale=0.5,
 size=[batch_size, z_dim])
 # input to generator1 is sampling fr real labels and
 # 50-dim z1 latent code
 gen1_inputs = [real_labels, fake_z1]

 # label fake feature1 as real
 y = np.ones([batch_size, 1])

 # train generator1 (thru adversarial) by fooling i

Disentangled Representation GANs

[210]

 # the discriminator
 # and approximating encoder1 feature1 generator
 # joint training: adversarial1, entropy1, conditional1
 metrics = adv1.train_on_batch(gen1_inputs,
 [y, fake_z1, real_labels])
 fmt = "%s [adv1_loss: %f, enc1_acc: %f]"
 # log the overall loss and classification accuracy
 log = fmt % (log, metrics[0], metrics[6])

 # input to generator0 is real feature1 and
 # 50-dim z0 latent code
 fake_z0 = np.random.normal(scale=0.5,
 size=[batch_size, z_dim])
 gen0_inputs = [real_feature1, fake_z0]

 # train generator0 (thru adversarial) by fooling
 # the discriminator and approximating encoder1 imag
 # source generator joint training:
 # adversarial0, entropy0, conditional0
 metrics = adv0.train_on_batch(gen0_inputs,
 [y, fake_z0, real_feature1])
 # log the overall loss only
 log = "%s [adv0_loss: %f]" % (log, metrics[0])

 print(log)
 if (i + 1) % save_interval == 0:
 generators = (gen0, gen1)
 plot_images(generators,
 noise_params=noise_params,
 show=False,
 step=(i + 1),
 model_name=model_name)

 # save the modelis after training generator0 & 1
 # the trained generator can be reloaded for
 # future MNIST digit generation
 gen1.save(model_name + "-gen1.h5")
 gen0.save(model_name + "-gen0.h5")

Chapter 6

[211]

The code implementation of StackedGAN in tf.keras is now complete. After
training, the generator outputs can be evaluated to examine whether certain
attributes of synthesized MNIST digits can be controlled in a similar manner
to what we did in InfoGAN.

Generator outputs of StackedGAN
After training the StackedGAN for 10,000 steps, the Generator0 and Generator1 models
are saved on files. Stacked together, Generator0 and Generator1 can synthesize fake
images conditioned on label and noise codes, z0 and z1.

The StackedGAN generator can be qualitatively validated by:

1. Varying the discrete labels from 0 to 9 with both noise codes, z0 and z1
sampled from a normal distribution with a mean of 0.5 and a standard
deviation of 1.0. The results are shown in Figure 6.2.9. We're able to see
that the StackedGAN discrete code can control the digits produced by the
generator:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --digit=0

 to

python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --digit=9

Disentangled Representation GANs

[212]

Figure 6.2.9: Images generated by StackedGAN as the discrete code is varied from 0 to 9. Both z0 and z1 have
been sampled from a normal distribution with a mean of 0 and a standard deviation of 0.5

2. Varying the first noise code, z0, as a constant vector from -4.0 to 4.0 for digits
0 to 9 is shown as follows. The second noise code, z1, is set to a zero vector.
Figure 6.2.10 shows that the first noise code controls the thickness of the digit.
For example, for digit 8:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 --p0

--digit=8

Chapter 6

[213]

Figure 6.2.10: Images generated by using a StackedGAN as the first noise code, z0, varies from a constant vector
-4.0 to 4.0 for digits 0 to 9. z0 appears to control the thickness of each digit

3. Varying the second noise code, z1, as a constant vector from -1.0 to 1.0 for
digits 0 to 9 is shown as follows. The first noise code, z0, is set to a zero vector.
Figure 6.2.11 shows that the second noise code controls the rotation (tilt) and,
to a certain extent, the thickness of the digit. For example, for digit 8:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 --p1

--digit=8

Disentangled Representation GANs

[214]

Figure 6.2.11: The images generated by StackedGAN as the second noise code, z1, varies from a constant vector
-1.0 to 1.0 for digits 0 to 9. z1 appears to control the rotation (tilt) and the thickness of stroke of each digit

Figure 6.2.9 to Figure 6.2.11 demonstrate that the StackedGAN has provided
additional control in terms of the attributes of the generator outputs. The control
and attributes are (label, which digit), (z

0
, digit thickness), and (z

1
, digit tilt). From

this example, there are other possible experiments that we can control, such as:

• Increasing the number of elements in the stack from the current number of 2
• Decreasing the dimension of codes z0 and z1, like in InfoGAN

Figure 6.2.12 shows the differences between the latent codes of InfoGAN and
StackedGAN:

Figure 6.2.12: Latent representations for different GANs

Chapter 6

[215]

The basic idea of disentangling codes is to put a constraint on the loss functions
such that only specific attributes are affected by a code. Structure-wise, InfoGAN is
easier to implement when compared to StackedGAN. InfoGAN is also faster to train.

4. Conclusion
In this chapter, we've discussed how to disentangle the latent representations of
GANs. Earlier on in the chapter, we discussed how InfoGAN maximizes the mutual
information in order to force the generator to learn disentangled latent vectors. In
the MNIST dataset example, the InfoGAN uses three representations and a noise
code as inputs. The noise represents the rest of the attributes in the form of an
entangled representation. StackedGAN approaches the problem in a different way.
It uses a stack of encoder-GANs to learn how to synthesize fake features and images.
The encoder is first trained to provide a dataset of features. Then, the encoder-GANs
are trained jointly to learn how to use the noise code to control attributes of the
generator output.

In the next chapter, we will embark on a new type of GAN that is able to generate
new data in another domain. For example, given an image of a horse, the GAN
can perform an automatic transformation to an image of a zebra. The interesting
feature of this type of GAN is that it can be trained without supervision and does
not require paired sample data.

5. References
1. Xi Chen et al.: InfoGAN: Interpretable Representation Learning by Information

Maximizing Generative Adversarial Nets. Advances in Neural Information
Processing Systems, 2016 (http://papers.nips.cc/paper/6399-
infogan-interpretable-representation-learning-by-information-
maximizing-generative-adversarial-nets.pdf).

2. Xun Huang et al. Stacked Generative Adversarial Networks. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Vol. 2, 2017(http://
openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_
Generative_Adversarial_CVPR_2017_paper.pdf).

http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf

[217]

7
Cross-Domain GANs

In computer vision, computer graphics, and image processing, a number of tasks
involve translating an image from one form to another. The colorization of grayscale
images, converting satellite images to maps, changing the artwork style of one artist
to another, making night-time images into daytime, and summer photos to winter,
are just a few examples. These tasks are referred to as cross-domain transfer and
will be the focus of this chapter. An image in the source domain is transferred to
a target domain, resulting in a new translated image.

A cross-domain transfer has a number of practical applications in the real world.
As an example, in autonomous driving research, collecting road-scene driving data
is both time-consuming and expensive. In order to cover as many scene variations
as possible in that example, the roads would be traversed during different weather
conditions, seasons, and times, giving us a large and varied amount of data. With
the use of a cross-domain transfer, it's possible to generate new synthetic scenes that
look real by translating existing images. For example, we may just need to collect
road scenes in the summer from one area and gather road scenes in the winter from
another place. Then, we can transform the summer images to winter and the winter
images to summer. In this case, it reduces the number of tasks having to be done
by half.

The generation of realistic synthesized images is an area that GANs excel at.
Therefore, cross-domain translation is one of the applications of GANs. In this
chapter, we're going to focus on a popular cross-domain GAN algorithm called
CycleGAN [2]. Unlike other cross-domain transfer algorithms, such as a pix2pix [3],
CycleGAN does not require aligned training images to work. In aligned images,
the training data should be a pair of images made up of the source image and its
corresponding target image; for example, a satellite image and the corresponding
map derived from this image.

Cross-Domain GANs

[218]

CycleGAN only requires the satellite data images and maps. The maps may be from
other satellite data and not necessarily previously generated from the training data.

In this chapter, we will explore the following:

• The principles of CycleGAN, including its implementation in tf.keras
• Example applications of CycleGAN, including the colorization of grayscale

images using the CIFAR10 dataset and style transfer as applied to MNIST
digits and Street View House Numbers (SVHN) [1] datasets

Let's begin by talking about the principles behind CycleGAN.

1. Principles of CycleGAN
Translating an image from one domain to another is a common task in computer
vision, computer graphics, and image processing. Figure 7.1.1 shows edge detection,
which is a common image translation task:

Figure 7.1.1: Example of an aligned image pair: left, original image, and right, transformed image
using a Canny edge detector. The original photo was taken by the author.

In this example, we can consider the real photo (left) as an image in the source
domain and the edge-detected photo (right) as a sample in the target domain. There
are many other cross-domain translation procedures that have practical applications,
such as:

• Satellite image to map
• Face image to emoji, caricature, or anime

Chapter 7

[219]

• Body image to an avatar
• Colorization of grayscale photos
• Medical scan to a real photo
• Real photo to an artist's painting

There are many more examples of this in different fields. In computer vision and
image processing, for example, we can perform the translation by inventing an
algorithm that extracts features from the source image to translate it into the target
image. The Canny edge operator is an example of such an algorithm. However,
in many cases, the translation is very complex to hand-engineer, such that it is
almost impossible to find a suitable algorithm. Both the source and target domain
distributions are high-dimensional and complex.

A workaround on the image translation problem is to use deep learning techniques.
If we have a sufficiently large dataset from both the source and target domains, we
can train a neural network to model the translation. Since the images in the target
domain must be automatically generated given a source image, they must look like
real samples from the target domain. GANs are a suitable network for such cross-
domain tasks. The pix2pix [3] algorithm is an example of a cross-domain algorithm.

The pix2pix algorithm bears a resemblance to Conditional GAN (CGAN) [4] that
we discussed in Chapter 4, Generative Adversarial Networks (GANs). We can recall that
in CGAN, on top of the noise input, z, a condition such as of a one-hot vector
constrains the generator's output. For example, in the MNIST digit, if we want the
generator to output the digit 8, the condition is the one-hot vector [0, 0, 0, 0, 0, 0, 0,
0, 1, 0]. In pix2pix, the condition is the image to be translated. The generator's output
is the translated image. The pix2pix algorithm is trained by optimizing the CGAN
loss. To minimize blurring in the generated images,
the L1 loss is also included.

The main disadvantage of neural networks similar to pix2pix is that the training
input and output images must be aligned. Figure 7.1.1 is an example of an aligned
image pair. The sample target image is generated from the source. In most occasions,
aligned image pairs are not available or expensive to generate from the source
images, or we have no idea on how to generate the target image from the given
source image. What we have is sample data from the source and target domains.
Figure 7.1.2 is an example of data from the source domain (real photo) and the target
domain (Van Gogh's art style) on the same sunflower subject. The source and target
images are not necessarily aligned.

Cross-Domain GANs

[220]

Unlike pix2pix, CycleGAN learns image translation as long as there is a sufficient
amount of, and variation between, source and target data. No alignment is needed.
CycleGAN learns the source and target distributions and how to translate from
source to target distribution from given sample data. No supervision is needed.
In the context of Figure 7.1.2, we just need thousands of photos of real sunflowers
and thousands of photos of Van Gogh's paintings of sunflowers. After training the
CycleGAN, we're able to translate a photo of sunflowers to a Van Gogh painting:

Figure 7.1.2: Example of an image pair that is not aligned: on the left, a photo of real sunflowers along
University Avenue, University of the Philippines, and on the right, Sunflowers by Vincent Van Gogh

at the National Gallery, London, UK. Original photos were taken by the author.

The next question is: how do we build a model that can learn from unpaired data?
In the next section, we will build a CycleGAN that uses forward and backward cycle
GANs and a cycle consistency check to eliminate the need for paired input data.

Chapter 7

[221]

The CycleGAN model
Figure 7.1.3 shows the network model of the CycleGAN:

Figure 7.1.3: The CycleGAN model comprises four networks: Generator G,
Generator F, Discriminator Dy, and Discriminator Dx

Cross-Domain GANs

[222]

Let's discuss Figure 7.1.3 part by part. Let's first focus on the upper network, which
is the Forward Cycle GAN. As shown in Figure 7.1.4 below, the objective of the
Forward Cycle CycleGAN is to learn the function:

𝑦𝑦′ = 𝐺𝐺(𝑥𝑥) (Equation 7.1.1)

Figure 7.1.4: The CycleGAN Generator G of fake y

Equation 7.1.1 is simply the generator, G, of fake target data, 𝑦𝑦′ . It converts data from
the source domain, x, to the target domain, y.

To train the generator, we must build a GAN. This is the Forward Cycle GAN as
shown in Figure 7.1.5. This figure shows that it is like a typical GAN in Chapter 4,
Generative Adversarial Networks (GANs), made of a generator G and a discriminator
𝒟𝒟𝑦𝑦 that can be trained in the same adversarial manner. Learning is unsupervised
by capitalizing only on the available real images, x, in the source domain and real
images, y, in the target domain.

Figure 7.1.5: The CycleGAN Forward Cycle GAN

Chapter 7

[223]

Unlike regular GANs, CycleGAN imposes the cycle-consistency constraint as shown
in Figure 7.1.6. The forward cycle-consistency network ensures that the real source
data can be reconstructed from the fake target data:

𝑥𝑥′ = 𝐹𝐹(𝐺𝐺(𝑥𝑥)) (Equation 7.1.2)

Figure 7.1.6: The CycleGAN cycle consistency check

This is done by minimizing the forward cycle-consistency L1 loss:

 ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) [‖𝐹𝐹(𝐺𝐺(𝑥𝑥)) − 𝑥𝑥‖1] (Equation 7.1.3)

The cycle-consistency loss uses L1, or mean absolute error (MAE), since it generally
results in less blurry image reconstruction compared to L2, or mean squared error
(MSE).

The cycle consistency check implies that although we have transformed source data
x to domain y, the original features of x should remain intact in y and be recoverable.
The network F is just another generator that we will borrow from the backward cycle
GAN, as discussed next.

CycleGAN is symmetric. As shown in Figure 7.1.7, the Backward Cycle GAN is
identical to the Forward Cycle GAN, but with the roles of source data x and target
data y reversed. The source data is now y and the target data is now x. The roles of
generators G and F are also reversed. F is now the generator, while G recovers the
input. In the Forward Cycle GAN, the generator F was the network used to recover
the source data, while G was the generator.

Cross-Domain GANs

[224]

The objective of the Backward Cycle GAN generator is to synthesize:

 𝑥𝑥′ = 𝐹𝐹(𝑦𝑦) (Equation 7.1.2)

Figure 7.1.7: The CycleGAN Backward Cycle GAN

This is done by training the Backward Cycle GAN in an adversarial manner. The
objective is for the generator F to learn how to fool the discriminator, 𝒟𝒟𝑥𝑥 .

Furthermore, there is also an analogous backward cycle consistency imposed to
recover the original source, y:

 𝑦𝑦′ = 𝐺𝐺(𝐹𝐹(𝑦𝑦)) (Equation 7.1.4)

This is done by minimizing the backward cycle-consistency L1 loss:

 ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑏𝑏𝑐𝑐𝑏𝑏 = 𝔼𝔼𝑐𝑐~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐) [‖𝐺𝐺(𝐹𝐹(𝑦𝑦)) − 𝑦𝑦‖1] (Equation 7.1.5)

In summary, the ultimate objective of CycleGAN is for the generator G to learn how
to synthesize fake target data, 𝑦𝑦′ , that can fool the discriminator, 𝒟𝒟𝑦𝑦 , in the forward
cycle. Since the network is symmetric, CycleGAN also wants the generator F to learn
how to synthesize fake source data, 𝑥𝑥′ , that can fool the discriminator, 𝒟𝒟𝑥𝑥 , in the
backward cycle. With this in mind, we can now put together all the loss functions.

Let's start with the GAN part. Inspired by the better perceptual quality of Least
Squares GAN (LSGAN) [5], as described in Chapter 5, Improved GANs, CycleGAN
also uses MSE for the discriminator and generator losses. Recall that the difference
between LSGAN and the original GAN entails use of the MSE loss instead of a
binary cross-entropy loss.

Chapter 7

[225]

CycleGAN expresses the generator-discriminator loss functions as:

 ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)(𝒟𝒟𝑦𝑦(𝑦𝑦) − 1)2 + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)𝒟𝒟𝑦𝑦(𝐺𝐺(𝑥𝑥))2 (Equation 7.1.6)

 ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)(𝒟𝒟𝑦𝑦(𝐺𝐺(𝑥𝑥)) − 1)2 (Equation 7.1.7)

 ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)(𝒟𝒟𝑥𝑥(𝑥𝑥) − 1)2 + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)𝒟𝒟𝑥𝑥(𝐹𝐹(𝑦𝑦))2 (Equation 7.1.8)

 ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐺𝐺𝐴𝐴𝐴𝐴
(𝐺𝐺) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)(𝒟𝒟𝑥𝑥(𝐹𝐹(𝑦𝑦)) − 1)2 (Equation 7.1.9)

 ℒ𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) = ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺

(𝐷𝐷) + ℒ𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) (Equation 7.1.10)

 ℒ𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺) = ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺

(𝐺𝐺) + ℒ𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺) (Equation 7.1.11)

The second set of loss functions are the cycle-consistency losses, which can be
derived by summing up the contribution from the forward and backward GANs:

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑐𝑐𝑐𝑐𝑐𝑐 + ℒ𝑏𝑏𝑓𝑓𝑐𝑐𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑐𝑐𝑐𝑐𝑐𝑐

 ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) [‖𝐹𝐹(𝐺𝐺(𝑥𝑥)) − 𝑥𝑥‖1] + 𝔼𝔼𝑐𝑐~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐) [‖𝐺𝐺(𝐹𝐹(𝑦𝑦)) − 𝑦𝑦‖1] (Equation 7.1.12)

The total CycleGAN loss is:

 ℒ = 𝜆𝜆1ℒ𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜆𝜆2ℒ𝑐𝑐𝑐𝑐𝑐𝑐 (Equation 7.1.13)

CycleGAN recommends the following weight values, 𝜆𝜆1 = 1.0 and 𝜆𝜆2 = 10.0 , to give
more importance to the cyclic consistency check.

The training strategy is similar to the vanilla GAN. Algorithm 7.1.1 summarizes the
CycleGAN training procedure.

Algorithm 7.1.1: CycleGAN Training

Repeat for n training steps:

1. Minimize ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) by training the forward-cycle discriminator using real

source and target data. A minibatch of real target data, y, is labeled 1.0. A
minibatch of fake target data, 𝑦𝑦′ = 𝐺𝐺(𝑥𝑥) , is labeled 0.0.

2. Minimize ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) by training the backward-cycle discriminator using

real source and target data. A minibatch of real source data, x, is labeled 1.0.
A minibatch of fake source data, 𝑥𝑥′ = 𝐹𝐹(𝑦𝑦) , is labeled 0.0.

Cross-Domain GANs

[226]

3. Minimize ℒ𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺) and ℒ𝑐𝑐𝑐𝑐𝑐𝑐 by training the forward-cycle and backward-cycle

generators in the adversarial networks. A minibatch of fake target data,
𝑦𝑦′ = 𝐺𝐺(𝑥𝑥) , is labeled 1.0. A minibatch of fake source data, 𝑥𝑥′ = 𝐹𝐹(𝑦𝑦) , is
labeled 1.0. The weights of the discriminators are frozen.

In neural-style transfer problems, the color composition may not be successfully
transferred from the source image to the fake target image. This problem is shown
in Figure 7.1.8:

Figure 7.1.8: During style transfer, the color composition may not be transferred successfully.
To address this issue, the identity loss is added to the total loss function

To address this problem, CycleGAN proposes to include the forward and backward-
cycle identity loss function:

 ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[‖𝐹𝐹(𝑥𝑥) − 𝑥𝑥‖1] + 𝔼𝔼𝑖𝑖~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)[‖𝐺𝐺(𝑦𝑦) − 𝑦𝑦‖1] (Equation 7.1.14)

The total CycleGAN loss becomes:

ℒ = 𝜆𝜆1ℒ𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜆𝜆2ℒ𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆3ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 (Equation 7.1.15)

where 𝜆𝜆3 = 0.5 . The identity loss is also optimized during adversarial training.
Figure 7.1.9 highlights the auxiliary network of CycleGAN implementing the identity
regularizer:

Chapter 7

[227]

Figure 7.1.9: The CycleGAN model with the identity regularizing network
as highlighted on the left side of the image

In the next section, we will implement CycleGAN in tf.keras.

Implementing CycleGAN using Keras
Let's tackle a simple problem that CycleGAN can address. In Chapter 3, Autoencoders,
we used an autoencoder to colorize grayscale images from the CIFAR10 dataset. We
can recall that the CIFAR10 dataset comprises 50,000 trained items of data and 10,000
test data samples of 32 x 32 RGB images belonging to 10 categories. We can convert
all color images into grayscale using rgb2gray (RGB), as discussed in Chapter 3,
Autoencoders.

Cross-Domain GANs

[228]

Following on from that, we can use the grayscale train images as source domain
images and the original color images as the target domain images. It's worth noting
that although the dataset is aligned, the input to our CycleGAN is a random sample
of color images and a random sample of grayscale images. Thus, our CycleGAN will
not see the training data as aligned. After training, we'll use the test grayscale images
to observe the performance of the CycleGAN.

As discussed in the previous sections, to implement the CycleGAN, we need to build
two generators and two discriminators. The generator of CycleGAN learns the latent
representation of the source input distribution and translates this representation into
target output distribution. This is exactly what autoencoders do. However, typical
autoencoders similar to the ones discussed in Chapter 3, Autoencoders, use an encoder
that downsamples the input until the bottleneck layer, at which point the process is
reversed in the decoder.

This structure is not suitable in some image translation problems since many low-
level features are shared between the encoder and decoder layers. For example, in
colorization problems, the form, structure, and edges of the grayscale image are the
same as in the color image. To circumvent this problem, the CycleGAN generators
use a U-Net [7] structure, as shown in Figure 7.1.10:

Figure 7.1.10: Implementation of the forward cycle generator G in Keras. The generator is a U-Network [7]
comprising an encoder and decoder.

Chapter 7

[229]

In a U-Net structure, the output of the encoder layer, en-i, is concatenated with the
output of the decoder layer, di, where n = 4 is the number of encoder/decoder layers
and i = 1, 2, and 3 are layer numbers that share information.

We should note that although the example uses n = 4, problems with a higher
input/ output dimensions may require a deeper encoder/decoder layer. The U-Net
structure enables a free flow of feature-level information between the encoder and
decoder.

An encoder layer is made of Instance Normalization(IN)-LeakyReLU-Conv2D,
while the decoder layer is made of IN-ReLU-Conv2D. The encoder/decoder layer
implementation is shown in Listing 7.1.1, while the generator implementation is
shown in Listing 7.1.2.

Instance Normalization (IN) is Batch Normalization (BN) per sample of data (that
is, IN is BN per image or per feature). In style transfer, it's important to normalize the
contrast per sample, and not per batch. IN is equivalent to contrast normalization.
Meanwhile, BN breaks contrast normalization.

Listing 7.1.1: cyclegan-7.1.1.py

def encoder_layer(inputs,
 filters=16,
 kernel_size=3,
 strides=2,
 activation='relu',
 instance_norm=True):
 """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
 IN is optional, LeakyReLU may be replaced by ReLU

 """

 conv = Conv2D(filters=filters,

The complete code is available on GitHub:

https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Remember to install tensorflow-addons before using IN:
$ pip install tensorflow-addons

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Cross-Domain GANs

[230]

 kernel_size=kernel_size,
 strides=strides,
 padding='same')

 x = inputs
 if instance_norm:
 x = InstanceNormalization(axis=3)(x)
 if activation == 'relu':
 x = Activation('relu')(x)
 else:
 x = LeakyReLU(alpha=0.2)(x)
 x = conv(x)
 return x

def decoder_layer(inputs,
 paired_inputs,
 filters=16,
 kernel_size=3,
 strides=2,
 activation='relu',
 instance_norm=True):
 """Builds a generic decoder layer made of Conv2D-IN-LeakyReLU
 IN is optional, LeakyReLU may be replaced by ReLU
 Arguments: (partial)
 inputs (tensor): the decoder layer input
 paired_inputs (tensor): the encoder layer output
 provided by U-Net skip connection &
 concatenated to inputs.

 """

 conv = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding='same')

 x = inputs
 if instance_norm:
 x = InstanceNormalization(axis=3)(x)
 if activation == 'relu':
 x = Activation('relu')(x)
 else:
 x = LeakyReLU(alpha=0.2)(x)

Chapter 7

[231]

 x = conv(x)
 x = concatenate([x, paired_inputs])
 return x

Moving on to the generator implementation:

Listing 7.1.2: cyclegan-7.1.1.py

Generator implementation in Keras:

def build_generator(input_shape,
 output_shape=None,
 kernel_size=3,
 name=None):
 """The generator is a U-Network made of a 4-layer encoder
 and a 4-layer decoder. Layer n-i is connected to layer i.

 Arguments:
 input_shape (tuple): input shape
 output_shape (tuple): output shape
 kernel_size (int): kernel size of encoder & decoder layers
 name (string): name assigned to generator model

 Returns:
 generator (Model):

 """

 inputs = Input(shape=input_shape)
 channels = int(output_shape[-1])
 e1 = encoder_layer(inputs,
 32,
 kernel_size=kernel_size,
 activation='leaky_relu',
 strides=1)
 e2 = encoder_layer(e1,
 64,
 activation='leaky_relu',
 kernel_size=kernel_size)
 e3 = encoder_layer(e2,
 128,
 activation='leaky_relu',
 kernel_size=kernel_size)
 e4 = encoder_layer(e3,
 256,
 activation='leaky_relu',
 kernel_size=kernel_size)

 d1 = decoder_layer(e4,

Cross-Domain GANs

[232]

 e3,
 128,
 kernel_size=kernel_size)
 d2 = decoder_layer(d1,
 e2,
 64,
 kernel_size=kernel_size)
 d3 = decoder_layer(d2,
 e1,
 32,
 kernel_size=kernel_size)
 outputs = Conv2DTranspose(channels,
 kernel_size=kernel_size,
 strides=1,
 activation='sigmoid',
 padding='same')(d3)

 generator = Model(inputs, outputs, name=name)

 return generator

The discriminator of CycleGAN is similar to a vanilla GAN discriminator. The input
image is downsampled several times (in this example, three times). The final layer is
a Dense (1) layer, which predicts the probability that the input is real. Each layer is
similar to the encoder layer of the generator except that no IN is used. However, in
large images, computing the image as real or fake with a single number turns out to
be parameter-inefficient and results in poor image quality for the generator.

The solution is to use PatchGAN [6], which divides the image into a grid of patches
and uses a grid of scalar values to predict the probability that the patches are real.
The comparison between the vanilla GAN discriminator and a 2 x 2 PatchGAN
discriminator is shown in Figure 7.1.11:

Figure 7.1.11: A comparison between GAN and PatchGAN discriminators

Chapter 7

[233]

In this example, the patches do not overlap and meet at their boundaries. However,
in general, patches may overlap.

We should note that PatchGAN is not introducing a new type of GAN in
CycleGAN. To improve the generated image quality, instead of having one output
to discriminate, we have four outputs to discriminate if we use a 2 x 2 PatchGAN.
There are no changes in the loss functions. Intuitively, this makes sense since the
whole image will look more real if every patch or section of the image looks real.

Figure 7.1.12 shows the discriminator network as implemented in tf.keras.
The illustration shows the discriminator determining the likelihood of the input
image or a patch being a color CIFAR10 image:

Figure 7.1.12: The target discriminator, Dy, implementation in tf.keras.
The PatchGAN discriminator is shown on the right

Since the output image is small at only 32 x 32 RGB, a single scalar representing that
the image is real is sufficient. However, we also evaluate the results when PatchGAN
is used. Listing 7.1.3 shows the function builder for the discriminator:

Listing 7.1.3: cyclegan-7.1.1.py

Discriminator implementation in tf.keras:

def build_discriminator(input_shape,

Cross-Domain GANs

[234]

 kernel_size=3,
 patchgan=True,
 name=None):
 """The discriminator is a 4-layer encoder that outputs either
 a 1-dim or a n x n-dim patch of probability that input is real

 Arguments:
 input_shape (tuple): input shape
 kernel_size (int): kernel size of decoder layers
 patchgan (bool): whether the output is a patch
 or just a 1-dim
 name (string): name assigned to discriminator model

 Returns:
 discriminator (Model):

 """

 inputs = Input(shape=input_shape)
 x = encoder_layer(inputs,
 32,
 kernel_size=kernel_size,
 activation='leaky_relu',
 instance_norm=False)
 x = encoder_layer(x,
 64,
 kernel_size=kernel_size,
 activation='leaky_relu',
 instance_norm=False)
 x = encoder_layer(x,
 128,
 kernel_size=kernel_size,
 activation='leaky_relu',
 instance_norm=False)
 x = encoder_layer(x,
 256,
 kernel_size=kernel_size,
 strides=1,
 activation='leaky_relu',
 instance_norm=False)

 # if patchgan=True use nxn-dim output of probability
 # else use 1-dim output of probability
 if patchgan:

Chapter 7

[235]

 x = LeakyReLU(alpha=0.2)(x)
 outputs = Conv2D(1,
 kernel_size=kernel_size,
 strides=2,
 padding='same')(x)
 else:
 x = Flatten()(x)
 x = Dense(1)(x)
 outputs = Activation('linear')(x)

 discriminator = Model(inputs, outputs, name=name)

 return discriminator

Using the generator and discriminator builders, we are now able to build the
CycleGAN. Listing 7.1.4 shows the builder function. In line with our discussion in
the previous section, two generators, g_source = F and g_target = G, and two
discriminators, d_source = Dx and d_target = Dy, are instantiated. The forward
cycle is 𝑥𝑥′ = 𝐹𝐹(𝐺𝐺(𝑥𝑥)) = reco_source = g_source(g_target(source_input)).
The backward cycle is 𝑦𝑦′ = 𝐺𝐺(𝐹𝐹(𝑦𝑦)) = reco_target = g_target(g_source
(target_input)).

The inputs to the adversarial model are the source and target data, while the outputs
are the outputs of 𝒟𝒟𝑥𝑥 and 𝒟𝒟𝑦𝑦 and the reconstructed inputs, 𝑥𝑥′ and 𝑦𝑦′ . The identity
network is not used in this example due to the difference between the number of
channels in the grayscale image and the color image. We use the recommended
loss weights of 𝜆𝜆1 = 1.0 and 𝜆𝜆2 = 10.0 for the GAN and cyclic consistency losses,
respectively. Similar to GANs in the previous chapters, we use RMSprop with a
learning rate of 2e-4 and a decay rate of 6e-8 for the optimizer of the discriminators.
The learning and decay rate for the adversarial is half of that of the discriminator's.

Listing 7.1.4: cyclegan-7.1.1.py

CycleGAN builder in tf.keras:

def build_cyclegan(shapes,
 source_name='source',
 target_name='target',
 kernel_size=3,
 patchgan=False,
 identity=False
):
 """Build the CycleGAN

Cross-Domain GANs

[236]

 1) Build target and source discriminators
 2) Build target and source generators
 3) Build the adversarial network

 Arguments:
 shapes (tuple): source and target shapes
 source_name (string): string to be appended on dis/gen models
 target_name (string): string to be appended on dis/gen models
 kernel_size (int): kernel size for the encoder/decoder
 or dis/gen models
 patchgan (bool): whether to use patchgan on discriminator
 identity (bool): whether to use identity loss

 Returns:
 (list): 2 generator, 2 discriminator,
 and 1 adversarial models

 """

 source_shape, target_shape = shapes
 lr = 2e-4
 decay = 6e-8
 gt_name = "gen_" + target_name
 gs_name = "gen_" + source_name
 dt_name = "dis_" + target_name
 ds_name = "dis_" + source_name

 # build target and source generators
 g_target = build_generator(source_shape,
 target_shape,
 kernel_size=kernel_size,
 name=gt_name)
 g_source = build_generator(target_shape,
 source_shape,
 kernel_size=kernel_size,
 name=gs_name)
 print('---- TARGET GENERATOR ----')
 g_target.summary()
 print('---- SOURCE GENERATOR ----')
 g_source.summary()

 # build target and source discriminators
 d_target = build_discriminator(target_shape,
 patchgan=patchgan,

Chapter 7

[237]

 kernel_size=kernel_size,
 name=dt_name)
 d_source = build_discriminator(source_shape,
 patchgan=patchgan,
 kernel_size=kernel_size,
 name=ds_name)
 print('---- TARGET DISCRIMINATOR ----')
 d_target.summary()
 print('---- SOURCE DISCRIMINATOR ----')
 d_source.summary()

 optimizer = RMSprop(lr=lr, decay=decay)
 d_target.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])
 d_source.compile(loss='mse',
 optimizer=optimizer,
 metrics=['accuracy'])

 d_target.trainable = False
 d_source.trainable = False

 # build the computational graph for the adversarial model
 # forward cycle network and target discriminator
 source_input = Input(shape=source_shape)
 fake_target = g_target(source_input)
 preal_target = d_target(fake_target)
 reco_source = g_source(fake_target)

 # backward cycle network and source discriminator
 target_input = Input(shape=target_shape)
 fake_source = g_source(target_input)
 preal_source = d_source(fake_source)
 reco_target = g_target(fake_source)

 # if we use identity loss, add 2 extra loss terms
 # and outputs
 if identity:
 iden_source = g_source(source_input)
 iden_target = g_target(target_input)
 loss = ['mse', 'mse', 'mae', 'mae', 'mae', 'mae']
 loss_weights = [1., 1., 10., 10., 0.5, 0.5]
 inputs = [source_input, target_input]
 outputs = [preal_source,

Cross-Domain GANs

[238]

 preal_target,
 reco_source,
 reco_target,
 iden_source,
 iden_target]
 else:
 loss = ['mse', 'mse', 'mae', 'mae']
 loss_weights = [1., 1., 10., 10.]
 inputs = [source_input, target_input]
 outputs = [preal_source,
 preal_target,
 reco_source,
 reco_target]

 # build adversarial model
 adv = Model(inputs, outputs, name='adversarial')
 optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
 adv.compile(loss=loss,
 loss_weights=loss_weights,
 optimizer=optimizer,
 metrics=['accuracy'])
 print('---- ADVERSARIAL NETWORK ----')
 adv.summary()

 return g_source, g_target, d_source, d_target, adv

We follow the training procedure that we can recall from Algorithm 7.1.1 in the
previous section. Listing 7.1.5 shows the CycleGAN training. The minor difference
between this training and the vanilla GAN is that there are two discriminators to be
optimized. However, there is only one adversarial model to optimize. For every 2,000
steps, the generators save the predicted source and target images. We'll use a batch
size of 32. We also tried a batch size of 1, but the output quality is almost the same
and takes a longer amount of time to train (43 ms/image for a batch size of 1 versus
3.6 ms/image for a batch size of 32 on an NVIDIA GTX 1060).

Listing 7.1.5: cyclegan-7.1.1.py

CycleGAN training routine in tf.keras:

def train_cyclegan(models,
 data,
 params,
 test_params,
 test_generator):
 """ Trains the CycleGAN.

Chapter 7

[239]

 1) Train the target discriminator
 2) Train the source discriminator
 3) Train the forward and backward cyles of
 adversarial networks

 Arguments:
 models (Models): Source/Target Discriminator/Generator,
 Adversarial Model
 data (tuple): source and target training data
 params (tuple): network parameters
 test_params (tuple): test parameters
 test_generator (function): used for generating
 predicted target and source images
 """

 # the models
 g_source, g_target, d_source, d_target, adv = models
 # network parameters
 batch_size, train_steps, patch, model_name = params
 # train dataset
 source_data, target_data, test_source_data, test_target_data\
 = data

 titles, dirs = test_params

 # the generator image is saved every 2000 steps
 save_interval = 2000
 target_size = target_data.shape[0]
 source_size = source_data.shape[0]

 # whether to use patchgan or not
 if patch > 1:
 d_patch = (patch, patch, 1)
 valid = np.ones((batch_size,) + d_patch)
 fake = np.zeros((batch_size,) + d_patch)
 else:
 valid = np.ones([batch_size, 1])
 fake = np.zeros([batch_size, 1])

 valid_fake = np.concatenate((valid, fake))
 start_time = datetime.datetime.now()

 for step in range(train_steps):

Cross-Domain GANs

[240]

 # sample a batch of real target data
 rand_indexes = np.random.randint(0,
 target_size,
 size=batch_size)
 real_target = target_data[rand_indexes]

 # sample a batch of real source data
 rand_indexes = np.random.randint(0,
 source_size,
 size=batch_size)
 real_source = source_data[rand_indexes]
 # generate a batch of fake target data fr real source data
 fake_target = g_target.predict(real_source)

 # combine real and fake into one batch
 x = np.concatenate((real_target, fake_target))
 # train the target discriminator using fake/real data
 metrics = d_target.train_on_batch(x, valid_fake)
 log = "%d: [d_target loss: %f]" % (step, metrics[0])

 # generate a batch of fake source data fr real target data
 fake_source = g_source.predict(real_target)
 x = np.concatenate((real_source, fake_source))
 # train the source discriminator using fake/real data
 metrics = d_source.train_on_batch(x, valid_fake)
 log = "%s [d_source loss: %f]" % (log, metrics[0])

 # train the adversarial network using forward and backward
 # cycles. the generated fake source and target
 # data attempts to trick the discriminators
 x = [real_source, real_target]
 y = [valid, valid, real_source, real_target]
 metrics = adv.train_on_batch(x, y)
 elapsed_time = datetime.datetime.now() - start_time
 fmt = "%s [adv loss: %f] [time: %s]"
 log = fmt % (log, metrics[0], elapsed_time)
 print(log)
 if (step + 1) % save_interval == 0:
 test_generator((g_source, g_target),
 (test_source_data, test_target_data),
 step=step+1,
 titles=titles,
 dirs=dirs,
 show=False)

Chapter 7

[241]

 # save the models after training the generators
 g_source.save(model_name + "-g_source.h5")
 g_target.save(model_name + "-g_target.h5")

Finally, before we can use the CycleGAN to build and train functions, we have
to perform some data preparation. The modules cifar10_utils.py and other_
utils.py load the CIFAR10 training and test data. Please refer to the source code for
details of these two files. After loading, the train and test images are converted to
grayscale to generate the source data and test source data.

Listing 7.1.6 shows how the CycleGAN is used to build and train a generator network
(g_target) for colorization of grayscale images. Since CycleGAN is symmetric, we
also build and train a second generator network (g_source) that converts from color
to grayscale. Two CycleGAN colorization networks were trained. The first uses
discriminators with a scalar output similar to vanilla GAN, while the second uses a 2
x 2 PatchGAN.

Listing 7.1.6: cyclegan-7.1.1.py

CycleGAN for colorization:

def graycifar10_cross_colorcifar10(g_models=None):
 """Build and train a CycleGAN that can do
 grayscale <--> color cifar10 images
 """

 model_name = 'cyclegan_cifar10'
 batch_size = 32
 train_steps = 100000
 patchgan = True
 kernel_size = 3
 postfix = ('%dp' % kernel_size) \
 if patchgan else ('%d' % kernel_size)

 data, shapes = cifar10_utils.load_data()
 source_data, _, test_source_data, test_target_data = data
 titles = ('CIFAR10 predicted source images.',
 'CIFAR10 predicted target images.',
 'CIFAR10 reconstructed source images.',
 'CIFAR10 reconstructed target images.')
 dirs = ('cifar10_source-%s' % postfix, \
 'cifar10_target-%s' % postfix)

 # generate predicted target(color) and source(gray) images

Cross-Domain GANs

[242]

 if g_models is not None:
 g_source, g_target = g_models
 other_utils.test_generator((g_source, g_target),
 (test_source_data, \
 test_target_data),
 step=0,
 titles=titles,
 dirs=dirs,
 show=True)
 return

 # build the cyclegan for cifar10 colorization
 models = build_cyclegan(shapes,
 "gray-%s" % postfix,
 "color-%s" % postfix,
 kernel_size=kernel_size,
 patchgan=patchgan)
 # patch size is divided by 2^n since we downscaled the input
 # in the discriminator by 2^n (ie. we use strides=2 n times)
 patch = int(source_data.shape[1] / 2**4) if patchgan else 1
 params = (batch_size, train_steps, patch, model_name)
 test_params = (titles, dirs)
 # train the cyclegan
 train_cyclegan(models,
 data,
 params,
 test_params,
 other_utils.test_generator)

In the next section, we will examine the generator outputs of CycleGAN for
colorization.

Generator outputs of CycleGAN
Figure 7.1.13 shows the colorization results of CycleGAN. The source images are
from the test dataset:

Chapter 7

[243]

Figure 7.1.13: Colorization using different techniques. Shown are the ground truth, colorization using
autoencoder (Chapter 3, Autoencoders,), colorization using CycleGAN with a vanilla GAN discriminator, and
colorization using CycleGAN with a PatchGAN discriminator. Best viewed in color. The original color photos

can be found on the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-
Learning- with-Keras/blob/master/chapter7-cross-domain-gan/README.md

For comparison, we show the ground truth and the colorization results using a plain
autoencoder described in Chapter 3, Autoencoders. Generally, all colorized images are
perceptually acceptable. Overall, it seems that each colorization technique has both
its own pros and cons. All colorization methods are not consistent with the right
color of the sky and vehicle.

Cross-Domain GANs

[244]

For example, the sky in the background of the plane (third row, second column)
is white. The autoencoder got it right, but the CycleGAN thinks it is light brown
or blue.

For the sixth row, sixth column, the boat on the dark sea had an overcast sky, but
was colorized with blue sky and blue sea by the autoencoder and blue sea and white
sky by CycleGAN without PatchGAN. Both predictions make sense in the real
world. Meanwhile, the prediction of CycleGAN with PatchGAN is similar to the
ground truth. On the second-to-last row and second column, no method was able
to predict the red color of the car. On animals, both flavors of CycleGAN have colors
close to the ground truth.

Since CycleGAN is symmetric, it also predicts the grayscale image given a color image.
Figure 7.1.14 shows the color to grayscale conversion performed by the two CycleGAN
variations. The target images are from the test dataset. Except for minor differences in
the grayscale shades of some images, the predictions are generally accurate.

Figure 7.1.14: Color (from Figure 7.1.9) to the grayscale conversion of CycleGAN

Chapter 7

[245]

To train the CycleGAN for colorization, the command is:

python3 cyclegan-7.1.1.py -c

The reader can run the image translation by using the pretrained models for
CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --cifar10_g_source=cyclegan_cifar10-g_source.h5

--cifar10_g_target=cyclegan_cifar10-g_target.h5

In this section, we demonstrated one practical application of CycleGAN on
colorization. In the next section, we will train a CycleGAN on more challenging
datasets. The source domain MNIST is drastically different from the target domain
SVHN dataset [1].

CycleGAN on MNIST and SVHN datasets
We're now going to tackle a more challenging problem. Suppose we use MNIST
digits in grayscale as our source data, and we want to borrow style from SVHN [1],
which is our target data. The sample data in each domain is shown in Figure 7.1.15:

Figure 7.1.15: Two different domains with data that are not aligned. The original color photo can be found on
the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/

blob/master/chapter7-cross-domain-gan/README.md

Cross-Domain GANs

[246]

We can reuse all the build and train functions for CycleGAN that were discussed in
the previous section to perform style transfer. The only difference is that we have to
add routines for loading MNIST and SVHN data. The SVHN dataset can be found
at http://ufldl.stanford.edu/housenumbers/.

We introduce the mnist_svhn_utils.py module to help us with this task. Listing
7.1.7 shows the initialization and training of the CycleGAN for cross-domain
transfer.

The CycleGAN structure is the same as in the previous section, except that we use
a kernel size of five since the two domains are drastically different.

Listing 7.1.7: cyclegan-7.1.1.py

CycleGAN for cross-domain style transfer between MNIST and SVHN:

def mnist_cross_svhn(g_models=None):
 """Build and train a CycleGAN that can do mnist <--> svhn
 """

 model_name = 'cyclegan_mnist_svhn'
 batch_size = 32
 train_steps = 100000
 patchgan = True
 kernel_size = 5
 postfix = ('%dp' % kernel_size) \
 if patchgan else ('%d' % kernel_size)

 data, shapes = mnist_svhn_utils.load_data()
 source_data, _, test_source_data, test_target_data = data
 titles = ('MNIST predicted source images.',
 'SVHN predicted target images.',
 'MNIST reconstructed source images.',
 'SVHN reconstructed target images.')
 dirs = ('mnist_source-%s' \
 % postfix, 'svhn_target-%s' % postfix)

http://ufldl.stanford.edu/housenumbers/.

Chapter 7

[247]

 # generate predicted target(svhn) and source(mnist) images
 if g_models is not None:
 g_source, g_target = g_models
 other_utils.test_generator((g_source, g_target),
 (test_source_data, \
 test_target_data),
 step=0,
 titles=titles,
 dirs=dirs,
 show=True)
 return

 # build the cyclegan for mnist cross svhn
 models = build_cyclegan(shapes,
 "mnist-%s" % postfix,
 "svhn-%s" % postfix,
 kernel_size=kernel_size,
 patchgan=patchgan)
 # patch size is divided by 2^n since we downscaled the input
 # in the discriminator by 2^n (ie. we use strides=2 n times)
 patch = int(source_data.shape[1] / 2**4) if patchgan else 1
 params = (batch_size, train_steps, patch, model_name)
 test_params = (titles, dirs)
 # train the cyclegan
 train_cyclegan(models,
 data,
 params,
 test_params,
 other_utils.test_generator)

The results for transferring the MNIST from the test dataset to SVHN are shown in
Figure 7.1.16. The generated images have the style of SVHN, but the digits are not
completely transferred. For example, on the fourth row, digits 3, 1, and 3 are stylized
by CycleGAN.

Cross-Domain GANs

[248]

However, on the third row, digits 9, 6, and 6 are stylized as 0, 6, 01, 0, 65, and 68 for
the CycleGAN without and with PatchGAN, respectively:

Figure 7.1.16: Style transfer of test data from the MNIST domain to SVHN. The original color photos can be
found on the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/ blob/master/chapter7-cross-domain-gan/README.md

The results of the backward cycle are shown in Figure 7.1.17. In this case, the target
images are from the SVHN test dataset. The generated images have the style of
MNIST, but the digits are not correctly translated. For example, on the first row, the
digits 5, 2, and 210 are stylized as 7, 7, 8, 3, 3, and 1 for the CycleGAN without and
with PatchGAN, respectively:

Chapter 7

[249]

Figure 7.1.17: Style transfer of test data from the SVHN domain to MNIST. The original color photo can be
found on the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/blob/master/chapter7-cross-domain-gan/README.md

In the case of PatchGAN, the output 1 is understandable given that the predicted
MNIST digit is constrained to one digit. There are somehow correct predictions,
such as in the second row, the last three columns of the SVHN digits, 6, 3, and 4 are
converted to 6, 3, and 6 by CycleGAN without PatchGAN. However, the outputs on
both flavors of CycleGAN are consistently single digit and recognizable.

The problem exhibited in the conversion from MNIST to SVHN, where a digit in
the source domain is translated to another digit in the target domain, is called label
flipping [8]. Although the predictions of CycleGAN are cycle-consistent, they are not
necessarily semantic-consistent. The meaning of digits is lost during translation.

Cross-Domain GANs

[250]

To address this problem, Hoffman [8] introduced an improved CycleGAN called
Cycle-Consistent Adversarial Domain Adaptation (CyCADA). The difference is
that the additional semantic loss term ensures that the prediction is not only cycle-
consistent, but also sematic-consistent.

Figure 7.1.18 shows CycleGAN reconstructing MNIST digits in the forward cycle.
The reconstructed MNIST digits are almost identical to the source MNIST digits:

Figure 7.1.18: Forward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target). The
reconstructed source is similar to the original source. The original color photo can be found on the book's
GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/

master/chapter7-cross-domain-gan/README.md

Chapter 7

[251]

Figure 7.1.19 shows the CycleGAN reconstructing SVHN digits in the backward
cycle:

Figure 7.1.19: The backward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target). The
reconstructed target is not entirely similar to the original target. The original color photos can be found on the

book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/
blob/master/chapter7-cross-domain-gan/README.md

In Figure 7.1.3, CycleGAN is described to be cycle consistent. In other words, given
source x, CycleGAN reconstructs the source in the forward cycle as 𝑥𝑥′ . In addition,
given target y, CycleGAN reconstructs the target in the backward cycle as 𝑦𝑦′ .

Cross-Domain GANs

[252]

Many target images are reconstructed. Some digits are clearly the same, such as the
second row, in the last two columns (3 and 4), while some are the same but blurred,
such as the first row, in the first two columns (5 and 2). Some digits are transformed
to another digit, although the style remains like the second row, in the first two
columns (from 33 and 6 to 1 and an unrecognizable digit).

To train the CycleGAN for MNIST to SVHN, the command is:

python3 cyclegan-7.1.1.py -m

The reader is encouraged to run the image translation by using the pretrained
models of CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --mnist_svhn_g_source=cyclegan_mnist_svhn-g_
source.h5 --mnist_svhn_g_target=cyclegan_mnist_svhn-g_target.h5

So far, we have only seen two practical applications of CycleGAN. Both are
demonstrated on small datasets to emphasize the concept of reproducibility.
As mentioned earlier in this chapter, there are many other practical applications of
CycleGAN. The CycleGAN that we introduced here can serve as the foundation for
translation of images with much bigger resolutions.

2. Conclusion
In this chapter, we've discussed CycleGAN as an algorithm that can be used for
image translation. In CycleGAN, the source and target data are not necessarily
aligned. We demonstrated two examples, grayscale ↔ color, and MNIST ↔ SVHN,
although there are many other possible image translations that CycleGAN can
perform.

In the next chapter, we'll embark on another type of generative model, Variational
AutoEncoders (VAEs). VAEs have a similar learning objective – how to generate
new images (data). They focus on learning the latent vector modeled as a Gaussian
distribution. We'll demonstrate other similarities in the problem being addressed
by GANs in the form of conditional VAEs and the disentangling of latent
representations in VAEs.

3. References
1. Yuval Netzer et al.: Reading Digits in Natural Images with Unsupervised

Feature Learning. NIPS workshop on deep learning and unsupervised
feature learning. Vol. 2011. No. 2. 2011 (https://www-cs.stanford.
edu/~twangcat/papers/nips2011_housenumbers.pdf).

https://www-cs.stanford.edu/~twangcat/papers/nips2011_housenumbers.pdf
https://www-cs.stanford.edu/~twangcat/papers/nips2011_housenumbers.pdf

Chapter 7

[253]

2. Zhu-Jun-Yan et al.: Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. 2017 IEEE International Conference on Computer
Vision (ICCV). IEEE, 2017 (http://openaccess.thecvf.com/content_
ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_
ICCV_2017_paper.pdf).

3. Phillip Isola et al.: Image-to-Image Translation with Conditional Adversarial
Networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017 (http://openaccess.thecvf.com/
content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_
CVPR_2017_paper.pdf).

4. Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
arXiv preprint arXiv:1411.1784, 2014 (https://arxiv.org/pdf/1411.1784.
pdf).

5. Xudong Mao et al.: Least Squares Generative Adversarial Networks. 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, 2017 (http://
openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_
Squares_Generative_ICCV_2017_paper.pdf).

6. Chuan Li and Michael Wand. Precomputed Real-Time Texture Synthesis
with Markovian Generative Adversarial Networks. European Conference
on Computer Vision. Springer, Cham, 2016 (https://arxiv.org/
pdf/1604.04382.pdf).

7. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. International Conference on
Medical image computing and computer-assisted intervention. Springer,
Cham, 2015 (https://arxiv.org/pdf/1505.04597.pdf).

8. Judy Hoffman et al.: CyCADA: Cycle-Consistent Adversarial Domain
Adaptation. arXiv preprint arXiv:1711.03213, 2017 (https://arxiv.org/
pdf/1711.03213.pdf).

http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1411.1784.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Mao_Least_Squares_Generative_ICCV_2017_paper.pdf
https://arxiv.org/pdf/1604.04382.pdf
https://arxiv.org/pdf/1604.04382.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1711.03213.pdf
https://arxiv.org/pdf/1711.03213.pdf

[255]

8
Variational Autoencoders

(VAEs)
Similar to Generative Adversarial Networks (GANs) that we've discussed in the
previous chapters, Variational Autoencoders (VAEs) [1] belong to the family of
generative models. The generator of VAEs is able to produce meaningful outputs
while navigating its continuous latent space. The possible attributes of the decoder
outputs are explored through the latent vector.

In GANs, the focus is on how to arrive at a model that approximates the input
distribution. VAEs attempt to model the input distribution from a decodable
continuous latent space. This is one of the possible underlying reasons why GANs
are able to generate more realistic signals when compared to VAEs. For example,
in image generation, GANs are able to produce more realistic-looking images, while
VAEs, in comparison, generate images that are less sharp.

Within VAEs, the focus is on the variational inference of latent codes. Therefore,
VAEs provide a suitable framework for both learning and efficient Bayesian
inference with latent variables. For example, VAEs with disentangled representations
enable latent code reuse for transfer learning.

In terms of structure, VAE bears a resemblance to an autoencoder. It is also made up
of an encoder (also known as a recognition or inference model) and a decoder (also
known as a generative model). Both VAEs and autoencoders attempt to reconstruct
the input data while learning the latent vector.

Variational Autoencoders (VAEs)

[256]

However, unlike autoencoders, the latent space of VAE is continuous, and the
decoder itself is used as a generative model.

In the same line of discussions on GANs that we discussed in the previous chapters,
the VAE's decoder can also be conditioned. For example, in the MNIST dataset, we're
able to specify the digit to produce given a one-hot vector. This class of conditional
VAE is called CVAE [2]. VAE latent vectors can also be disentangled by including
a regularizing hyperparameter on the loss function. This is called 𝛽𝛽 -VAE [5]. For
example, within MNIST, we're able to isolate the latent vector that determines the
thickness or tilt angle of each digit. The goal of this chapter is to present:

• The principles of VAE
• An understanding of the reparameterization trick that facilitates the use

of stochastic gradient descent on VAE optimization
• The principles of conditional VAE (CVAE) and 𝛽𝛽 -VAE
• An understanding of how to implement VAE using tf.keras

We'll start off by talking about the underlying principles of VAE.

1. Principles of VAE
In a generative model, we're often interested in approximating the true distribution
of our inputs using neural networks:

𝒙𝒙~𝑃𝑃𝜃𝜃(𝒙𝒙) (Equation 8.1.1)

In the preceding equation, 𝜃𝜃 represents the parameters determined during training.
For example, in the context of the celebrity faces dataset, this is equivalent to finding
a distribution that can draw faces. Similarly, in the MNIST dataset, this distribution
can generate recognizable handwritten digits.

In machine learning, to perform a certain level of inference, we're interested in
finding 𝑃𝑃𝜃𝜃(𝒙𝒙, 𝒛𝒛) , a joint distribution between inputs, 𝒙𝒙 , and latent variables, 𝒛𝒛 . The
latent variables are not part of the dataset but instead encode certain properties
observable from inputs. In the context of celebrity faces, these might be facial
expressions, hairstyles, hair color, gender, and so on. In the MNIST dataset,
the latent variables may represent the digit and writing styles.

𝑃𝑃𝜃𝜃(𝒙𝒙, 𝒛𝒛) is practically a distribution of input data points and their attributes. 𝑃𝑃𝜃𝜃(𝒙𝒙)
can be computed from the marginal distribution:

𝑃𝑃𝜃𝜃(𝒙𝒙) = ∫ 𝑃𝑃𝜃𝜃(𝒙𝒙, 𝒛𝒛)𝑑𝑑𝒛𝒛 (Equation 8.1.2)

Chapter 8

[257]

In other words, considering all of the possible attributes, we end up with the
distribution that describes the inputs. In celebrity faces, if we consider all the facial
expressions, hairstyles, hair colors, and gender, the distribution describing the
celebrity faces is recovered. In the MNIST dataset, if we consider all of the possible
digits, writing styles, and so on, we end up with the distribution of handwritten
digits.

The problem is that Equation 8.1.2 is intractable. The equation does not have an
analytic form or an efficient estimator. It cannot be differentiated with respect to
its parameters. Therefore, optimization by a neural network is not feasible.

Using Bayes' theorem, we can find an alternative expression for Equation 8.1.2:

𝑃𝑃𝜃𝜃(𝒙𝒙) = ∫ 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)𝑃𝑃(𝒛𝒛)𝑑𝑑𝒛𝒛 (Equation 8.1.3)

𝑃𝑃(𝒛𝒛) is a prior distribution over 𝒛𝒛 . It is not conditioned on any observations. If 𝒛𝒛 is
discrete and 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) is a Gaussian distribution, then 𝑃𝑃𝜃𝜃(𝒙𝒙) is a mixture of Gaussians.
If 𝒛𝒛 is continuous, 𝑃𝑃𝜃𝜃(𝒙𝒙) is an infinite mixture of Gaussians.

In practice, if we try to build a neural network to approximate 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)
without a suitable loss function, it will just ignore 𝒛𝒛 and arrive at a trivial solution,
𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) =𝑃𝑃𝜃𝜃(𝒙𝒙) . Therefore, Equation 8.1.3 does not provide us with a good estimate
of 𝑃𝑃𝜃𝜃(𝒙𝒙) . Alternatively, Equation 8.1.2 can also be expressed as:

𝑃𝑃𝜃𝜃(𝒙𝒙) = ∫ 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)𝑃𝑃(𝒙𝒙)𝑑𝑑𝒛𝒛 (Equation 8.1.4)

However, 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) is also intractable. The goal of a VAE is to find a tractable
distribution that closely estimates 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) , an estimate of the conditional distribution
of the latent attributes, 𝒛𝒛 , given the input, 𝒙𝒙 .

Variational inference
In order to make 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) tractable, VAE introduces the variational inference model
(an encoder):

𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) ≈ 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) (Equation 8.1.5)

𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) provides a good estimate of 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) . It is both parametric and tractable.
𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) can be approximated by deep neural networks by optimizing the parameter
𝜙𝜙 . Typically, 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) is chosen to be a multivariate gaussian:

𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) = 𝒩𝒩(𝒛𝒛;𝝁𝝁(𝒙𝒙), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝈𝝈(𝒙𝒙)2)) (Equation 8.1.6)

Variational Autoencoders (VAEs)

[258]

Both mean, 𝝁𝝁(𝒙𝒙) , and standard, 𝝈𝝈(𝒙𝒙) , deviation are computed by the encoder neural
network using the input data points. The diagonal matrix implies that the elements
of 𝒛𝒛 are independent.

In the next section, we will solve for the core equation of VAE. The core equation will
lead us to an optimization algorithm that will help us determine the parameters of
the inference model.

Core equation
The inference model, 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) , generates a latent vector, 𝒛𝒛 , from input 𝒙𝒙 . 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) is
like the encoder in an autoencoder model. On the other hand, 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) reconstructs
the input from the latent code, 𝒛𝒛 . 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) acts like the decoder in an autoencoder
model. To estimate 𝑃𝑃𝜃𝜃(𝒙𝒙) , we must identify its relationship with 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) and 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) .

If 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) is an estimate of 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) , the Kullback–Leibler (KL) divergence
determines the distance between these two conditional densities:

𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) − log𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)] (Equation 8.1.7)

Using Bayes' theorem:

𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) =
𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)𝑃𝑃𝜃𝜃(𝒛𝒛)

𝑃𝑃𝜃𝜃(𝒙𝒙)
 (Equation 8.1.8)

in Equation 8.1.7:

𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) − log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) − log𝑃𝑃𝜃𝜃(𝒛𝒛)] + log𝑃𝑃𝜃𝜃(𝒙𝒙)
(Equation 8.1.9)

log𝑃𝑃𝜃𝜃(𝒙𝒙) can be taken out of the expectation since it is not dependent on 𝒛𝒛~𝑄𝑄 .
Rearranging Equation 8.1.9 and recognizing that:

𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) − log𝑃𝑃𝜃𝜃(𝒛𝒛)] = 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛)) , it follows that:

log𝑃𝑃𝜃𝜃(𝒙𝒙) − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)] − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛))
(Equation 8.1.10)

Equation 8.1.10 is the core of VAEs. The left-hand side is the term 𝑃𝑃𝜃𝜃(𝒙𝒙) , which
we are maximizing less the error due to the distance of 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) from the true
𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) . We can recall that the logarithm does not change the location of maxima
(or minima). Given an inference model that provides a good estimate of 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) ,
𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) is approximately zero.

Chapter 8

[259]

The first term, 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) , on the right-hand side resembles a decoder that takes samples
from the inference model to reconstruct the input.

The second term is another distance. This time it's between 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) and the prior
𝑃𝑃𝜃𝜃(𝒛𝒛) . The left side of Equation 8.1.10 is also known as the variational lower bound
or evidence lower bound (ELBO). Since the KL is always positive, ELBO is the lower
bound of log𝑃𝑃𝜃𝜃(𝒙𝒙) . Maximizing ELBO by optimizing the parameters 𝜙𝜙 and 𝜃𝜃 of the
neural network means that:

• 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) → 0 or the inference model is getting better in
encoding the attributes 𝒙𝒙 in 𝒛𝒛 .

• log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) on the right-hand side of Equation 8.1.10 is maximized or the
decoder model is getting better in reconstructing 𝒙𝒙 from the latent vector, 𝒛𝒛 .

• In the next section, we will exploit the structure of Equation 8.1.10 to
determine the loss functions of the inference model (encoder) and decoder.

Optimization
The right-hand side of Equation 8.1.10 has two important bits of information
regarding the loss function of VAEs. The decoder term 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)] means that
the generator takes 𝒛𝒛 samples from the output of the inference model to reconstruct
the inputs. Maximizing this term implies that we minimize the Reconstruction Loss,
ℒ𝑅𝑅 . If the image (data) distribution is assumed to be Gaussian, then MSE can be used.

If every pixel (data) is considered a Bernoulli distribution, then the loss function
is a binary cross-entropy.

The second term, −𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛)) , turns out to be straightforward to evaluate.
From Equation 8.1.6, 𝑄𝑄𝜙𝜙 is a Gaussian distribution. Typically, 𝑃𝑃𝜃𝜃(𝒛𝒛) = 𝑃𝑃(𝒛𝒛) = 𝒩𝒩(0, 𝐼𝐼)
is also a Gaussian with zero mean and standard deviation equal to 1.0. In Equation
8.1.11, we see that the KL term simplifies to:

−𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛)) =
1
2∑(1+ log(𝜎𝜎𝑗𝑗)

2 − (𝜇𝜇𝑗𝑗)
2 − (𝜎𝜎𝑗𝑗)

2)
𝐽𝐽

𝑗𝑗=1
 (Equation 8.1.11)

where 𝐽𝐽 is the dimensionality of 𝒛𝒛 . Both 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 are functions of 𝒙𝒙 computed
through the inference model. To maximize: −𝐷𝐷𝐾𝐾𝐾𝐾 , 𝜎𝜎𝑗𝑗 → 1 and 𝜇𝜇𝑗𝑗 → 0 . The choice of
𝑃𝑃(𝒛𝒛) = 𝒩𝒩(0, 𝐼𝐼) stems from the property of the isotropic unit Gaussian, which can be
morphed to an arbitrary distribution given a suitable function [6].

Variational Autoencoders (VAEs)

[260]

From Equation 8.1.11, the KL loss, ℒ𝐾𝐾𝐾𝐾, is simply 𝐷𝐷𝐾𝐾𝐾𝐾 .

In summary, the VAE loss function is defined in Equation 8.1.12 as:

ℒ𝑉𝑉𝑉𝑉𝑉𝑉 = ℒ𝑅𝑅 + ℒ𝐾𝐾𝐾𝐾 (Equation 8.1.12)

Given the encoder and decoder models, there is one more problem to solve before
we can build and train a VAE, the stochastic sampling block, which generates the
latent attributes. In the next section, we will discuss this issue and how to resolve
it using the reparameterization trick.

Reparameterization trick
The left-hand side of Figure 8.1.1 below shows the VAE network. The encoder
takes the input, 𝒙𝒙 , and estimates the mean, 𝝁𝝁 , and the standard deviation, 𝝈𝝈 , of the
multivariate Gaussian distribution of the latent vector, 𝒛𝒛 . The decoder takes samples
from the latent vector, 𝒛𝒛 , to reconstruct the input as 𝒙𝒙~ . This seems straightforward
until the gradient updates happen during backpropagation:

Figure 8.1.1: A VAE network with and without the reparameterization trick

Backpropagation gradients will not pass through the stochastic Sampling block.
While it's fine to have stochastic inputs for neural networks, it's not possible for
the gradients to go through a stochastic layer.

The solution to this problem is to push out the Sampling process as the input,
as shown on the right side of Figure 8.1.1. Then, compute the sample as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝝁𝝁 + 𝝐𝝐𝝐𝝐 (Equation 8.1.13)

Chapter 8

[261]

If 𝝐𝝐 and 𝝈𝝈 are expressed in vector format, then 𝝐𝝐𝝐𝝐 is element-wise multiplication.
Using Equation 8.1.13, it appears as if sampling is directly coming from the
latent space as originally intended. This technique is better known as the
Reparameterization trick.

With Sampling now happening at the input, the VAE network can be trained using
the familiar optimization algorithms, such as SGD, Adam, or RMSProp.

Before discussing how to implement VAE in tf.keras, let's first show how a trained
decoder is tested.

Decoder testing
After training the VAE network, the inference model, including the addition and
multiplication operator, can be discarded. To generate new meaningful outputs,
samples are taken from the Gaussian distribution used in generating 𝝐𝝐 . Figure 8.1.2
shows us the test setup of the decoder:

Figure 8.1.2: Decoder testing setup

With the reparameterization trick fixing the last issue on VAE, we are now ready
to implement and train a variational autoencoder in tf.keras.

VAE in Keras
The structure of VAE bears a resemblance to a typical autoencoder. The difference is
mainly on the sampling of the Gaussian random variables in the reparameterization
trick. Listing 8.1.1 shows the encoder, decoder, and VAE, which are implemented
using MLP.

Variational Autoencoders (VAEs)

[262]

This code has also been contributed to the official Keras GitHub repository:

https://github.com/keras-team/keras/blob/master/examples/variational_
autoencoder.py

For ease of visualization of the latent codes, the dimension of 𝒛𝒛 is set to 2. The
encoder is just a two-layer MLP, with the second layer generating the mean and log
variance. The use of log variance is for simplicity in the computation of KL loss and
the reparameterization trick. The third output of the encoder is the sampling of 𝒛𝒛
using the reparameterization trick. We should note that in the sampling function,
𝑒𝑒0.5log𝜎𝜎2 = √𝜎𝜎2 = 𝜎𝜎 , since 𝜎𝜎 > 0 given that it is the standard deviation of the
Gaussian distribution.

The decoder is also a two-layer MLP that takes samples of 𝒛𝒛 to approximate the
inputs. Both the encoder and the decoder use an intermediate dimension with a size
of 512.

The VAE network is simply both the encoder and the decoder joined together. The
loss function is the sum of both the reconstruction loss and KL loss. The VAE network
has good results on the default Adam optimizer. The total number of parameters in
the VAE network is 807,700.

The Keras code for the VAE MLP has pretrained weights. To test, we need to run:

python3 vae-mlp-mnist-8.1.1.py --weights=vae_mlp_mnist.tf

Listing 8.1.1: vae-mlp-mnist-8.1.1.py

reparameterization trick
instead of sampling from Q(z|X), sample eps = N(0,I)
z = z_mean + sqrt(var)*eps
def sampling(args):
 """Reparameterization trick by sampling
 fr an isotropic unit Gaussian.

 # Arguments:
 args (tensor): mean and log of variance of Q(z|X)

 # Returns:
 z (tensor): sampled latent vector

The complete code can be found at the following link: https://
github.com/PacktPublishing/Advanced-Deep-Learning-
with-Keras

https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 8

[263]

 """

 z_mean, z_log_var = args
 # K is the keras backend
 batch = K.shape(z_mean)[0]
 dim = K.int_shape(z_mean)[1]
 # by default, random_normal has mean=0 and std=1.0
 epsilon = K.random_normal(shape=(batch, dim))
 return z_mean + K.exp(0.5 * z_log_var) * epsilon

MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

network parameters
input_shape = (original_dim,)
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50

VAE model = encoder + decoder
build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

use reparameterization trick to push the sampling out as input
note that "output_shape" isn't necessary
with the TensorFlow backend
z = Lambda(sampling,
 output_shape=(latent_dim,),
 name='z')([z_mean, z_log_var])

instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

Variational Autoencoders (VAEs)

[264]

build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')

instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 help_ = "Load tf model trained weights"
 parser.add_argument("-w", "--weights", help=help_)
 help_ = "Use binary cross entropy instead of mse (default)"
 parser.add_argument("--bce", help=help_, action='store_true')
 args = parser.parse_args()
 models = (encoder, decoder)
 data = (x_test, y_test)

 # VAE loss = mse_loss or xent_loss + kl_loss
 if args.bce:
 reconstruction_loss = binary_crossentropy(inputs,
 outputs)
 else:
 reconstruction_loss = mse(inputs, outputs)

 reconstruction_loss *= original_dim
 kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
 kl_loss = K.sum(kl_loss, axis=-1)
 kl_loss *= -0.5
 vae_loss = K.mean(reconstruction_loss + kl_loss)
 vae.add_loss(vae_loss)
 vae.compile(optimizer='adam')

Chapter 8

[265]

Figures 8.1.3 shows the encoder model, which is an MLP with two outputs, the
mean and variance of the latent vectors. The lambda function implements the
reparameterization trick to push the sampling of the stochastic latent codes outside
the VAE network:

Figure 8.1.3: The encoder models of the VAE MLP

Figures 8.1.4 shows the decoder model. The 2-dim input comes from the lambda
function. The output is the reconstructed MNIST digit:

Figure 8.1.4: The decoder model of the VAE MLP

Variational Autoencoders (VAEs)

[266]

Figures 8.1.5 shows the complete VAE model. It is made by joining the encoder and
decoder models together:

Figure 8.1.5: The VAE model using the MLP

Figure 8.1.6 shows the continuous space of the latent vector after 50 epochs using
plot_results(). For simplicity, the function is not shown here but can be found
in the rest of the code of vae-mlp-mnist-8.1.1.py. The function plots two images,
the test dataset labels (Figure 8.1.6) and the sample generated digits (Figure 8.1.7),
both as a function of 𝒛𝒛 . Both plots demonstrate how the latent vector determines
the attributes of the generated digits:

Figure 8.1.6: The MNIST digit label as a function of latent vector mean values for the test dataset (VAE MLP).
The original image can be found on the book's GitHub repository at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Chapter 8

[267]

Navigating through the continuous space will always result in an output that bears
a resemblance to the MNIST digits. For example, the region of digit 9 is close to the
region of digit 7. Moving from 9 near the center to the lower left morphs the digit to
7. Moving from the center up changes the generated digits from 3 to 5, and finally to
0. The morphing of the digits is more evident in Figure 8.1.7 which is another way of
interpreting Figure 8.1.6.

In Figure 8.1.7, the generator output is displayed. The distribution of digits in the
latent space is shown. It can be observed that all the digits are represented. Since
the distribution is dense near the center, the change is rapid in the middle and slow
in regions that have high mean values. We need to remember that Figure 8.1.7 is a
reflection of Figure 8.1.6. For example, digit 0 is in the upper-left quadrant on both
figures, while digit 1 is in the lower-right quadrant.

There are some unrecognizable digits in Figure 8.1.7, especially in the top-right
quadrant. From Figure 8.1.6, it can be observed that this region is mostly empty and
far away from the center:

Figure 8.1.7: The digits generated as a function of latent vector mean values (VAE MLP).
For ease of interpretation, the range of values for the mean is similar to Figure 8.1.6

Variational Autoencoders (VAEs)

[268]

In this section, we demonstrated how to implement VAE in the MLP. We also
interpreted the results of navigating the latent space. In the next section, we will
implement the same VAE using CNN.

Using CNN for AE
In the original paper, Auto-encoding Variational Bayes [1], the VAE network was
implemented using MLP, which is similar to what we covered in the previous
section. In this section, we'll demonstrate that using CNN will result in a significant
improvement in the quality of the digits produced and a remarkable reduction in the
number of parameters down to 134,165.

Listing 8.1.3 shows the encoder, decoder, and VAE network. This code was also
contributed to the official Keras GitHub repository:

https://github.com/keras-team/keras/blob/master/examples/variational_
autoencoder_deconv.py

For conciseness, some lines of code that are similar to the MLP VAE are no longer
shown. The encoder is made of two layers of CNN and two layers of MLP in order
to generate the latent code. The encoder output structure is similar to the MLP
implementation seen in the previous section. The decoder is made up of one layer
of Dense and three layers of transposed CNN.

The Keras code for the VAE CNN has pretrained weights. To test, we need to run:

python3 vae-cnn-mnist-8.1.2.py --weights=vae_cnn_mnist.tf

Listing 8.1.3: vae-cnn-mnist-8.1.2.py

VAE in tf.keras using CNN layers:

network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30

VAE model = encoder + decoder
build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
for i in range(2):
 filters *= 2

https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder_deconv.py
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder_deconv.py

Chapter 8

[269]

 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)

shape info needed to build decoder model
shape = K.int_shape(x)

generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

use reparameterization trick to push the sampling out as input
note that "output_shape" isn't necessary
with the TensorFlow backend
z = Lambda(sampling,
 output_shape=(latent_dim,),
 name='z')([z_mean, z_log_var])

instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1] * shape[2] * shape[3],
 activation='relu')(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)
 filters //= 2

outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 activation='sigmoid',
 padding='same',

Variational Autoencoders (VAEs)

[270]

 name='decoder_output')(x)

instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')

instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')

Figure 8.1.8 shows the CNN encoder model's two outputs, the mean and variance
of the latent vectors. The lambda function implements the reparameterization trick to
push the sampling of the stochastic latent codes outside the VAE network:

Figure 8.1.8: The encoder of VAE CNN

Chapter 8

[271]

Figure 8.1.9 shows the CNN decoder model. The 2-dim input comes from the lambda
function. The output is the reconstructed MNIST digit:

Figure 8.1.9: The decoder of VAE CNN

Figure 8.1.10 shows the complete CNN VAE model. It is made by joining the encoder
and decoder models together:

Figure 8.1.10: The VAE model using CNNs

Variational Autoencoders (VAEs)

[272]

The VAE was trained for 30 epochs. Figure 8.1.11 shows the distribution of digits
as we navigate the continuous latent space of a VAE. For example, from the center
to the right, the digit changes from 2 to 0:

Figure 8.1.11: The MNIST digit label as a function of latent vector mean values for the test dataset (VAE CNN).
The original image can be found on the book's GitHub repository at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

Figure 8.1.12 shows us the output of the generative model. Qualitatively, there
are fewer digits that are ambiguous as compared to Figure 8.1.7 with the MLP
implementation:

Chapter 8

[273]

Figure 8.1.12: The digits generated as a function of latent vector mean values (VAE CNN). For ease of
interpretation, the range of values for the mean is similar to Figure 8.1.11

The previous two sections discussed the implementation of VAE using MLP or CNN.
We analyzed the results of both implementations and showed that the CNN results
in a lower parameter count and better perceptive quality. In the next section, we will
demonstrate how to implement conditioning in VAE so that we can control which
digit to generate.

Variational Autoencoders (VAEs)

[274]

2. Conditional VAE (CVAE)
Conditional VAE [2] is similar to the idea of CGAN. In the context of the MNIST
dataset, if the latent space is randomly sampled, VAE has no control over which digit
will be generated. CVAE is able to address this problem by including a condition
(a one-hot label) of the digit to produce. The condition is imposed on both the
encoder and decoder inputs.

Formally, the core equation of VAE in Equation 8.1.10 is modified to include the
condition, 𝒄𝒄 :

log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒄𝒄) − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙, 𝒄𝒄)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙, 𝒄𝒄))
= 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛, 𝒄𝒄)] − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙, 𝒄𝒄)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒄𝒄))

 (Equation 8.2.1)

Similar to VAEs, Equation 8.2.1 means that if we want to maximize the output
conditioned 𝒄𝒄 , 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒄𝒄) , then the two loss terms must be minimized:

• Reconstruction loss of the decoder given both the latent vector and the
condition.

• KL loss between the encoder given both the latent vector and the condition
and the prior distribution given the condition. Similar to a VAE, we typically
choose 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒄𝒄) = 𝑃𝑃(𝒛𝒛|𝒄𝒄) = 𝒩𝒩(0, 𝐼𝐼) .

Implementing CVAE requires a few modifications in the code of the VAE. For the
CVAE, the VAE CNN implementation is used since it results in a smaller network
with perceptually better digits produced.

Listing 8.2.1 highlights the changes made to the original code of VAE for MNIST
digits. The encoder input is now a concatenation of the original input image and
its one-hot label. The decoder input is now a combination of the latent space
sampling and the one-hot label of the image it should generate. The total number
of parameters is 174,437. The codes related to 𝛽𝛽 -VAE will be discussed in the next
section of this chapter.

There are no changes in the loss function. However, the one-hot labels are supplied
during training, testing, and the plotting of results.

Listing 8.2.1: cvae-cnn-mnist-8.2.1.py

CVAE in tf.keras using CNN layers. Highlighted are the changes made to support
CVAE:

compute the number of labels
num_labels = len(np.unique(y_train))

Chapter 8

[275]

network parameters
input_shape = (image_size, image_size, 1)
label_shape = (num_labels,)
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30

VAE model = encoder + decoder
build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
y_labels = Input(shape=label_shape, name='class_labels')
x = Dense(image_size * image_size)(y_labels)
x = Reshape((image_size, image_size, 1))(x)
x = keras.layers.concatenate([inputs, x])
for i in range(2):
 filters *= 2
 x = Conv2D(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)

shape info needed to build decoder model
shape = K.int_shape(x)

generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

use reparameterization trick to push the sampling out as input
note that "output_shape" isn't necessary
with the TensorFlow backend
z = Lambda(sampling,
 output_shape=(latent_dim,),
 name='z')([z_mean, z_log_var])

instantiate encoder model
encoder = Model([inputs, y_labels],
 [z_mean, z_log_var, z],

Variational Autoencoders (VAEs)

[276]

 name='encoder')

build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = concatenate([latent_inputs, y_labels])
x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):
 x = Conv2DTranspose(filters=filters,
 kernel_size=kernel_size,
 activation='relu',
 strides=2,
 padding='same')(x)
 filters //= 2

outputs = Conv2DTranspose(filters=1,
 kernel_size=kernel_size,
 activation='sigmoid',
 padding='same',
 name='decoder_output')(x)

instantiate decoder model
decoder = Model([latent_inputs, y_labels],
 outputs,
 name='decoder')

instantiate vae model
outputs = decoder([encoder([inputs, y_labels])[2], y_labels])
cvae = Model([inputs, y_labels], outputs, name='cvae')

Figure 8.2.1 shows the encoder of the CVAE model. The additional input, the
conditioning label in the form of a one-hot vector, class_labels, is indicated:

Chapter 8

[277]

Figure 8.2.1: The encoder in CVAE CNN. The input now comprises the concatenation
of the VAE input and a conditioning label

Variational Autoencoders (VAEs)

[278]

Figure 8.2.2 shows the decoder of the CVAE model. The additional input, the
conditioning label in the form of a one-hot vector, class_labels, is indicated:

Figure 8.2.2: The decoder in CVAE CNN. The input now comprises
the concatenation of the z sampling and a conditioning label

Figure 8.2.3 shows the complete CVAE model, which is the encoder and decoder
joined together. The additional input, the conditioning label in the form of a one-hot
vector, class_labels, is indicated:

Chapter 8

[279]

Figure 8.2.3: The CVAE model using a CNN. The input now comprises a VAE input and a conditioning label

In Figure 8.2.4, the distribution of the mean per label is shown after 30 epochs.
Unlike in Figure 8.1.6 and Figure 8.1.11 in the previous sections, each label is not
concentrated on a region but distributed across the plot. This is expected since every
sampling in the latent space should generate a specific digit. Navigating the latent
space changes the attribute of that specific digit. For example, if the digit specified is
0, then navigating the latent space will still produce a 0, but the attributes, such as tilt
angle, thickness, and other writing style aspects, will be different.

Figure 8.2.4: The MNIST digit label as a function of latent vector mean values for the test dataset (CVAE CNN).
The original image can be found on the book's GitHub repository at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Variational Autoencoders (VAEs)

[280]

Figure 8.2.4 is more clearly shown in Figure 8.2.5 for digits 0 to 5. Each frame has the
same digit, with the attributes changing smoothly as we navigate the latent codes:

Figure 8.2.5: Digits 0 to 5 generated as a function of latent vector mean values and a one-hot label
(CVAE CNN). For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4

Chapter 8

[281]

Figure 8.2.6 shows Figure 8.2.4 for digits 6 to 9:

Figure 8.2.6: Digits 6 to 9 generated as a function of latent vector mean values and a one-hot label (CVAE CNN).
For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4

For ease of comparison, the range of values for the latent vector is the same as in
Figure 8.2.4. Using the pretrained weights, a digit (for example, 0) can be generated
by executing the command:

python3 cvae-cnn-mnist-8.2.1.py –bce --weights=cvae_cnn_mnist.tf
--digit=0

In Figure 8.2.5 and Figure 8.2.6, it can be noticed that the width and roundness (if
applicable) of each digit change as z[0] is traced from left to right. Meanwhile, the tilt
angle and roundness (if applicable) of each digit changes as z[1] is navigated from
top to bottom. As we move away from the center of the distribution, the image of the
digit starts to degrade. This is expected since the latent space is a circle.

Variational Autoencoders (VAEs)

[282]

Other noticeable variations in attributes may be digit-specific. For example, the
horizontal stroke (arm) for digit 1 becomes visible in the upper left quadrant. The
horizontal stroke (crossbar) for digit 7 can be seen in the right quadrants only.

In the next section, we will discover that CVAE is actually just a special case
of another type of VAE called 𝛽𝛽 -VAE.

3. 𝜷𝜷 -VAE – VAE with disentangled latent
representations
In Chapter 6, Disentangled Representation GANs, the concept and importance of the
disentangled representation of latent codes were discussed. We can recall that a
disentangled representation is where single latent units are sensitive to changes in
single generative factors while being relatively invariant to changes in other factors
[3]. Varying a latent code results in changes in one attribute of the generated output,
while the remainder of the properties remain the same.

In the same chapter, InfoGAN [4] demonstrated to us that for the MNIST dataset,
it is possible to control which digit to generate and the tilt and thickness of the
writing style. Observing the results in the previous section, it can be noticed that the
VAE is intrinsically disentangling the latent vector dimensions to a certain extent.
For example, looking at digit 8 in Figure 8.2.6, navigating z[1] from top to bottom
decreases the width and roundness while rotating the digit clockwise. Increasing
z[0] from left to right also decreases the width and roundness while rotating the digit
counterclockwise. In other words, z[1] controls the clockwise rotation, while z[0] affects
the counterclockwise rotation, and both of them alter the width and roundness.

In this section, we'll demonstrate that a simple modification in the loss function of
VAE forces the latent codes to disentangle further. The modification is the positive
constant weight, 𝛽𝛽 > 1, acting as a regularizer on the KL loss:

ℒ𝛽𝛽−𝑉𝑉𝑉𝑉𝑉𝑉 = ℒ𝑅𝑅 + 𝛽𝛽ℒ𝐾𝐾𝐾𝐾 (Equation 8.3.1)

This variation of VAE is called 𝛽𝛽 -VAE [5]. The implicit effect of 𝛽𝛽 is tighter standard
deviation. In other words, 𝛽𝛽 forces the latent codes in the posterior distribution,
𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙), to be independent.

It is straightforward to implement 𝛽𝛽 -VAE. For example, for the CVAE from the
previous example, the required modification is the extra beta factor in kl_loss:

Chapter 8

[283]

kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5 * beta

CVAE is a special case of 𝛽𝛽 -VAE with 𝛽𝛽 = 1. Everything else is the same. However,
determining the value of 𝛽𝛽 requires some trial and error. There must be a careful
balance between the reconstruction error and regularization for latent code
independence. The disentanglement is maximized at around 𝛽𝛽 = 9. When the value
of 𝛽𝛽 > 9, 𝛽𝛽 -VAE is forced to learn one disentangled representation only while muting
the other latent dimension.

Figure 8.3.1 and Figure 8.3.2 show the latent vector means for 𝛽𝛽 -VAE with 𝛽𝛽 = 9 and
𝛽𝛽 = 10:

Figure 8.3.1: The MNIST digit label as a function of latent vector mean values for the test dataset (𝛽𝛽 -VAE
with 𝛽𝛽 = 9). The original image can be found on the book's GitHub repository at https://github.com/

PacktPublishing/Advanced- Deep-Learning-with-Keras/tree/master/chapter8-vae

Variational Autoencoders (VAEs)

[284]

With 𝛽𝛽 = 9, the distribution has smaller standard deviation compared to CVAE. With
𝛽𝛽 = 10, there is only latent code that is learned. The distribution is practically shrunk
to one dimension, with the first latent code z[0] ignored by the encoder and decoder.

Figure 8.3.2: The MNIST digit label as a function of latent vector mean values for the test dataset
(𝛽𝛽 -VAE with 𝛽𝛽 = 10)

The original image can be found on the book's GitHub repository at https://
github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/
master/chapter8-vae.

These observations are reflected in Figure 8.3.3. 𝛽𝛽 -VAE with 𝛽𝛽 = 9 has two latent
codes that are practically independent. z[0] determines the tilt of the writing style,
while z[1] specifies the width and roundness (if applicable) of the digits. For 𝛽𝛽 -VAE
with 𝛽𝛽 = 10, z[0] is muted. Increasing z[0] does not alter the digit in a significant way.
z[1] determines the tilt angle and width of the writing style:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae

Chapter 8

[285]

Figure 8.3.3: Digits 0 to 3 generated as a function of latent vector mean values and a one-hot label (𝛽𝛽 -VAE 𝛽𝛽
=1, 9, and 10). For ease of interpretation, the range of values for the mean is similar to Figure 8.3.1

The tf.keras code for 𝛽𝛽 -VAE has pretrained weights. To test 𝛽𝛽 -VAE with 𝛽𝛽 = 9
generating digit 0, we need to run the following command:

python3 cvae-cnn-mnist-8.2.1.py --beta=9 --bce --weights=beta-cvae_cnn_
mnist.tf --digit=0

Variational Autoencoders (VAEs)

[286]

In summary, we have demonstrated that disentangled representation learning is
easier to implement on 𝛽𝛽 -VAE compared to GANs. All we need is to tune a single
hyperparameter.

4. Conclusion
In this chapter, we've covered the principles of VAEs. As we learned in the principles
of VAEs, they bear a resemblance to GANs from the point of view of both attempts
to create synthetic outputs from latent space. However, it can be noticed that
the VAE networks are much simpler and easier to train compared to GANs. It's
becoming clear how CVAE and 𝛽𝛽 -VAE are similar in concept to conditional GANs
and disentangled representation GANs, respectively.

VAEs have an intrinsic mechanism to disentangle the latent vectors. Therefore,
building a 𝛽𝛽 -VAE is straightforward. We should note, however, that interpretable
and disentangled codes are important in building intelligent agents.

In the next chapter, we're going to focus on reinforcement learning. Without any
prior data, an agent learns by interacting with the world around it. We'll discuss
how the agent can be rewarded for correct actions, and punished for the wrong ones.

5. References
1. Diederik P. Kingma and Max Welling. Auto-encoding Variational Bayes. arXiv

preprint arXiv:1312.6114, 2013 (https://arxiv.org/pdf/1312.6114.pdf).
2. Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output

Representation Using Deep Conditional Generative Models. Advances in
Neural Information Processing Systems, 2015 (http://papers.nips.cc/
paper/5775-learning-structured-output-representation-using-
deep-conditional-generative-models.pdf).

3. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning.
4. A Review and New Perspectives. IEEE transactions on Pattern Analysis

and Machine Intelligence 35.8, 2013: 1798-1828 (https://arxiv.org/
pdf/1206.5538.pdf).

5. Xi Chen et al.: Infogan: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. Advances in Neural Information
Processing Systems, 2016 (http://papers.nips.cc/paper/6399-
infogan-interpretable-representation-learning-by-information-
maximizing-generative-adversarial-nets.pdf).

https://arxiv.org/pdf/1312.6114.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
https://arxiv.org/pdf/1206.5538.pdf
https://arxiv.org/pdf/1206.5538.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf

Chapter 8

[287]

6. I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S.
Mohamed, and A. Lerchner. 𝛽𝛽 -VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework. ICLR, 2017 (https://openreview.net/
pdf?id=Sy2fzU9gl).

7. Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016 (https://arxiv.org/pdf/1606.05908.pdf).

https://openreview.net/pdf?id=Sy2fzU9gl
https://openreview.net/pdf?id=Sy2fzU9gl
https://arxiv.org/pdf/1606.05908.pdf

[289]

9
Deep Reinforcement

Learning
Reinforcement Learning (RL) is a framework that is used by an agent for decision
making. The agent is not necessarily a software entity, such as you might see in video
games. Instead, it could be embodied in hardware such as a robot or an autonomous
car. An embodied agent is probably the best way to fully appreciate and utilize RL,
since a physical entity interacts with the real world and receives responses.

The agent is situated within an environment. The environment has a state that
can be partially or fully observable. The agent has a set of actions that it can use
to interact with its environment. The result of an action transitions the environment
to a new state. A corresponding scalar reward is received after executing an action.

The goal of the agent is to maximize the accumulated future reward by learning
a policy that will decide which action to take given a state.

RL has a strong similarity to human psychology. Humans learn by experiencing the
world. Wrong actions result in a certain form of penalty and should be avoided in
the future, whilst actions that are correct are rewarded and should be encouraged.
This strong similarity to human psychology has convinced many researchers to
believe that RL can lead us toward true Artificial Intelligence (AI).

RL has been around for decades. However, beyond simple world models, RL has
struggled to scale. This is where Deep Learning (DL) came into play. It solved this
scalability problem, which opened up the era of Deep Reinforcement Learning
(DRL). In this chapter, our focus is on DRL. One of the notable examples in DRL
is the work of DeepMind on agents that were able to surpass the best human
performance on different video games.

Deep Reinforcement Learning

[290]

In this chapter, we discuss both RL and DRL.

In summary, the goal of this chapter is to present:

• The principles of RL
• The RL technique, Q-learning
• Advanced topics, including Deep Q-Network (DQN), and Double

Q-Learning (DDQN)
• Instructions on how to implement RL on Python and DRL using tf.keras

Let's start with the fundamentals, the principles behind RL.

1. Principles of Reinforcement
Learning (RL)
Figure 9.1.1 shows the perception-action-learning loop that is used to describe RL.
The environment is a soda can sitting on the floor. The agent is a mobile robot whose
goal is to pick up the soda can. It observes the environment around it and tracks the
location of the soda can through an onboard camera. The observation is summarized
in a form of a state that the robot will use to decide which action to take. The actions
it takes may pertain to low-level control, such as the rotation angle/speed of each
wheel, the rotation angle/speed of each joint of the arm, and whether the gripper
is open or closed.

Alternatively, the actions may be high-level control moves such as moving the robot
forward/backward, steering with a certain angle, and grab/release. Any action that
moves the gripper away from the soda receives a negative reward. Any action that
closes the gap between the gripper location and the soda receives a positive reward.
When the robot arm successfully picks up the soda can, it receives a big positive
reward. The goal of RL is to learn the optimal policy that helps the robot to decide
which action to take given a state to maximize the accumulated discounted reward:

Chapter 9

[291]

Figure 9.1.1: The perception-action-learning loop in RL

Formally, the RL problem can be described as a Markov decision process (MDP).

For simplicity, we'll assume a deterministic environment where a certain action in
a given state will consistently result in a known next state and reward. In a later
section of this chapter, we'll look at how to consider stochasticity. At timestep t:

• The environment is in a state, st, from the state space, 𝒮𝒮 , which may be
discrete or continuous. The starting state is s0, while the terminal state is sT.

• The agent takes an action, sa,from the action space, 𝒜𝒜 , by obeying the policy,
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) . 𝒜𝒜 may be discrete or continuous.

• The environment transitions to a new state, st+1, using the state transition
dynamics 𝒯𝒯(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) . The next state is only dependent on the current state
and action. 𝒯𝒯 is not known to the agent.

• The agent receives a scalar reward using a reward function, rt+1 = R(st, at),
with 𝑟𝑟:𝒜𝒜 × 𝒮𝒮 → ℝ . The reward is only dependent on the current state and
action. 𝑅𝑅 is not known to the agent.

• Future rewards are discounted by 𝛾𝛾𝑘𝑘 , where 𝛾𝛾 ∈ [0,1] and k is the future
timestep.

• Horizon, H, is the number of timesteps, T, needed to complete one episode
from s0 to sT.

Deep Reinforcement Learning

[292]

The environment may be fully or partially observable. The latter is also known as
a partially observable MDP or POMDP. Most of the time, it's unrealistic to fully
observe the environment. To improve the observability, past observations are also
taken into consideration with the current observation. The state comprises the
sufficient observations about the environment for the policy to decide on which
action to take. Recalling Figure 9.1.1, this could be the three dimensional position of
the soda can with respect to the robot gripper as estimated by the robot camera.

Every time the environment transitions to a new state, the agent receives a scalar
reward, rt+1. In Figure 9.1.1, the reward could be +1 whenever the robot gets closer to
the soda can, -1 whenever it gets farther away, and +100 when it closes the gripper
and successfully picks up the soda can. The goal of the agent is to learn an optimal
policy, 𝜋𝜋∗ , that maximizes the return from all states:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑅𝑅𝑡𝑡 (Equation 9.1.1)

The return is defined as the discounted cumulative reward, 𝑅𝑅𝑡𝑡 =∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
r𝑡𝑡+𝑘𝑘 . It can

be observed from Equation 9.1.1 that future rewards have lower weights compared to
immediate rewards since generally, 𝛾𝛾𝑘𝑘 < 1.0, where 𝛾𝛾 ∈ [0,1] . At the extremes, when
𝛾𝛾 = 0 , only the immediate reward matters. When 𝛾𝛾 = 1 , future rewards have the
same weight as the immediate reward.

Return can be interpreted as a measure of the value of a given state by following an
arbitrary policy, 𝜋𝜋 :

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝑅𝑅𝑡𝑡 = ∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
r𝑡𝑡+𝑘𝑘 (Equation 9.1.2)

To put the RL problem in another way, the goal of the agent is to learn the optimal
policy that maximizes 𝑉𝑉𝜋𝜋 for all states s:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑉𝑉𝜋𝜋(𝑠𝑠) (Equation 9.1.3)

The value function of the optimal policy is simply 𝑉𝑉∗ . In Figure 9.1.1, the optimal
policy is the one that generates the shortest sequence of actions that brings the robot
closer and closer to the soda can until it is fetched. The closer the state to the goal
state, the higher its value. The sequence of events leading to the goal (or terminal
state) can be modeled as the trajectory or rollout of the policy:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (s0a0𝑇𝑇1s1, s1a1𝑇𝑇2s2, … , s𝑇𝑇−1a𝑇𝑇−1𝑇𝑇𝑇𝑇s𝑇𝑇) (Equation 9.1.4)

Chapter 9

[293]

If the MDP is episodic, when the agent reaches the terminal state, sT, the state is reset
to s0. If T is finite, we have a finite horizon. Otherwise, the horizon is infinite. In
Figure 9.1.1, if the MDP is episodic, after collecting the soda can, the robot may look
for another soda can to pick up and the RL problem repeats.

A key objective of RL is therefore to find a policy that maximizes the value of each
state. In the next section, we will present a learning algorithm for the policy that can
be used to maximize the value function.

2. The Q value
If the RL problem is to find 𝜋𝜋∗ , how does the agent learn by interacting with the
environment? Equation 9.1.3 does not explicitly indicate the action to try and the
succeeding state to compute the return. In RL, it is easier to learn 𝜋𝜋∗ by using the
Q value:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄(𝑠𝑠, 𝑎𝑎) (Equation 9.2.1)

where:

𝑉𝑉∗(𝑠𝑠) = max
𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑎𝑎) (Equation 9.2.2)

In other words, instead of finding the policy that maximizes the value for all states,
Equation 9.2.1 looks for the action that maximizes the quality (Q) value for all states.
After finding the Q value function, 𝑉𝑉∗, and hence 𝜋𝜋∗, are determined by Equation
9.2.2 and Equation 9.1.3, respectively.

If, for every action, the reward and the next state can be observed, we can formulate
the following iterative or trial-and-error algorithm to learn the Q value:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) (Equation 9.2.3)

For notational simplicity, 𝑠𝑠′ and 𝑎𝑎′ are the next state and action, respectively.
Equation 9.2.3 is known as the Bellman equation, which is the core of the Q-learning
algorithm. Q-learning attempts to approximate the first-order expansion of return
or value (Equation 9.1.2) as a function of both current state and action. From zero
knowledge of the dynamics of the environment, the agent tries an action 𝑎𝑎 , observes
what happens in the form of a reward, 𝑟𝑟 , and next state, 𝑠𝑠′ . max

𝑎𝑎′ 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) chooses
the next logical action that will give the maximum Q value for the next state. With
all terms in Equation 9.2.3 known, the Q value for that current state-action pair is
updated. Doing the update iteratively will eventually enable the agent to learn the
Q value function.

Deep Reinforcement Learning

[294]

Q-learning is an off-policy RL algorithm. It learns how to improve a policy by not
directly sampling experiences from that policy. In other words, the Q values are
learned independent of the underlying policy being used by the agent. When the
Q value function has converged, only then is the optimal policy determined using
Equation 9.2.1.

Before giving an example of how to use Q-learning, note that the agent must
continually explore its environment while gradually taking advantage of what it
has learned so far. This is one of the issues in RL – finding the right balance between
exploration and exploitation. Generally, during the start of learning, the action is
random (exploration). As the learning progresses, the agent takes advantage of the
Q value (exploitation). For example, at the start, 90% of the action is random and
10% stems from the Q value function. At the end of each episode, this is gradually
decreased. Eventually, the action is 10% random and 90% from the Q value function.

In the next section, we will give a concrete example as to how Q-learning is used
in a simple deterministic environment.

3. Q-learning example
To illustrate the Q-learning algorithm, we need to consider a simple deterministic
environment, as shown in Figure 9.3.1. The environment has six states.

The rewards for allowed transitions are shown. The reward is non-zero in two cases.
Transition to the Goal (G) state has a +100 reward, while moving into the Hole (H)
state has a -100 reward. These two states are terminal states and constitute the end
of one episode from the Start state:

Figure 9.3.1: Rewards in a simple deterministic world

Chapter 9

[295]

To formalize the identity of each state, we use a (row, column) identifier as shown
in Figure 9.3.2. Since the agent has not learned anything yet about its environment,
the Q-table also shown in Figure 9.3.2 has zero initial values. In this example,
the discount factor 𝛾𝛾 = 0.9 . Recall that in the estimate of the current Q value, the
discount factor determines the weight of future Q values as a function of the number
of steps, 𝛾𝛾𝑘𝑘 . In Equation 9.2.3, we only consider the immediate future Q value, 𝑘𝑘 = 1 .

Figure 9.3.2: States in the simple deterministic environment and the agent's initial Q-table

Initially, the agent assumes a policy that selects a random action 90% of the time and
exploits the Q-table 10% of the time. Suppose the first action is randomly chosen and
indicates a move to the right. Figure 9.3.3 illustrates the computation of the new Q
value of state (0, 0) for a move to the right. The next state is (0, 1). The reward is 0,
and the maximum of all the next state's Q values is zero. Therefore, the Q value of
state (0, 0) for a move to the right remains 0.

To easily track the initial state and next state, we use different shades of gray on both
the environment and the Q-table—lighter gray for the initial state, and darker gray
for the next state.

Deep Reinforcement Learning

[296]

In choosing the next action for the next state, the candidate actions are in the thicker
border:

Figure 9.3.3: Assuming the action taken by the agent is a move to the right,
an update to the Q value of state (0, 0) is shown

Let's suppose that the next randomly chosen action is a move in a downward
direction. Figure 9.3.4 shows no change in the Q value of state (0, 1) for the move
in a downward direction:

Figure 9.3.4: Assuming the action chosen by the agent is a move down,
an update to the Q value of state (0, 1) is shown

Chapter 9

[297]

In Figure 9.3.5, the agent's third random action is a move to the right;

Figure 9.3.5: Assuming the action chosen by the agent is a move to the right,
an update to the Q value of state (1, 1) is shown

It encountered the H state and received a -100 reward. This time, the update is non-
zero. The new Q value for the state (1, 1) is -100 for the move to the right. Note that
since this is a terminal state, there are no next states. One episode has just finished,
and the agent returns to the Start state.

Let's suppose the agent is still in exploration mode, as shown in Figure 9.3.6:

Figure 9.3.6: Assuming the actions chosen by the agent are two successive moves to the right,
an update to the Q value of state (0, 1) is shown

Deep Reinforcement Learning

[298]

The first step it took for the second episode was a move to the right. As expected, the
update is 0. However, the second random action it chose is also a move to the right.
The agent reached the G state and received a big +100 reward. The Q value for the
state (0, 1) moving to the right becomes 100. The second episode is done, and the
agent goes back to the Start state.

At the beginning of the third episode, the random action taken by the agent is a
move to the right. The Q value of state (0, 0) is now updated with a non-zero value
because the next state's possible actions have 100 as the maximum Q value. Figure
9.3.7 shows the computation involved. The Q value of the next state (0, 1) ripples
back to the earlier state (0, 0). It is like giving credit to the earlier states that helped
in finding the G state.

Figure 9.3.7: Assuming the action chosen by the agent is a move to the right,
an update to the Q value of state (0, 0) is shown

The progress in the Q-table has been substantial. In fact, in the next episode, if, for
some reason, the policy decided to exploit the Q-table instead of randomly exploring
the environment, the first action is to move to the right according to the computation
in Figure 9.3.8. In the first row of the Q-table, the action that results in the maximum
Q value is a move to the right. For the next state (0, 1), the second row of the Q-table
suggests that the next action is still to move to the right. The agent has successfully
reached its goal. The policy guided the agent on the right set of actions to achieve
its goal:

Chapter 9

[299]

Figure 9.3.8: In this instance, the agent's policy decided to exploit the Q-table to
determine the action at states (0, 0) and (0, 1). The Q-table suggests moving to the right for both states

If the Q-learning algorithm continues to run indefinitely, the Q-table will converge.
The assumptions for convergence are that the RL problem must be a deterministic
MDP with bounded rewards, and all states are visited infinitely often.

In the next section, we will simulate the environment using Python. We will also
show the code implementation of the Q-learning algorithm.

Q-Learning in Python
The environment and the Q-learning discussed in the previous section can be
implemented in Python. Since the policy is just a simple table, at this point in time,
there is no need to use the tf.keras library. Listing 9.3.1 shows q-learning-
9.3.1.py, the implementation of the simple deterministic world (environment,
agent, action, and Q-table algorithms) using the QWorld class. For conciseness,
the functions dealing with the user interface are not shown.

In this example, the environment dynamics is represented by self.transition_
table. At every action, self.transition_table determines the next state. The
reward for executing an action is stored in self.reward_table. The two tables are
consulted every time an action is executed by the step() function. The Q-learning
algorithm is implemented by the update_q_table() function. Every time the agent
needs to decide which action to take, it calls the act() function. The action may be
randomly drawn or decided by the policy using the Q-table. The percentage chance
that the action chosen is random is stored in the self.epsilon variable, which is
updated by the update_epsilon() function using a fixed epsilon_decay.

Deep Reinforcement Learning

[300]

Before executing the code in Listing 9.3.1, we need to run:

sudo pip3 install termcolor

to install the termcolor package. This package helps in visualizing text outputs on
the Terminal.

Listing 9.3.1: q-learning-9.3.1.py

A simple deterministic MDP with six states:

from collections import deque
import numpy as np
import argparse
import os
import time
from termcolor import colored

class QWorld:
 def __init__(self):
 """Simulated deterministic world made of 6 states.
 Q-Learning by Bellman Equation.
 """
 # 4 actions
 # 0 - Left, 1 - Down, 2 - Right, 3 - Up
 self.col = 4

 # 6 states
 self.row = 6

 # setup the environment
 self.q_table = np.zeros([self.row, self.col])
 self.init_transition_table()
 self.init_reward_table()

 # discount factor
 self.gamma = 0.9

 # 90% exploration, 10% exploitation

The complete code can be found on GitHub at https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Chapter 9

[301]

 self.epsilon = 0.9
 # exploration decays by this factor every episode
 self.epsilon_decay = 0.9
 # in the long run, 10% exploration, 90% exploitation
 self.epsilon_min = 0.1

 # reset the environment
 self.reset()
 self.is_explore = True

 def reset(self):
 """start of episode"""
 self.state = 0
 return self.state

 def is_in_win_state(self):
 """agent wins when the goal is reached"""
 return self.state == 2

 def init_reward_table(self):
 """
 0 - Left, 1 - Down, 2 - Right, 3 - Up

 | 0 | 0 | 100 |

 | 0 | 0 | -100 |

 """
 self.reward_table = np.zeros([self.row, self.col])
 self.reward_table[1, 2] = 100.
 self.reward_table[4, 2] = -100.

 def init_transition_table(self):
 """
 0 - Left, 1 - Down, 2 - Right, 3 - Up

 | 0 | 1 | 2 |

 | 3 | 4 | 5 |

 """
 self.transition_table = np.zeros([self.row, self.col],

Deep Reinforcement Learning

[302]

 dtype=int)

 self.transition_table[0, 0] = 0
 self.transition_table[0, 1] = 3
 self.transition_table[0, 2] = 1
 self.transition_table[0, 3] = 0

 self.transition_table[1, 0] = 0
 self.transition_table[1, 1] = 4
 self.transition_table[1, 2] = 2
 self.transition_table[1, 3] = 1

 # terminal Goal state
 self.transition_table[2, 0] = 2
 self.transition_table[2, 1] = 2
 self.transition_table[2, 2] = 2
 self.transition_table[2, 3] = 2

 self.transition_table[3, 0] = 3
 self.transition_table[3, 1] = 3
 self.transition_table[3, 2] = 4
 self.transition_table[3, 3] = 0

 self.transition_table[4, 0] = 3
 self.transition_table[4, 1] = 4
 self.transition_table[4, 2] = 5
 self.transition_table[4, 3] = 1

 # terminal Hole state
 self.transition_table[5, 0] = 5
 self.transition_table[5, 1] = 5
 self.transition_table[5, 2] = 5
 self.transition_table[5, 3] = 5

 def step(self, action):
 """execute the action on the environment
 Argument:
 action (tensor): An action in Action space
 Returns:
 next_state (tensor): next env state
 reward (float): reward received by the agent
 done (Bool): whether the terminal state
 is reached

Chapter 9

[303]

 """
 # determine the next_state given state and action
 next_state = self.transition_table[self.state, action]
 # done is True if next_state is Goal or Hole
 done = next_state == 2 or next_state == 5
 # reward given the state and action
 reward = self.reward_table[self.state, action]
 # the enviroment is now in new state
 self.state = next_state
 return next_state, reward, done

 def act(self):
 """determine the next action
 either fr Q Table(exploitation) or
 random(exploration)
 Return:
 action (tensor): action that the agent
 must execute
 """
 # 0 - Left, 1 - Down, 2 - Right, 3 - Up
 # action is from exploration
 if np.random.rand() <= self.epsilon:
 # explore - do random action
 self.is_explore = True
 return np.random.choice(4,1)[0]

 # or action is from exploitation
 # exploit - choose action with max Q-value
 self.is_explore = False
 action = np.argmax(self.q_table[self.state])
 return action

 def update_q_table(self, state, action, reward, next_state):
 """Q-Learning - update the Q Table using Q(s, a)
 Arguments:
 state (tensor) : agent state
 action (tensor): action executed by the agent
 reward (float): reward after executing action
 for a given state
 next_state (tensor): next state after executing
 action for a given state
 """

Deep Reinforcement Learning

[304]

 # Q(s, a) = reward + gamma * max_a' Q(s', a')
 q_value = self.gamma * np.amax(self.q_table[next_state])
 q_value += reward
 self.q_table[state, action] = q_value

 def update_epsilon(self):
 """update Exploration-Exploitation mix"""
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

The perception-action-learning loop is illustrated in Listing 9.3.2. At every episode,
the environment resets to the Start state. The action to execute is chosen and applied
to the environment. The reward and next state are observed and used to update
the Q-table. The episode is completed (done = True) upon reaching the Goal or
Hole state.

For this example, the Q-learning runs for 100 episodes or 10 wins, whichever comes
first. Due to the decrease in the value of the self.epsilon variable at every episode,
the agent starts to favor exploitation of the Q-table to determine the action to perform
given a state. To see the Q-learning simulation, we simply need to run the following
command:

python3 q-learning-9.3.1.py

Listing 9.3.2: q-learning-9.3.1.py

The main Q-learning loop:

 # state, action, reward, next state iteration
 for episode in range(episode_count):
 state = q_world.reset()
 done = False
 print_episode(episode, delay=delay)
 while not done:
 action = q_world.act()
 next_state, reward, done = q_world.step(action)
 q_world.update_q_table(state, action, reward, next_state)
 print_status(q_world, done, step, delay=delay)
 state = next_state
 # if episode is done, perform housekeeping
 if done:
 if q_world.is_in_win_state():
 wins += 1
 scores.append(step)
 if wins > maxwins:

Chapter 9

[305]

 print(scores)
 exit(0)
 # Exploration-Exploitation is updated every episode
 q_world.update_epsilon()
 step = 1
 else:
 step += 1

Figure 9.3.9 shows the screenshot if maxwins = 2000 (2000x Goal state is reached)
and delay = 0. To see the final Q-table only, execute:

python3 q-learning-9.3.1.py --train

Figure 9.3.9: A screenshot showing the Q-table after 2,000 wins on the part of the agent

The Q-table has converged and shows the logical action that the agent can take given
a state. For example, in the first row or state (0, 0), the policy advises a move to the
right. The same goes for the state (0, 1) on the second row. The second action reaches
the Goal state. The scores variable dump shows that the minimum number of steps
taken decreases as the agent gets correct actions from the policy.

From Figure 9.3.9, we can compute the value of each state from Equation 9.2.2,
𝑉𝑉∗(𝑠𝑠) = max

𝑎𝑎
𝑄𝑄(𝑠𝑠, 𝑎𝑎) . For example, for state (0, 0), 𝑉𝑉∗(𝑠𝑠) = max

𝑎𝑎
(0.0, 72.9, 90.0, 81.0) = 90 .

Deep Reinforcement Learning

[306]

Figure 9.3.10 shows the value for each state.

Figure 9.3.10: The value for each state from Figure 9.3.9 and Equation 9.2.2

This simple example illustrated all elements of Q-learning for an agent in a simple
deterministic world. In the next section, we will present the slight modification
needed to take stochasticity into account.

4. Nondeterministic environment
In the event that the environment is nondeterministic, both the reward and action are
probabilistic. The new system is a stochastic MDP. To reflect the nondeterministic
reward, the new value function is:

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝔼𝔼⟦𝑅𝑅𝑡𝑡⟧ = 𝔼𝔼⟦∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
r𝑡𝑡+𝑘𝑘⟧ (Equation 9.4.1)

The Bellman equation is modified as:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝑠𝑠′ ⟦𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)⟧ (Equation 9.4.2)

However, in this chapter, we will focus on deterministic environments. In the next
section, we will present a more generalized Q-learning algorithm called Temporal-
Difference (TD) learning.

Chapter 9

[307]

5. Temporal-difference learning
Q-learning is a special case of a more generalized TD learning, 𝑇𝑇𝑇𝑇(𝜆𝜆) . More
specifically, it is a special case of one-step TD learning, TD(0):

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 (𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)) (Equation 9.5.1)

Where 𝛼𝛼 is the learning rate. Note that when 𝛼𝛼 = 1 , Equation 9.5.1 is similar to the
Bellman equation. For simplicity, we also refer to Equation 9.5.1 as Q-learning, or
generalized Q-learning.

Previously, we referred to Q-learning as an off-policy RL algorithm since it learns
the Q value function without directly using the policy that it is trying to optimize.
An example of an on-policy one-step TD-learning algorithm is SARSA, which is
similar to Equation 9.5.1:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼(𝑟𝑟 + 𝛾𝛾𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)) (Equation 9.5.2)

The main difference is the use of the policy that is being optimized to determine 𝑎𝑎′ .
The terms 𝑠𝑠 , 𝑎𝑎 , 𝑟𝑟 , 𝑠𝑠′ , and 𝑎𝑎′ (thus the name SARSA) must be known to update the Q
value function every iteration. Both Q-learning and SARSA use existing estimates
in the Q value iteration, a process known as bootstrapping. In bootstrapping, we
update the current Q value estimate from the reward and the subsequent Q value
estimate(s).

Before presenting another example, there appears to be a need for a suitable RL
simulation environment. Otherwise, we can only run RL simulations on very simple
problems like in the previous example. Fortunately, OpenAI created Gym, https://
gym.openai.com, which we'll cover in the following section.

Q-learning on OpenAI Gym
OpenAI Gym is a toolkit for developing and comparing RL algorithms. It works with
most DL libraries, including tf.keras. The gym can be installed by running the
following command:

sudo pip3 install gym

https://gym.openai.com
https://gym.openai.com

Deep Reinforcement Learning

[308]

The gym has several environments where an RL algorithm can be tested against,
such as toy text, classic control, algorithmic, Atari, and two-dimensional/three-
dimensional robots. For example, FrozenLake-v0 (Figure 9.5.1) is a toy text
environment similar to the simple deterministic world used in the Q-learning in
Python example:

Figure 9.5.1: The FrozenLake-v0 environment in OpenAI Gym

FrozenLake-v0 has 12 states, the state marked S is the starting state, F is the frozen
part of the lake, which is safe, H is the Hole state, which should be avoided, and G is
the Goal state where the frisbee is located. The reward is +1 for transitioning to the
Goal state. For all other states, the reward is zero.

In FrozenLake-v0, there are also four available actions (left, down, right, up) known
as action space. However, unlike the simple deterministic world earlier, the actual
movement direction is only partially dependent on the chosen action. There are
two variations of the FrozenLake-v0 environment; slippery and non-slippery. As
expected, the slippery mode is more challenging.

An action applied to FrozenLake-v0 returns the observation (equivalent to the next
state), reward, done (whether the episode is finished), and a dictionary of debugging
information. The observable attributes of the environment, known as observation
space, are captured by the returned observation object.

Generalized Q-learning can be applied to the FrozenLake-v0 environment. Table
9.5.1 shows the improvement in performance of both slippery and non-slippery
environments. A method of measuring the performance of the policy is the
percentage of episodes executed that resulted in reaching the Goal state. The higher
the percentage, the better. From the baseline of pure exploration (random action) of
about 1.5%, the policy can achieve ~76% Goal state for the non-slippery environment
and ~71% for the slippery environment. As expected, it is harder to control the
slippery environment.

Chapter 9

[309]

Mode Run Approx % Goal
Train non-slippery python3 q-frozenlake-9.5.1.py 26
Test non-slippery python3 q-frozenlake-9.5.1.py -d 76
Pure random action
non-slippery

python3 q-frozenlake-9.5.1.py -e 1.5

Train slippery python3 q-frozenlake-9.5.1.py -s 26
Test slippery python3 q-frozenlake-9.5.1.py -s -d 71
Pure random slippery python3 q-frozenlake-9.5.1.py -s -e 1.5

Table 9.5.1: Baseline and performance of generalized Q-learning on the
FrozenLake-v0 environment with a learning rate = 0.5

The code can still be implemented in Python and NumPy since it only requires a
Q-table. Listing 9.5.1 shows the implementation of the QAgent class. Apart from using
the FrozenLake-v0 environment from OpenAI Gym, the most important change is
the implementation of the generalized Q-learning, as defined by Equation 9.5.1 in the
update_q_table() function.

Listing 9.5.1: q-frozenlake-9.5.1.py

Q-learning on the FrozenLake-v0 environment:

from collections import deque
import numpy as np
import argparse
import os
import time
import gym
from gym import wrappers, logger

class QAgent:
 def __init__(self,
 observation_space,
 action_space,
 demo=False,
 slippery=False,
 episodes=40000):
 """Q-Learning agent on FrozenLake-v0 environment

 Arguments:
 observation_space (tensor): state space
 action_space (tensor): action space
 demo (Bool): whether for demo or training
 slippery (Bool): 2 versions of FLv0 env

Deep Reinforcement Learning

[310]

 episodes (int): number of episodes to train
 """

 self.action_space = action_space
 # number of columns is equal to number of actions
 col = action_space.n
 # number of rows is equal to number of states
 row = observation_space.n
 # build Q Table with row x col dims
 self.q_table = np.zeros([row, col])

 # discount factor
 self.gamma = 0.9

 # initially 90% exploration, 10% exploitation
 self.epsilon = 0.9
 # iteratively applying decay til
 # 10% exploration/90% exploitation
 self.epsilon_min = 0.1
 self.epsilon_decay = self.epsilon_min / self.epsilon
 self.epsilon_decay = self.epsilon_decay ** \
 (1. / float(episodes))

 # learning rate of Q-Learning
 self.learning_rate = 0.1

 # file where Q Table is saved on/restored fr
 if slippery:
 self.filename = 'q-frozenlake-slippery.npy'
 else:
 self.filename = 'q-frozenlake.npy'

 # demo or train mode
 self.demo = demo
 # if demo mode, no exploration
 if demo:
 self.epsilon = 0

 def act(self, state, is_explore=False):
 """determine the next action
 if random, choose from random action space
 else use the Q Table
 Arguments:

Chapter 9

[311]

 state (tensor): agent's current state
 is_explore (Bool): exploration mode or not
 Return:
 action (tensor): action that the agent
 must execute
 """
 # 0 - left, 1 - Down, 2 - Right, 3 - Up
 if is_explore or np.random.rand() < self.epsilon:
 # explore - do random action
 return self.action_space.sample()

 # exploit - choose action with max Q-value
 action = np.argmax(self.q_table[state])
 return action

 def update_q_table(self, state, action, reward, next_state):
 """TD(0) learning (generalized Q-Learning) with learning rate
 Arguments:
 state (tensor): environment state
 action (tensor): action executed by the agent for
 the given state
 reward (float): reward received by the agent for
 executing the action
 next_state (tensor): the environment next state
 """
 # Q(s, a) +=
 # alpha * (reward + gamma * max_a' Q(s', a') - Q(s, a))
 q_value = self.gamma * np.amax(self.q_table[next_state])
 q_value += reward
 q_value -= self.q_table[state, action]
 q_value *= self.learning_rate
 q_value += self.q_table[state, action]
 self.q_table[state, action] = q_value

 def update_epsilon(self):
 """adjust epsilon"""
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

Listing 9.5.2 demonstrates the agent's perception-action-learning loop. At every
episode, the environment resets by calling env.reset(). The action to execute is
chosen by agent.act() and applied to the environment by env.step(action). The
reward and next state are observed and used to update the Q-table.

Deep Reinforcement Learning

[312]

After every action, the TD learning is executed by agent.update_q_table(). Due
to the decrease in the value of the self.epsilon variable at every episode's call
to agent.update_epsilon(), the agent starts to favor exploitation of Q-table to
determine the action to perform given a state. The episode is completed (done =
True) upon reaching the Goal or Hole state. For this example, the TD learning runs
for 4,000 episodes.

Listing 9.5.2: q-frozenlake-9.5.1.py.

Q-learning loop for the FrozenLake-v0 environment:

 # loop for the specified number of episode
 for episode in range(episodes):
 state = env.reset()
 done = False
 while not done:
 # determine the agent's action given state
 action = agent.act(state, is_explore=args.explore)
 # get observable data
 next_state, reward, done, _ = env.step(action)
 # clear the screen before rendering the environment
 os.system('clear')
 # render the environment for human debugging
 env.render()
 # training of Q Table
 if done:
 # update exploration-exploitation ratio
 # reward > 0 only when Goal is reached
 # otherwise, it is a Hole
 if reward > 0:
 wins += 1

 if not args.demo:
 agent.update_q_table(state,
 action,
 reward,
 next_state)
 agent.update_epsilon()

 state = next_state
 percent_wins = 100.0 * wins / (episode + 1)

Chapter 9

[313]

The agent object can operate in either slippery or non-slippery mode. After training,
the agent can exploit the Q-table to choose the action to execute given any policy, as
shown in the test mode of Table 9.5.1. There is a huge performance boost in using the
learned policy as demonstrated in Table 9.5.1. With the use of the gym, many lines
of code in constructing the environment are no longer needed. For example, unlike
in the previous example, with the use of OpenAI Gym, we do not need to create the
state transition table and the rewards table.

This will help us to focus on building a working RL algorithm. To run the code in
slow motion or have a delay of 1 second per action:

python3 q-frozenlake-9.5.1.py -d -t=1

In this section, we demonstrated Q-learning on a more challenging environment.
We also introduced the OpenAI Gym. However, our environment is still a toy
environment. What if we have a huge number of states or actions? In that case, it
is no longer feasible to use a Q-table. In the next section, we will use a deep neural
network to learn the Q-table.

6. Deep Q-Network (DQN)
Using the Q-table to implement Q-learning is fine in small discrete environments.
However, when the environment has numerous states or is continuous, as in most
cases, a Q-table is not feasible or practical. For example, if we are observing a state
made of four continuous variables, the size of the table is infinite. Even if we attempt
to discretize the four variables into 1,000 values each, the total number of rows in the
table is a staggering 10004 = 1e12. Even after training, the table is sparse – most of the
cells in this table are zero.

A solution to this problem is called DQN [2], which uses a deep neural network
to approximate the Q-table, as shown in Figure 9.6.1. There are two approaches
to building the Q-network:

• The input is the state-action pair, and the prediction is the Q value
• The input is the state, and the prediction is the Q value for each action

The first option is not optimal since the network will be called a number of times
equal to the number of actions. The second is the preferred method. The Q-network
is called only once.

Deep Reinforcement Learning

[314]

The most desirable action is simply the action with the biggest Q value.

Figure 9.6.1: A deep Q-network

The data required to train the Q-network comes from the agent's experiences:
(s0a0𝑟𝑟1s1, s1a1𝑟𝑟2s2,… , s𝑇𝑇−1a𝑇𝑇−1𝑟𝑟𝑇𝑇s𝑇𝑇) . Each training sample is a unit of experience,
s𝑡𝑡a𝑡𝑡𝑟𝑟𝑡𝑡+1s𝑡𝑡+1 . At a given state at timestep 𝑡𝑡 , 𝑠𝑠 = s𝑡𝑡 , the action, 𝑎𝑎 = a𝑡𝑡 , is determined
using the Q-learning algorithm similar to the previous section:

𝜋𝜋(𝑠𝑠) = {
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 < 𝜀𝜀

argmax
𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑠𝑠) 𝑟𝑟𝑜𝑜ℎ𝑠𝑠𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠 (Equation 9.6.1)

For notational simplicity, we omit the subscript and the use of bold letters. Note that
𝑄𝑄(𝑠𝑠, 𝑎𝑎) is the Q-network. Strictly speaking, it is 𝑄𝑄(𝑎𝑎|𝑠𝑠) since the action is moved to
the prediction stage (in other words, output) as shown on the right of Figure 9.6.1.
The action with the highest Q value is the action that is applied to the environment
to get the reward, 𝑟𝑟 = 𝑟𝑟𝑡𝑡+1 , the next state, 𝑠𝑠′ = s𝑡𝑡+1 , and a Boolean done, indicating
whether the next state is terminal. From Equation 9.5.1 on generalized Q-learning,
an MSE loss function can be determined by applying the chosen action:

ℒ = (𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎))
2
 (Equation 9.6.2)

where all terms are familiar from the previous discussion on Q-learning and
𝑄𝑄(𝑎𝑎|𝑠𝑠) → 𝑄𝑄(𝑠𝑠, 𝑎𝑎) . The term max

𝑎𝑎′
𝑄𝑄(𝑎𝑎′|𝑠𝑠′) → max

𝑎𝑎′
𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) . In other words,

using the Q-network, predict the Q value of each action given the next state
and get the maximum from among them. Note that at the terminal state, 𝑠𝑠′ ,
max
𝑎𝑎′ 𝑄𝑄(𝑎𝑎′|𝑠𝑠′) = max

𝑎𝑎′ 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) = 0 .

Chapter 9

[315]

However, it turns out that training the Q-network is unstable. There are two
problems causing the instability: 1) high correlation between samples; and 2) a non-
stationary target. A high correlation is due to the sequential nature of sampling
experiences. DQN addressed this issue by creating a buffer of experiences. The
training data is randomly sampled from this buffer. This process is known as
experience replay.

The issue of the non-stationary target is due to the target network 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) that is
modified after every mini batch of training. A small change in the target network can
create a significant change in the policy, the data distribution, and the correlation
between the current Q value and target Q value. This is resolved by freezing the
weights of the target network for 𝐶𝐶 training steps. In other words, two identical
Q-networks are created. The target Q-network parameters are copied from the
Q-network under training every 𝐶𝐶 training steps.

The deep Q-network algorithm is summarized in Algorithm 9.6.1.

Algorithm 9.6.1: DQN algorithm

Require: Initialize replay memory 𝐷𝐷 to capacity 𝑁𝑁

Require: Initialize action-value function 𝑄𝑄 with random weights 𝜃𝜃

Require: Initialize target action-value function 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with weights 𝜃𝜃− = 𝜃𝜃

Require: Exploration rate, 𝜀𝜀 , and discount factor, γ

1. for episode = 1, … , M, do:
2. Given initial state s
3. for step = 1, … , T do:

4. Choose action 𝑎𝑎 = {
𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 < 𝜀𝜀

argmax
𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃) 𝑟𝑟𝑜𝑜ℎ𝑠𝑠𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

5. Execute action 𝑎𝑎 , observe reward r, and Next state 𝑠𝑠′
6. Store transition (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) in 𝐷𝐷
7. Update the state, 𝑠𝑠 = 𝑠𝑠′
8. // experience replay
9. Sample a mini batch of episode experiences (𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗, 𝑟𝑟𝑗𝑗+1, 𝑠𝑠𝑗𝑗+1) from 𝐷𝐷

10. 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = {
𝑟𝑟𝑗𝑗+1 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑗𝑗 + 1

𝑟𝑟𝑗𝑗+1 + γmax
𝑚𝑚𝑗𝑗+1

𝑄𝑄𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑗𝑗+1, 𝑡𝑡𝑗𝑗+1; 𝜃𝜃−) 𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

Deep Reinforcement Learning

[316]

11. Perform gradient descent step on (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄(𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗; 𝜃𝜃))
2
 w.r.t. parameters 𝜃𝜃

12. // periodic update of target network
13. Every 𝐶𝐶 steps, 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑄𝑄 , in other words, set 𝜃𝜃− = 𝜃𝜃
14. end
15. end

Algorithm 9.6.1 sums up all the techniques needed in order to implement Q-learning
on environments with discrete action space and continuous state space. In the next
section, we will demonstrate how DQN is used in a more challenging OpenAI Gym
environment.

DQN on Keras
To illustrate DQN, the CartPole-v0 environment of the OpenAI Gym is used.
CartPole-v0 is a pole balancing problem. The goal is to keep the pole from falling
over. The environment is two dimensional. The action space is made of two discrete
actions (left and right movements). However, the state space is continuous and
comprises four variables:

• Linear position
• Linear velocity
• Angle of rotation
• Angular velocity

The CartPole-v0 environment is shown in Figure 9.6.1:

Figure 9.6.1: The CartPole-v0 environment

Chapter 9

[317]

Initially, the pole is upright. A reward of +1 is provided for every timestep that the
pole remains upright. The episode ends when the pole exceeds 15 degrees from the
vertical, or 2.4 units from the center. The CartPole-v0 problem is considered solved
if the average reward is 195.0 in 100 consecutive trials:

Listing 9.6.1 shows us the DQN implementation for CartPole-v0. The DQNAgent
class represents the agent using DQN. Two Q-networks are created:

• A Q-network, or Q, in Algorithm 9.6.1
• A target Q-network, or Qtarget, in Algorithm 9.6.1

Both networks are MLP with 3 hidden layers of 256 units each. Both networks
are created by means of the build_model() method. The Q-network is trained
during experience replay, replay(). At a regular interval of C = 10 training steps, the
Q-network parameters are copied to the target Q-network by update_weights().
This implements line 13, Qtarget = Q, in Algorithm 9.6.1. After every episode, the ratio
of exploration-exploitation is decreased by update_epsilon() to take advantage of
the learned policy.

Listing 9.6.1: dqn-cartpole-9.6.1.py

DQN in tf.keras:

class DQNAgent:
 def __init__(self,
 state_space,
 action_space,
 episodes=500):
 """DQN Agent on CartPole-v0 environment

 Arguments:
 state_space (tensor): state space
 action_space (tensor): action space
 episodes (int): number of episodes to train
 """
 self.action_space = action_space

 # experience buffer
 self.memory = []

 # discount rate
 self.gamma = 0.9

 # initially 90% exploration, 10% exploitation
 self.epsilon = 1.0

Deep Reinforcement Learning

[318]

 # iteratively applying decay til
 # 10% exploration/90% exploitation
 self.epsilon_min = 0.1
 self.epsilon_decay = self.epsilon_min / self.epsilon
 self.epsilon_decay = self.epsilon_decay ** \
 (1. / float(episodes))

 # Q Network weights filename
 self.weights_file = 'dqn_cartpole.h5'
 # Q Network for training
 n_inputs = state_space.shape[0]
 n_outputs = action_space.n
 self.q_model = self.build_model(n_inputs, n_outputs)
 self.q_model.compile(loss='mse', optimizer=Adam())
 # target Q Network
 self.target_q_model = self.build_model(n_inputs, n_outputs)
 # copy Q Network params to target Q Network
 self.update_weights()

 self.replay_counter = 0
 self.ddqn = True if args.ddqn else False

 def build_model(self, n_inputs, n_outputs):
 """Q Network is 256-256-256 MLP

 Arguments:
 n_inputs (int): input dim
 n_outputs (int): output dim

 Return:
 q_model (Model): DQN
 """
 inputs = Input(shape=(n_inputs,), name='state')
 x = Dense(256, activation='relu')(inputs)
 x = Dense(256, activation='relu')(x)
 x = Dense(256, activation='relu')(x)
 x = Dense(n_outputs,
 activation='linear',
 name='action')(x)
 q_model = Model(inputs, x)
 q_model.summary()
 return q_model

Chapter 9

[319]

 def act(self, state):
 """eps-greedy policy
 Return:
 action (tensor): action to execute
 """
 if np.random.rand() < self.epsilon:
 # explore - do random action
 return self.action_space.sample()

 # exploit
 q_values = self.q_model.predict(state)
 # select the action with max Q-value
 action = np.argmax(q_values[0])
 return action

 def remember(self, state, action, reward, next_state, done):
 """store experiences in the replay buffer
 Arguments:
 state (tensor): env state
 action (tensor): agent action
 reward (float): reward received after executing
 action on state
 next_state (tensor): next state
 """
 item = (state, action, reward, next_state, done)
 self.memory.append(item)

 def get_target_q_value(self, next_state, reward):
 """compute Q_max
 Use of target Q Network solves the
 non-stationarity problem
 Arguments:
 reward (float): reward received after executing
 action on state
 next_state (tensor): next state
 Return:
 q_value (float): max Q-value computed by
 DQN or DDQN
 """
 # max Q value among next state's actions
 if self.ddqn:
 # DDQN

Deep Reinforcement Learning

[320]

 # current Q Network selects the action
 # a'_max = argmax_a' Q(s', a')
 action = np.argmax(self.q_model.predict(next_state)[0])
 # target Q Network evaluates the action
 # Q_max = Q_target(s', a'_max)
 q_value = self.target_q_model.predict(\
 next_state)[0][action]
 else:
 # DQN chooses the max Q value among next actions
 # selection and evaluation of action is
 # on the target Q Network
 # Q_max = max_a' Q_target(s', a')
 q_value = np.amax(\
 self.target_q_model.predict(next_state)[0])

 # Q_max = reward + gamma * Q_max
 q_value *= self.gamma
 q_value += reward
 return q_value

 def replay(self, batch_size):
 """experience replay addresses the correlation issue
 between samples
 Arguments:
 batch_size (int): replay buffer batch
 sample size
 """
 # sars = state, action, reward, state' (next_state)
 sars_batch = random.sample(self.memory, batch_size)
 state_batch, q_values_batch = [], []

 # fixme: for speedup, this could be done on the tensor level
 # but easier to understand using a loop
 for state, action, reward, next_state, done in sars_batch:
 # policy prediction for a given state
 q_values = self.q_model.predict(state)

 # get Q_max
 q_value = self.get_target_q_value(next_state, reward)

 # correction on the Q value for the action used
 q_values[0][action] = reward if done else q_value

Chapter 9

[321]

 # collect batch state-q_value mapping
 state_batch.append(state[0])
 q_values_batch.append(q_values[0])

 # train the Q-network
 self.q_model.fit(np.array(state_batch),
 np.array(q_values_batch),
 batch_size=batch_size,
 epochs=1,
 verbose=0)

 # update exploration-exploitation probability
 self.update_epsilon()

 # copy new params on old target after
 # every 10 training updates
 if self.replay_counter % 10 == 0:
 self.update_weights()

 self.replay_counter += 1

 def update_epsilon(self):
 """decrease the exploration, increase exploitation"""
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

To implement line 10 in Algorithm 9.6.1 during experience replay replay(), for each
experience unit (sj, aj, rj+1, and sj+1) the Q value for the action aj is set to Qmax. All other
actions have their Q values unchanged.

This is implemented by the following lines in the DQNAgent replay() function:

policy prediction for a given state q_values = self.q_model.
predict(state)

get Q_max
q_value = self.get_target_q_value(next_state)

correction on the Q value for the action used q_values[0][action] =
reward if done else q_value

Deep Reinforcement Learning

[322]

Only the action aj has a non-zero loss equal to (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄(𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗; 𝜃𝜃))
2
 , as shown by

line 11 of Algorithm 9.6.1. Note that the experience replay is called by the perception-
action-learning loop in Listing 9.6.2 after the end of each episode, assuming that
there is sufficient data in the buffer (in other words, the buffer size is greater than,
or equal to, the batch size). During experience replay, one batch of experience units
is randomly sampled and used to train the Q-network.

Similar to the Q-table, act() implements the 𝜖𝜖 -greedy policy, Equation 9.6.1.

Experiences are stored by remember() in the replay buffer. Q is computed by means
of the get_target_q_value() function.

Listing 9.6.2 summarizes the agent's perception-action-learning loop. At every
episode, the environment resets by calling env.reset(). The action to execute
is chosen by agent.act() and applied to the environment by env.step(action).
The reward and next state are observed and stored in the replay buffer. After
every action, the agent calls replay() to train the DQN and adjust the exploration-
exploitation ratio.

The episode is completed (done = True) when the pole exceeds 15 degrees from
the vertical, or 2.4 units from the center. For this example, Q-learning runs for
a maximum of 3,000 episodes if the DQN agent cannot solve the problem. The
CartPole-v0 problem is considered solved if the average mean_score reward is
195.0 over 100 consecutive trials, win_trials.

Listing 9.6.2: dqn-cartpole-9.6.1.py

Training loop of DQN in tf.keras:

 # Q-Learning sampling and fitting
 for episode in range(episode_count):
 state = env.reset()
 state = np.reshape(state, [1, state_size])
 done = False
 total_reward = 0
 while not done:
 # in CartPole-v0, action=0 is left and action=1 is right
 action = agent.act(state)
 next_state, reward, done, _ = env.step(action)
 # in CartPole-v0:
 # state = [pos, vel, theta, angular speed]
 next_state = np.reshape(next_state, [1, state_size])
 # store every experience unit in replay buffer
 agent.remember(state, action, reward, next_state, done)
 state = next_state

Chapter 9

[323]

 total_reward += reward

 # call experience relay
 if len(agent.memory) >= batch_size:
 agent.replay(batch_size)

 scores.append(total_reward)
 mean_score = np.mean(scores)
 if mean_score >= win_reward[args.env_id] \
 and episode >= win_trials:
 print("Solved in episode %d: \
 Mean survival = %0.2lf in %d episodes"
 % (episode, mean_score, win_trials))
 print("Epsilon: ", agent.epsilon)
 agent.save_weights()
 break
 if (episode + 1) % win_trials == 0:
 print("Episode %d: Mean survival = \
 %0.2lf in %d episodes" %
 ((episode + 1), mean_score, win_trials))

Across the average of 10 runs, CartPole-v0 is solved by DQN within 822 episodes.
We need to take note that the results may vary every time the training runs.

Since the introduction of DQN, successive papers have proposed improvements
to Algorithm 9.6.1. One good example is Double DQN (DDQN), which is discussed
next.

Double Q-learning (DDQN)
In DQN, the target Q-network selects and evaluates every action, resulting in an
overestimation of the Q value. To resolve this issue, DDQN [3] proposes to use the
Q-network to choose the action and use the target Q-network to evaluate the action.

In DQN, as summarized by Algorithm 9.6.1, the estimate of the Q value in line 10 is:

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = {
𝑟𝑟𝑗𝑗+1 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑗𝑗 + 1

𝑟𝑟𝑗𝑗+1 + γmax
𝑚𝑚𝑗𝑗+1

𝑄𝑄𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑗𝑗+1, 𝑡𝑡𝑗𝑗+1; 𝜃𝜃−) 𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

• 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 chooses and evaluates the action, 𝑎𝑎𝑗𝑗+1 .

Deep Reinforcement Learning

[324]

DDQN proposes to change line 10 to:

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

= {
𝑟𝑟𝑗𝑗+1 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑗𝑗 + 1

𝑟𝑟𝑗𝑗+1 + γ 𝑄𝑄𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑗𝑗+1, argmax
𝑚𝑚𝑗𝑗+1

𝑄𝑄(𝑒𝑒𝑗𝑗+1, 𝑡𝑡𝑗𝑗+1; 𝜃𝜃) ; 𝜃𝜃−) 𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

The term argmax
𝑎𝑎𝑗𝑗+1

𝑄𝑄(𝑠𝑠𝑗𝑗+1, 𝑎𝑎𝑗𝑗+1; 𝜃𝜃) lets the Q function to choose the action. Then, this

action is evaluated by 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 .

Listing 9.6.3 shows when we create a new DDQNAgent class, which inherits from
the DQNAgent class. Only the get_target_q_value() method is overridden to
implement the change in the computation of the maximum Q value.

Listing 9.6.3: dqn-cartpole-9.6.1.py:

class DDQNAgent(DQNAgent):
 def __init__(self,
 state_space,
 action_space,
 episodes=500):
 super().__init__(state_space,
 action_space,
 episodes)
 """DDQN Agent on CartPole-v0 environment

 Arguments:
 state_space (tensor): state space
 action_space (tensor): action space
 episodes (int): number of episodes to train
 """

 # Q Network weights filename
 self.weights_file = 'ddqn_cartpole.h5'

 def get_target_q_value(self, next_state, reward):
 """compute Q_max
 Use of target Q Network solves the
 non-stationarity problem
 Arguments:
 reward (float): reward received after executing
 action on state
 next_state (tensor): next state
 Returns:

Chapter 9

[325]

 q_value (float): max Q-value computed
 """
 # max Q value among next state's actions
 # DDQN
 # current Q Network selects the action
 # a'_max = argmax_a' Q(s', a')
 action = np.argmax(self.q_model.predict(next_state)[0])
 # target Q Network evaluates the action
 # Q_max = Q_target(s', a'_max)
 q_value = self.target_q_model.predict(\
 next_state)[0][action]

 # Q_max = reward + gamma * Q_max
 q_value *= self.gamma
 q_value += reward
 return q_value

For comparison, across the average of 10 runs, CartPole-v0 is solved by DDQN
within 971 episodes. To use DDQN, run the following command:

python3 dqn-cartpole-9.6.1.py -d

Both DQN and DDQN demonstrated that with DL, Q-learning was able to scale
up and solve problems with continuous state space and discrete action space. In
this chapter, we demonstrated DQN only on one of the simplest problems with
continuous state space and discrete action space. In the original paper, DQN [2]
demonstrated that it can achieve super-human levels of performance in many
Atari games.

7. Conclusion
In this chapter, we've been introduced to DRL, a powerful technique believed by
many researchers to be the most promising lead toward AI. We have gone over the
principles of RL. RL is able to solve many toy problems, but the Q-table is unable to
scale to more complex real-world problems. The solution is to learn the Q-table using
a deep neural network. However, training deep neural networks on RL is highly
unstable due to sample correlation and the non-stationarity of the target Q-network.

DQN proposed a solution to these problems using experience replay and separating
the target network from the Q-network under training. DDQN suggested
further improvement of the algorithm by separating the action selection from
action evaluation to minimize the overestimation of the Q value. There are other
improvements proposed for the DQN. Prioritized experience replay [6] argues that
the experience buffer should not be sampled uniformly.

Deep Reinforcement Learning

[326]

Instead, experiences that are more important based on TD errors should be sampled
more frequently to accomplish more efficient training. [7] proposes a dueling
network architecture to estimate the state value function and the advantage function.
Both functions are used to estimate the Q value for faster learning.

The approach presented in this chapter is value iteration/fitting. The policy is
learned indirectly by finding an optimal value function. In the next chapter, the
approach will be to learn the optimal policy directly by using a family of algorithms
called policy gradient methods. Learning the policy has many advantages. In
particular, policy gradient methods can deal with both discrete and continuous
action spaces.

8. References
1. Sutton and Barto: Reinforcement Learning: An Introduction, 2017 (http://

incompleteideas.net/book/bookdraft2017nov5.pdf).
2. Volodymyr Mnih et al.: Human-level Control through Deep Reinforcement

Learning. Nature 518.7540, 2015: 529 (http://www.davidqiu.com:8888/
research/nature14236.pdf).

3. Hado Van Hasselt, Arthur Guez, and David Silver: Deep Reinforcement
Learning with Double Q-Learning. AAAI. Vol. 16, 2016 (http://www.aaai.
org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847).

4. Kai Arulkumaran et al.: A Brief Survey of Deep Reinforcement Learning. arXiv
preprint arXiv:1708.05866, 2017 (https://arxiv.org/pdf/1708.05866.
pdf).

5. David Silver: Lecture Notes on Reinforcement Learning (http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching.html).

6. Tom Schaul et al.: Prioritized experience replay. arXiv preprint arXiv:1511.05952,
2015 (https://arxiv.org/pdf/1511.05952.pdf).

7. Ziyu Wang et al.: Dueling Network Architectures for Deep Reinforcement
Learning. arXiv preprint arXiv:1511.06581, 2015 (https://arxiv.org/
pdf/1511.06581.pdf).

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
http://www.davidqiu.com:8888/research/nature14236.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://arxiv.org/pdf/1708.05866.pdf
https://arxiv.org/pdf/1708.05866.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://arxiv.org/pdf/1511.05952.pdf
https://arxiv.org/pdf/1511.06581.pdf
https://arxiv.org/pdf/1511.06581.pdf

[327]

10
Policy Gradient Methods

In this chapter, we're going to introduce algorithms that directly optimize the
policy network in reinforcement learning. These algorithms are collectively referred
to as policy gradient methods. Since the policy network is directly optimized during
training, the policy gradient methods belong to the family of on-policy reinforcement
learning algorithms. Like value-based methods, which we discussed in Chapter 9,
Deep Reinforcement Learning, policy gradient methods can also be implemented as
deep reinforcement learning algorithms.

A fundamental motivation in studying the policy gradient methods is addressing
the limitations of Q-learning. We'll recall that Q-learning is about selecting the
action that maximizes the value of the state. With the Q function, we're able to
determine the policy that enables the agent to decide on which action to take for a
given state. The chosen action is simply the one that gives the agent the maximum
value. In this respect, Q-learning is limited to a finite number of discrete actions.
It's not able to deal with continuous action space environments. Furthermore,
Q-learning is not directly optimizing the policy. In the end, reinforcement learning
is about finding that optimal policy that the agent will be able to use in order to
decide upon which action it should take in order to maximize the return.

In contrast, policy gradient methods are applicable to environments with discrete
or continuous action spaces. In addition, the four policy gradient methods that we
will be presenting in this chapter are directly optimizing the performance measure
of the policy network. This results in a trained policy network that the agent can
use to act in its environment optimally.

Policy Gradient Methods

[328]

In summary, the goal of this chapter is to present:

• The policy gradient theorem
• Four policy gradient methods: REINFORCE, REINFORCE with baseline,

Actor-Critic, and Advantage Actor-Critic (A2C)
• A guide on how to implement the policy gradient methods in tf.keras in

a continuous action space environment

Let's begin by getting into the theorem.

1. Policy gradient theorem
As discussed in Chapter 9, Deep Reinforcement Learning, the agent is situated in
an environment that is in state st, an element of state space, 𝒮𝒮 . The state space 𝒮𝒮
may be discrete or continuous. The agent takes an action 𝑎𝑎𝑡𝑡 from the action space
𝒜𝒜 by obeying the policy, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) . 𝒜𝒜 may be discrete or continuous. As a result
of executing the action 𝑎𝑎𝑡𝑡 , the agent receives a reward rt+1 and the environment
transitions to a new state, st+1. The new state is dependent only on the current state
and action. The goal of the agent is to learn an optimal policy 𝜋𝜋∗ that maximizes
the return from all states:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑅𝑅𝑡𝑡 (Equation 9.1.1)

The return, Rt, is defined as the discounted cumulative reward from time t until
the end of the episode or when the terminal state is reached:

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝑅𝑅𝑡𝑡 = ∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
𝑟𝑟𝑡𝑡+𝑘𝑘 (Equation 9.1.2)

From Equation 9.1.2, the return can also be interpreted as a value of a given state
by following the policy 𝜋𝜋 . It can be observed from Equation 9.1.1 that future
rewards have lower weights compared to immediate rewards since generally,
𝛾𝛾𝑘𝑘 < 1.0 where 𝛾𝛾 ∈ [0,1] .

So far, we have only considered learning the policy by optimizing a value-based
function, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) .

Our goal in this chapter is to directly learn the policy by parameterizing
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) → 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) . By means of parameterization, we can use a neural network
to learn the policy function.

Chapter 10

[329]

Learning the policy means that we are going to maximize a certain objective
function, 𝒥𝒥(𝜃𝜃) , which is a performance measure with respect to parameter 𝜃𝜃 .
In episodic reinforcement learning, the performance measure is the value of the
start state. In a continuous case, the objective function is the average reward rate.

Maximizing the objective function, 𝒥𝒥(𝜃𝜃) , is done by performing gradient ascent.
In gradient ascent, the gradient update is in the direction of the derivative of
the function being optimized. So far, all our loss functions are optimized by
minimization or by performing gradient descent. Later, in the tf.keras implementation,
we will see that gradient ascent can be performed by simply negating the objective
function and performing gradient descent.

The advantage of learning the policy directly is that it can be applied to both
discrete and continuous action spaces. For discrete action spaces:

𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑡𝑡, 𝜽𝜽) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠(𝑎𝑎𝑖𝑖) 𝑠𝑠𝑠𝑠𝑓𝑓 𝑎𝑎𝑖𝑖 ∈ 𝒜𝒜 (Equation 10.1.1)

where 𝑎𝑎𝑖𝑖 is the i-th action. 𝑎𝑎𝑖𝑖 can be the prediction of a neural network or a linear
function of state-action features:

𝑎𝑎𝑖𝑖 = 𝜙𝜙(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑖𝑖)𝑇𝑇 𝜃𝜃 (Equation 10.1.2)

𝜙𝜙(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑖𝑖) is any function, such as an encoder, that converts the state-action to features.

𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑡𝑡, 𝜃𝜃) determines the probability of each 𝑎𝑎𝑖𝑖 . For example, in the cartpole
balancing problem in the previous chapter, the goal is to keep the pole upright by
moving the cart along the two-dimensional axis to the left or to the right. In this
case, 𝑎𝑎0 and 𝑎𝑎1 are the probabilities of the left and right movements, respectively. In
general, the agent takes the action with the highest probability, 𝑎𝑎𝑡𝑡 = max

𝑖𝑖
𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

For continuous action spaces, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) samples an action from a probability
distribution given the state. For example, if the continuous action space is the range
𝑎𝑎𝑡𝑡 ∈ [−1.0, 1.0] , then 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) is usually a Gaussian distribution whose mean and
standard deviation are predicted by the policy network. The predicted action is a
sample from this Gaussian distribution. To ensure that no invalid predictions are
generated, the action is clipped between -1.0 and 1.0.

Formally, for continuous action spaces, the policy is a sample from a Gaussian
distribution:

𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) = 𝑎𝑎𝑡𝑡 ~ 𝒩𝒩(𝜇𝜇(𝑠𝑠𝑡𝑡), 𝜎𝜎2(𝑠𝑠𝑡𝑡)) (Equation 10.1.3)

Policy Gradient Methods

[330]

The mean, 𝜇𝜇 , and standard deviation, 𝜎𝜎 , are both functions of the state features:

𝜇𝜇(𝑠𝑠𝑡𝑡) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜇𝜇 (Equation 10.1.4)

𝜎𝜎(𝑠𝑠𝑡𝑡) = 𝜁𝜁(𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜎𝜎) (Equation 10.1.5)

𝜙𝜙(𝑠𝑠𝑡𝑡) is any function that converts the state to its features. 𝜁𝜁(𝑥𝑥) = log(1 + 𝑒𝑒𝑥𝑥) is
the softplus function that ensures positive values of standard deviation. One
way of implementing the state feature function, 𝜙𝜙(𝑠𝑠𝑡𝑡) , is to use the encoder of an
autoencoder network. At the end of this chapter, we will train an autoencoder
and use the encoder part as the state feature function. Training a policy network
is therefore a matter of optimizing the parameters 𝜃𝜃 = [𝜃𝜃𝜇𝜇 𝜃𝜃𝜎𝜎] .

Given a continuously differentiable policy function, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , the policy gradient
can be computed as:

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝔼𝔼𝜋𝜋 [
𝛻𝛻𝜃𝜃𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)

𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)] = 𝔼𝔼𝜋𝜋[𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)] (Equation 10.1.6)

Equation 10.1.6 is also known as the Policy Gradient Theorem. It is applicable to
both discrete and continuous action spaces. The gradient with respect to the
parameter 𝜃𝜃 is computed from the natural logarithm of the policy action sampling
scaled by the Q value. Equation 10.1.6 takes advantage of the property of the

natural logarithm,
𝛻𝛻𝛻𝛻
𝛻𝛻 = 𝛻𝛻 𝑙𝑙𝑙𝑙 𝛻𝛻 .

The policy gradient theorem is intuitive in the sense that the performance gradient is
estimated from the target policy samples and is proportional to the policy gradient.
The policy gradient is scaled by the Q value to encourage actions that positively
contribute to the state value. The gradient is also inversely proportional to the
action probability to penalize frequently occurring actions that do not contribute
to improved performance.

There are subtle advantages associated with policy gradient methods. For example,
in some card-based games, value-based methods have no straightforward procedure
in handling stochasticity, unlike policy-based methods. In policy-based methods,
the action probability changes smoothly with the parameters.

For proof of the policy gradient theorem, please refer to [2]
and lecture notes from David Silver on reinforcement learning:
http://www0.cs.ucl.ac.uk/staff/d.silver/web/
Teaching_files/pg.pdf

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Chapter 10

[331]

Meanwhile, value-based actions may suffer from drastic changes with respect to
small changes in parameters. Lastly, the dependence of policy-based methods on
parameters leads us to different formulations on how to perform gradient ascent
on the performance measure. These are the four policy gradient methods to be
presented in the succeeding sections.

Policy-based methods have their own disadvantages as well. They are generally
harder to train because of the tendency to converge on a local optimum instead of
the global optimum. In the experiments to be presented at the end of this chapter,
it is easy for an agent to become comfortable and to choose actions that do not
necessarily give the highest value. The policy gradient is also characterized by high
variance.

The gradient updates are frequently overestimated. Furthermore, training policy-
based methods are time-consuming. Training requires thousands of episodes (that
is, not sample-efficient). Each episode only provides a small number of samples.
Typical training in the implementation provided at the end of the chapter would
take about an hour for 1,000 episodes on a GTX 1060 GPU.

In the following sections, we discuss the four policy gradient methods. While the
discussion focuses on continuous action spaces, the concept is generally applicable
to discrete action spaces.

2. Monte Carlo policy gradient
(REINFORCE) method
The simplest policy gradient method is REINFORCE [4], which is a Monte Carlo
policy gradient method:

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝔼𝔼𝜋𝜋[𝑅𝑅𝑡𝑡𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)] (Equation 10.2.1)

where Rt is the return as defined in Equation 9.1.2. Rt is an unbiased sample of
𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) in the policy gradient theorem.

Algorithm 10.2.1 summarizes the REINFORCE algorithm [2]. REINFORCE is a
Monte Carlo algorithm. It does not require knowledge of the dynamics of the
environment (in other words, model-free). Only experience samples, (𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖+1𝑠𝑠𝑖𝑖+1) ,
are needed to optimally tune the parameters of the policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) . The
discount factor, 𝛾𝛾 , takes into consideration the fact that rewards decrease in value as
the number of steps increases. The gradient is discounted by 𝛾𝛾𝑡𝑡 . Gradients taken at
later steps have smaller contributions. The learning rate, 𝛼𝛼 , is a scaling factor of the
gradient update.

Policy Gradient Methods

[332]

The parameters are updated by performing gradient ascent using the discounted
gradient and learning rate. As a Monte Carlo algorithm, REINFORCE requires that
the agent completes an episode before processing the gradient updates. Also due
to its Monte Carlo nature, the gradient update of REINFORCE is characterized by
high variance.

Algorithm 10.2.1 REINFORCE

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] and learning rate 𝛼𝛼 . For example, 𝛾𝛾 = 0.99 and
𝛼𝛼 = 1𝑒𝑒 − 3 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0).

1. Repeat.
2. Generate an episode 〈𝑠𝑠0𝑎𝑎0𝑟𝑟1𝑠𝑠1, 𝑠𝑠1𝑎𝑎1𝑟𝑟2𝑠𝑠2,… , 𝑠𝑠𝑇𝑇−1𝑎𝑎𝑇𝑇−1𝑟𝑟𝑇𝑇𝑠𝑠𝑇𝑇〉 by following

 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .
3. for steps 𝑡𝑡 = 0,… , 𝑇𝑇 − 1 do.

4. Compute the return, 𝑅𝑅𝑡𝑡 =∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
𝑟𝑟𝑡𝑡+𝑘𝑘 .

5. Compute the discounted performance gradient,
𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

6. Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .

In REINFORCE, the parameterized policy can be modeled by a neural network as
shown in Figure 10.2.1:

Figure 10.2.1: Policy network

Chapter 10

[333]

As discussed in the previous section, in the case of continuous action spaces, the
state input is converted into features. The state features are the inputs of the policy
network. The Gaussian distribution representing the policy function has a mean
and standard deviation that are both functions of the state features. The policy
network, 𝜋𝜋(𝜃𝜃) , could be an MLP, CNN, or an RNN depending on the nature of
the state inputs. The predicted action is simply a sample from the policy function.

Listing 10.2.1 shows the REINFORCEAgent class, which implements Algorithm 10.2.1
in tf.keras. train_by_episode(), is called after an episode is completed to
compute the return per step. train() performs Lines 5 and 6 of Algorithm 10.2.1 by
optimizing the network for the objective function, logp_model. The parent class,
PolicyAgent, implements the common lines in the algorithms of the four policy
gradient methods that are covered in this chapter. PolicyAgent will be presented
after discussing all the policy gradient methods.

Listing 10.2.1: policygradient-car-10.1.1.py

class REINFORCEAgent(PolicyAgent):
 def __init__(self, env):
 """Implements the models and training of
 REINFORCE policy gradient method
 Arguments:
 env (Object): OpenAI gym environment
 """
 super().__init__(env)

 def train_by_episode(self):
 """Train by episode
 Prepare the dataset before the step by step training
 """
 # only REINFORCE and REINFORCE with baseline
 # use the ff code
 # convert the rewards to returns
 rewards = []
 gamma = 0.99
 for item in self.memory:
 [_, _, _, reward, _] = item
 rewards.append(reward)

 # compute return per step
 # return is the sum of rewards from t til end of episode
 # return replaces reward in the list
 for i in range(len(rewards)):
 reward = rewards[i:]

Policy Gradient Methods

[334]

 horizon = len(reward)
 discount = [math.pow(gamma, t) for t in range(horizon)]
 return_ = np.dot(reward, discount)
 self.memory[i][3] = return_

 # train every step
 for item in self.memory:
 self.train(item, gamma=gamma)

 def train(self, item, gamma=1.0):
 """Main routine for training
 Arguments:
 item (list) : one experience unit
 gamma (float) : discount factor [0,1]
 """
 [step, state, next_state, reward, done] = item

 # must save state for entropy computation
 self.state = state

 discount_factor = gamma**step
 delta = reward

 # apply the discount factor as shown in Algorithms
 # 10.2.1, 10.3.1 and 10.4.1
 discounted_delta = delta * discount_factor
 discounted_delta = np.reshape(discounted_delta, [-1, 1])
 verbose = 1 if done else 0

 # train the logp model (implies training of actor model
 # as well) since they share exactly the same set of
 # parameters
 self.logp_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

The following section proposes an improvement over the REINFORCE method.

Chapter 10

[335]

3. REINFORCE with baseline method
The REINFORCE algorithm can be generalized by subtracting a baseline from
the return, 𝛿𝛿 = 𝑅𝑅𝑡𝑡 − 𝐵𝐵(𝑠𝑠𝑡𝑡) . The baseline function, 𝐵𝐵(𝑠𝑠𝑡𝑡) , can be any function as
long as it does not depend on 𝑎𝑎𝑡𝑡 . The baseline does not alter the expectation of
the performance gradient:

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝔼𝔼𝜋𝜋[(𝑅𝑅𝑡𝑡 − 𝐵𝐵(𝑠𝑠𝑡𝑡))𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)] = 𝔼𝔼𝜋𝜋[𝑅𝑅𝑡𝑡𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)] (Equation 10.3.1)

Equation 10.3.1 implies that 𝔼𝔼𝜋𝜋[𝐵𝐵(𝑠𝑠𝑡𝑡)𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)] = 0 since 𝐵𝐵(𝑠𝑠𝑡𝑡) is not a
function of 𝑎𝑎𝑡𝑡 . While the introduction of a baseline does not change the expectation,
it reduces the variance of the gradient updates. The reduction in variance generally
accelerates learning.

In most cases, we use the value function, 𝐵𝐵(𝑠𝑠𝑡𝑡) = 𝑉𝑉(𝑠𝑠𝑡𝑡), as the baseline. If the
return is overestimated, the scaling factor is proportionally reduced by the value
function, resulting in a lower variance. The value function is also parameterized,
𝑉𝑉(𝑠𝑠𝑡𝑡) → 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) , and is jointly trained with the policy network. In continuous
action spaces, the state value can be a linear function of state features:

𝑣𝑣𝑡𝑡 = 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝑣𝑣 (Equation 10.3.2)

Algorithm 10.3.1 summarizes the REINFORCE with baseline method [1]. This is
similar to REINFORCE, except that the return is replaced by 𝛿𝛿 . The difference is
we are now training two neural networks.

Algorithm 10.3.1 REINFORCE with baseline

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Require: A differentiable parameterized value network, 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] , learning rate 𝛼𝛼 for the performance gradient,
and learning rate for the value gradient, 𝛼𝛼𝑣𝑣 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0). 𝜃𝜃𝑣𝑣0 , initial
value network parameters (for example, 𝜃𝜃𝑣𝑣0 → 0).

1. Repeat.
2. Generate an episode 〈𝑠𝑠0𝑎𝑎0𝑟𝑟1𝑠𝑠1, 𝑠𝑠1𝑎𝑎1𝑟𝑟2𝑠𝑠2,… , 𝑠𝑠𝑇𝑇−1𝑎𝑎𝑇𝑇−1𝑟𝑟𝑇𝑇𝑠𝑠𝑇𝑇〉 by following

 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .
3. for steps 𝑡𝑡 = 0,… , 𝑇𝑇 − 1 do.

Policy Gradient Methods

[336]

4. Compute the return, 𝑅𝑅𝑡𝑡 =∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
𝑟𝑟𝑡𝑡+𝑘𝑘 .

5. Subtract the baseline, 𝛿𝛿 = 𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .
6. Compute the discounted value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃𝑣𝑣𝛻𝛻(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .
7. Perform gradient ascent, 𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑣𝑣 + 𝛼𝛼𝑣𝑣𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) .
8. Compute the discounted performance gradient,

 𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .
9. Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .

As shown in Figure 10.3.1, in addition to the policy network, 𝜋𝜋(𝜃𝜃), the value
network, 𝑉𝑉(𝜃𝜃) , is also trained at the same time. The policy network parameters are
updated by the performance gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃) , while the value network parameters
are adjusted by the value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) . Since REINFORCE is a Monte Carlo
algorithm, it follows that the value function training is also a Monte Carlo algorithm.

The learning rates are not necessarily the same. Note that the value network is also
performing gradient ascent.

Figure 10.3.1: Policy and value networks. REINFORCE with baseline has a value network that computes the
baseline

Listing 10.3.1 shows the REINFORCEBaselineAgent class, which implements
Algorithm 10.3.1 in tf.keras. It inherits from REINFORCEAgent since the two
algorithms differ only in the train() method. Line 5 of Algorithm 10.3.1 is computed
by delta = reward - self.value(state)[0]. Then, the networks for the
objective and value functions, logp_model and value_model, in lines 7 and 9 are
optimized by calling the fit() method of their respective models.

Chapter 10

[337]

Listing 10.3.1: policygradient-car-10.1.1.py

class REINFORCEBaselineAgent(REINFORCEAgent):
 def __init__(self, env):
 """Implements the models and training of
 REINFORCE w/ baseline policy
 gradient method
 Arguments:
 env (Object): OpenAI gym environment
 """
 super().__init__(env)

 def train(self, item, gamma=1.0):
 """Main routine for training
 Arguments:
 item (list) : one experience unit
 gamma (float) : discount factor [0,1]
 """
 [step, state, next_state, reward, done] = item

 # must save state for entropy computation
 self.state = state

 discount_factor = gamma**step

 # reinforce-baseline: delta = return - value
 delta = reward - self.value(state)[0]

 # apply the discount factor as shown in Algorithms
 # 10.2.1, 10.3.1 and 10.4.1
 discounted_delta = delta * discount_factor
 discounted_delta = np.reshape(discounted_delta, [-1, 1])
 verbose = 1 if done else 0

 # train the logp model (implies training of actor model
 # as well) since they share exactly the same set of
 # parameters
 self.logp_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

 # train the value network (critic)
 self.value_model.fit(np.array(state),
 discounted_delta,

Policy Gradient Methods

[338]

 batch_size=1,
 epochs=1,
 verbose=verbose)

In the next section, we will present an improvement over the REINFORCE with
baseline method.

4. Actor-Critic method
In the REINFORCE with baseline method, the value is used as a baseline. It is
not used to train the value function. In this section, we introduce a variation of
REINFORCE with baseline, called the Actor-Critic method. The policy and value
networks play the roles of actor and critic networks. The policy network is the
actor deciding which action to take given the state. Meanwhile, the value network
evaluates the decision made by the actor or policy network.

The value network acts as a critic that quantifies how good or bad the chosen action
undertaken by the actor is. The value network evaluates the state value, 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)
, by comparing it with the sum of the reward received, 𝑟𝑟 , and the discounted value
of the observed next state, 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) . The difference, 𝛿𝛿 , is expressed as:

𝛿𝛿 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝜃𝜃𝑣𝑣) − 𝛾𝛾(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) = 𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) − 𝛾𝛾(𝑠𝑠, 𝜃𝜃𝑣𝑣) (Equation 10.4.1)

where we dropped the subscripts of r and s for simplicity. Equation 10.4.1 is similar
to the temporal differencing in Q-learning discussed in Chapter 9, Deep Reinforcement
Learning. The next state value is discounted by 𝛾𝛾 ∈ [0.0,1.0]. Estimating distant
future rewards is difficult. Therefore, our estimate is based only on the immediate
future, 𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) . This is known as the bootstrapping technique.

The bootstrapping technique and the dependence on state representation in Equation
10.4.1 often accelerates learning and reduces variance. From Equation 10.4.1, we
notice that the value network evaluates the current state, s = st, which is due to
the previous action, 𝑎𝑎𝑡𝑡−1 , of the policy network. Meanwhile, the policy gradient is
based on the current action, 𝑎𝑎𝑡𝑡 . In a sense, the evaluation is delayed by one step.

Algorithm 10.4.1 summarizes the Actor-Critic method [1]. Apart from the evaluation
of the state value, which is used to train both the policy and value networks, the
training is done online. At every step, both networks are trained. This is unlike
REINFORCE and REINFORCE with baseline, where the agent completes an episode
before the training is performed. The value network is consulted twice, firstly, during
the value estimate of the current state, and secondly, for the value of the next state.
Both values are used in the computation of gradients.

Chapter 10

[339]

Algorithm 10.4.1 Actor-Critic

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎|𝑠𝑠, 𝜃𝜃) .

Require: A differentiable parameterized value network, 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] , learning rate 𝛼𝛼 for the performance gradient, and
learning rate for the value gradient, 𝛼𝛼𝑣𝑣 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0). 𝜃𝜃𝑣𝑣0 , initial value
network parameters (for example, 𝜃𝜃𝑣𝑣0 → 0).

1. Repeat.
2. for steps 𝑡𝑡 = 0,… , 𝑇𝑇 − 1 do.
3. Sample an action 𝑎𝑎~𝜋𝜋(𝑎𝑎|𝑠𝑠, 𝜃𝜃) .
4. Execute the action and observe the reward, 𝑟𝑟 , and the next state, 𝑠𝑠′ .
5. Evaluate the state value estimate, 𝛿𝛿 = 𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) − 𝛾𝛾(𝑠𝑠, 𝜃𝜃𝑣𝑣) .
6. Compute the discounted value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃𝑣𝑣𝛻𝛻(𝑠𝑠, 𝜃𝜃𝑣𝑣) .
7. Perform gradient ascent, 𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑣𝑣 + 𝛼𝛼𝑣𝑣𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) .
8. Compute the discounted performance gradient,

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎|𝑠𝑠, 𝜃𝜃) .
9. Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .
10. 𝑠𝑠 = 𝑠𝑠′

Figure 10.4.1 shows the Actor-Critic network:

Figure 10.4.1: Actor-Critic network. Actor-Critic differs from REINFORCE with baseline by the second
evaluation of value V', which is used to critique the policy

Policy Gradient Methods

[340]

Listing 10.4.1 shows the ActorCriticAgent class, which implements Algorithm 10.4.1
in tf.keras. Unlike the two REINFORCE methods, Actor-Critic does not wait for
the episode to complete. Therefore, it does not implement train_by_episode().
At every experience unit, the networks for the objective and value functions,
logp_model and value_model, in Lines 7 and 9 are optimized by calling the fit()
method of their respective models. The delta variable stores the result of line 5.

Listing 10.4.1: policygradient-car-10.1.1.py

class ActorCriticAgent(PolicyAgent):
 def __init__(self, env):
 """Implements the models and training of
 Actor Critic policy gradient method
 Arguments:
 env (Object): OpenAI gym environment
 """
 super().__init__(env)

 def train(self, item, gamma=1.0):
 """Main routine for training
 Arguments:
 item (list) : one experience unit
 gamma (float) : discount factor [0,1]
 """
 [step, state, next_state, reward, done] = item

 # must save state for entropy computation
 self.state = state

 discount_factor = gamma**step

 # actor-critic: delta = reward - value
 # + discounted_next_value
 delta = reward - self.value(state)[0]

 # since this function is called by Actor-Critic
 # directly, evaluate the value function here
 if not done:
 next_value = self.value(next_state)[0]
 # add the discounted next value
 delta += gamma*next_value

 # apply the discount factor as shown in Algortihms

Chapter 10

[341]

 # 10.2.1, 10.3.1 and 10.4.1
 discounted_delta = delta * discount_factor
 discounted_delta = np.reshape(discounted_delta, [-1, 1])
 verbose = 1 if done else 0

 # train the logp model (implies training of actor model
 # as well) since they share exactly the same set of
 # parameters
 self.logp_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

The final policy gradient method is A2C.

5. Advantage Actor-Critic (A2C) method
In the Actor-Critic method from the previous section, the objective is for the value
function to evaluate the state value correctly. There are other techniques for training
the value network. One obvious method is to use mean square error (MSE) in the
value function optimization, similar to the algorithm in Q-learning. The new value
gradient is equal to the partial derivative of the MSE between the return, Rt, and
the state value:

𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) =
𝜕𝜕(𝑅𝑅𝑡𝑡 − 𝛻𝛻(𝑠𝑠, 𝜃𝜃𝑣𝑣))

2

𝜕𝜕𝜃𝜃𝑣𝑣
 (Equation 10.5.1)

As (𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)) → 0 , the value network prediction gets more accurate in
predicting the return for a given state. We refer to this variation of the Actor-Critic
algorithm as Advantage Actor-Critic (A2C). A2C is a single-threaded or synchronous
version of the Asynchronous Advantage Actor-Critic (A3C) by [3]. The quantity
(𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)) is called the Advantage.

Algorithm 10.5.1 summarizes the A2C method. There are some differences between
A2C and Actor-Critic. Actor-Critic is online or is trained on a per-experience sample.
A2C is similar to the Monte Carlo algorithms, REINFORCE, and REINFORCE with
baseline. It is trained after one episode has been completed. Actor-Critic is trained
from the first state to the last state. A2C training starts from the last state and ends
on the first state. In addition, the A2C policy and value gradients are no longer
discounted by 𝛾𝛾𝑡𝑡 .

Policy Gradient Methods

[342]

The corresponding network for A2C is similar to Figure 10.4.1 since we only
changed the method of gradient computation. To encourage agent exploration
during training, the A3C algorithm [3] suggests that the gradient of the
weighted entropy value of the policy function is added to the gradient function,
𝛽𝛽𝛽𝛽𝜃𝜃𝐻𝐻(𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)) . Recall that entropy is a measure of information or uncertainty
of an event.

Algorithm 10.5.1 Advantage Actor-Critic (A2C)

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Require: A differentiable parameterized value network, 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] , learning rate 𝛼𝛼 for the performance gradient,
learning rate for the value gradient, 𝛼𝛼𝑣𝑣 and entropy weight, 𝛽𝛽 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0). 𝜃𝜃𝑣𝑣0 , initial value
network parameters (for example, 𝜃𝜃𝑣𝑣0 → 0).

1. Repeat.
2. Generate an episode (𝑠𝑠0𝑎𝑎0𝑟𝑟1𝑠𝑠1, 𝑠𝑠1𝑎𝑎1𝑟𝑟2𝑠𝑠2,… , 𝑠𝑠𝑇𝑇−1𝑎𝑎𝑇𝑇−1𝑟𝑟𝑇𝑇𝑠𝑠𝑇𝑇) by following

 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

3. 𝑅𝑅𝑡𝑡 = { 0 𝑖𝑖𝑖𝑖 𝑠𝑠𝑇𝑇 𝑖𝑖𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉(𝑠𝑠𝑇𝑇, 𝜃𝜃𝑣𝑣) 𝑖𝑖𝑓𝑓𝑡𝑡 𝑡𝑡𝑓𝑓𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡, 𝑠𝑠𝑇𝑇 , 𝑏𝑏𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏 𝑖𝑖𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

4. for steps 𝑡𝑡 = 𝑇𝑇 − 1,… ,0 do.
5. Compute the return, 𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡 .

6. Compute the value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) =
𝜕𝜕(𝑅𝑅𝑡𝑡 − 𝛻𝛻(𝑠𝑠, 𝜃𝜃𝑣𝑣))

2

𝜕𝜕𝜃𝜃𝑣𝑣
 .

7. Accumulate the gradient, 𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑣𝑣 + 𝛼𝛼𝑣𝑣𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) .
8. Compute the performance gradient,

 𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)(𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)) + 𝛽𝛽𝛻𝛻𝜃𝜃𝐻𝐻(𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)) .
9. Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .

Listing 10.5.1 shows the A2CAgent class, which implements Algorithm 10.5.1 in
tf.keras. Unlike the two REINFORCE methods, the return is computed from
the last experience unit or state to the first. At every experience unit, the networks
for the objective and value functions, logp_model and value_model, in Lines 7 and
9 are optimized by calling the fit() method of their respective models. Note that
during object instantiation, the beta or weight of the entropy loss is set to 0.9 to
indicate that the entropy loss function will be used. Furthermore, value_model is
trained using the MSE loss function.

Chapter 10

[343]

Listing 10.5.1: policygradient-car-10.1.1.py

class A2CAgent(PolicyAgent):
 def __init__(self, env):
 """Implements the models and training of
 A2C policy gradient method
 Arguments:
 env (Object): OpenAI gym environment
 """
 super().__init__(env)
 # beta of entropy used in A2C
 self.beta = 0.9
 # loss function of A2C value_model is mse
 self.loss = 'mse'

 def train_by_episode(self, last_value=0):
 """Train by episode
 Prepare the dataset before the step by step training
 Arguments:
 last_value (float): previous prediction of value net
 """
 # implements A2C training from the last state
 # to the first state
 # discount factor
 gamma = 0.95
 r = last_value
 # the memory is visited in reverse as shown
 # in Algorithm 10.5.1
 for item in self.memory[::-1]:
 [step, state, next_state, reward, done] = item
 # compute the return
 r = reward + gamma*r
 item = [step, state, next_state, r, done]
 # train per step
 # a2c reward has been discounted
 self.train(item)

 def train(self, item, gamma=1.0):
 """Main routine for training
 Arguments:
 item (list) : one experience unit
 gamma (float) : discount factor [0,1]
 """
 [step, state, next_state, reward, done] = item

Policy Gradient Methods

[344]

 # must save state for entropy computation
 self.state = state

 discount_factor = gamma**step

 # a2c: delta = discounted_reward - value
 delta = reward - self.value(state)[0]

 verbose = 1 if done else 0

 # train the logp model (implies training of actor model
 # as well) since they share exactly the same set of
 # parameters
 self.logp_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

 # in A2C, the target value is the return (reward
 # replaced by return in the train_by_episode function)
 discounted_delta = reward
 discounted_delta = np.reshape(discounted_delta, [-1, 1])

 # train the value network (critic)
 self.value_model.fit(np.array(state),
 discounted_delta,
 batch_size=1,
 epochs=1,
 verbose=verbose)

In the four algorithms presented, they differ only in the objective function and value
(if applicable) optimization. In the next section, we will present the unified code for
the four algorithms.

6. Policy Gradient methods using Keras
The four policy gradient methods (Algorithm 10.2.1 to Algorithm 10.5.1) discussed
in the previous sections use identical policy and value network models. The policy
and value networks in Figure 10.2.1 to Figure 10.4.1 have the same configurations.
The four policy gradient methods differ only in:

• Performance and value gradient formulas
• Training strategy

Chapter 10

[345]

In this section, we will discuss the implementation in tf.keras of the common
routines of Algorithm 10.2.1 to Algorithm 10.5.1 in one code.

But before discussing the implementation, let's briefly explore the training
environment.

Unlike Q-learning, policy gradient methods are applicable to both discrete and
continuous action spaces. In our example, we'll demonstrate the four policy gradient
methods on a continuous action space case example, MountainCarContinuous-v0
of OpenAI gym, https://gym.openai.com. In case you are not familiar with
OpenAI Gym, please refer to Chapter 9, Deep Reinforcement Learning.

A snapshot of the MountainCarContinuous-v0 two-dimensional environment is
shown in Figure 10.6.1 In this two-dimensional environment, a car with a not too
powerful engine is between two mountains:

Figure 10.6.1: MountainCarContinuous-v0 OpenAI Gym environment

In order to reach the yellow flag on top of the mountain on the right, it must drive
back and forth to gain enough momentum. The more energy (that is, the greater the
absolute value of action) that is applied to the car, the smaller (or, the more negative)
is the reward.

The complete code can be found at https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

https://gym.openai.com
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

Policy Gradient Methods

[346]

The reward is always negative, and it is only positive upon reaching the flag. In
that case, the car receives a reward of +100. However, every action is penalized
by the following code:

reward-= math.pow(action[0],2)*0.1

The continuous range of valid action values is [-1.0, 1.0]. Beyond the range, the
action is clipped to its minimum or maximum value. Therefore, it makes no sense
to apply an action value that is greater than 1.0 or less than -1.0.

The MountainCarContinuous-v0 environment state has two elements:

• Car position
• Car velocity

The state is converted to state features by an encoder. Like action space, the state
space is also continuous. The predicted action is the output of the policy model
given the state. The output of the value function is the predicted value of the state.

As shown in Figure 10.2.1 to Figure 10.4.1, before building the policy and value
networks, we must first create a function that converts the state to features. This
function is implemented by an encoder of an autoencoder similar to the ones
implemented in Chapter 3, Autoencoders.

Figure 10.6.2 shows an autoencoder comprising an encoder and a decoder:

Figure 10.6.2: Autoencoder model

In Figure 10.6.3, the encoder is an MLP made of Input(2)-Dense(256,
activation='relu')-Dense(128, activation='relu')-Dense(32). Every state
is converted into a 32-dim feature vector:

Chapter 10

[347]

Figure 10.6.3: Encoder model

In Figure 10.6.4, the decoder is also an MLP but made of Input(32)-Dense(128,
activation='relu')-Dense(256, activation='relu')-Dense(2):

Figure 10.6.4: Decoder model

Policy Gradient Methods

[348]

The autoencoder is trained for 10 epochs with an MSE, loss function, and tf.keras
default Adam optimizer. We sampled 220,000 random states for the training and
test dataset and applied a 200,000/20,000 train-test split. After training, the encoder
weights are saved for future use in the policy and value networks' training. Listing
10.6.1 shows the methods for building and training the autoencoder.

In the tf.keras implementation, all the routines that we will mention in this
section are implemented as methods in the PolicyAgent class unless otherwise
noted. The role of PolicyAgent is to represent policy gradient methods' common
functionalities, including building and training the autoencoder network model
and predicting the action, log probability, entropy, and state value. This is the
super class of each policy gradient method agent class presented in Listing 10.2.1
to Listing 10.5.1.

Listing 10.6.1: policygradient-car-10.1.1.py

Methods for building and training the feature autoencoder:

class PolicyAgent:
 def __init__(self, env):
 """Implements the models and training of
 Policy Gradient Methods
 Argument:
 env (Object): OpenAI gym environment
 """

 self.env = env
 # entropy loss weight
 self.beta = 0.0
 # value loss for all policy gradients except A2C
 self.loss = self.value_loss

 # s,a,r,s' are stored in memory
 self.memory = []

 # for computation of input size
 self.state = env.reset()
 self.state_dim = env.observation_space.shape[0]
 self.state = np.reshape(self.state, [1, self.state_dim])
 self.build_autoencoder()

 def build_autoencoder(self):
 """autoencoder to convert states into features

Chapter 10

[349]

 """
 # first build the encoder model
 inputs = Input(shape=(self.state_dim,), name='state')
 feature_size = 32
 x = Dense(256, activation='relu')(inputs)
 x = Dense(128, activation='relu')(x)
 feature = Dense(feature_size, name='feature_vector')(x)

 # instantiate encoder model
 self.encoder = Model(inputs, feature, name='encoder')
 self.encoder.summary()
 plot_model(self.encoder,
 to_file='encoder.png',
 show_shapes=True)

 # build the decoder model
 feature_inputs = Input(shape=(feature_size,),
 name='decoder_input')
 x = Dense(128, activation='relu')(feature_inputs)
 x = Dense(256, activation='relu')(x)
 outputs = Dense(self.state_dim, activation='linear')(x)

 # instantiate decoder model
 self.decoder = Model(feature_inputs,
 outputs,
 name='decoder')
 self.decoder.summary()
 plot_model(self.decoder,
 to_file='decoder.png',
 show_shapes=True)

 # autoencoder = encoder + decoder
 # instantiate autoencoder model
 self.autoencoder = Model(inputs,
 self.decoder(self.encoder(inputs)),
 name='autoencoder')
 self.autoencoder.summary()
 plot_model(self.autoencoder,
 to_file='autoencoder.png',
 show_shapes=True)

 # Mean Square Error (MSE) loss function, Adam optimizer
 self.autoencoder.compile(loss='mse', optimizer='adam')

Policy Gradient Methods

[350]

 def train_autoencoder(self, x_train, x_test):
 """Training the autoencoder using randomly sampled
 states from the environment
 Arguments:
 x_train (tensor): autoencoder train dataset
 x_test (tensor): autoencoder test dataset
 """
 # train the autoencoder
 batch_size = 32
 self.autoencoder.fit(x_train,
 x_train,
 validation_data=(x_test, x_test),
 epochs=10,
 batch_size=batch_size)

Given the MountainCarContinuous-v0 environment, the policy (or actor)
model predicts the action that must be applied to the car. As discussed in the
first section of this chapter on policy gradient methods, for continuous action
spaces, the policy model samples an action from a Gaussian distribution,
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) = 𝑎𝑎𝑡𝑡 ~ 𝒩𝒩(𝜇𝜇(𝑠𝑠𝑡𝑡), 𝜎𝜎2(𝑠𝑠𝑡𝑡)) . In tf.keras, this is implemented as:

import tensorflow_probability as tfp
 def action(self, args):
 """Given mean and stddev, sample an action, clip
 and return
 We assume Gaussian distribution of probability
 of selecting an action given a state
 Arguments:
 args (list) : mean, stddev list
 """
 mean, stddev = args
 dist = tfp.distributions.Normal(loc=mean, scale=stddev)
 action = dist.sample(1)
 action = K.clip(action,
 self.env.action_space.low[0],
 self.env.action_space.high[0])
 return action

Chapter 10

[351]

The action is clipped between its minimum and maximum possible values. In
this method, we use the TensorFlow probability package. It can be installed
separately by:

pip3 install --upgrade tensorflow-probability

The role of the policy network is to predict the mean and standard deviation of the
Gaussian distribution. Figure 10.6.5 shows the policy network to model 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Figure 10.6.5: Policy model (actor model)

Note that the encoder model has pretrained weights that are frozen. Only the
mean and standard deviation weights receive the performance gradient updates.
The policy network is basically the implementation of Equation 10.1.4 and Equation
10.1.5, which are repeated here for convenience:

𝜇𝜇(𝑠𝑠𝑡𝑡) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜇𝜇 (Equation 10.1.4)

𝜎𝜎(𝑠𝑠𝑡𝑡) = 𝜁𝜁(𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜎𝜎) (Equation 10.1.5)

Policy Gradient Methods

[352]

where 𝜙𝜙(𝑠𝑠𝑡𝑡) is the encoder, 𝜃𝜃𝜇𝜇 are the weights of the mean's Dense(1) layer, and
𝜃𝜃𝜎𝜎 are the weights of the standard deviation's Dense(1) layer. We used a modified
softplus function, 𝜁𝜁(∙) , to avoid zero standard deviation:

def softplusk(x):
 """Some implementations use a modified softplus
 to ensure that the stddev is never zero
 Argument:
 x (tensor): activation input
 """
 return K.softplus(x) + 1e-10

The policy model builder is shown in Listing 10.6.2. Also included in this listing
are the log probability, entropy, and value models, which we will discuss next.

Listing 10.6.2: policygradient-car-10.1.1.py

Method for building the policy (actor), logp, entropy, and value models from the
encoded state features:

 def build_actor_critic(self):
 """4 models are built but 3 models share the
 same parameters. hence training one, trains the rest.
 The 3 models that share the same parameters
 are action, logp, and entropy models.
 Entropy model is used by A2C only.
 Each model has the same MLP structure:
 Input(2)-Encoder-Output(1).
 The output activation depends on the nature
 of the output.
 """
 inputs = Input(shape=(self.state_dim,), name='state')
 self.encoder.trainable = False
 x = self.encoder(inputs)
 mean = Dense(1,
 activation='linear',
 kernel_initializer='zero',
 name='mean')(x)
 stddev = Dense(1,
 kernel_initializer='zero',
 name='stddev')(x)
 # use of softplusk avoids stddev = 0
 stddev = Activation('softplusk', name='softplus')(stddev)
 action = Lambda(self.action,
 output_shape=(1,),

Chapter 10

[353]

 name='action')([mean, stddev])
 self.actor_model = Model(inputs, action, name='action')
 self.actor_model.summary()
 plot_model(self.actor_model,
 to_file='actor_model.png',
 show_shapes=True)

 logp = Lambda(self.logp,
 output_shape=(1,),
 name='logp')([mean, stddev, action])
 self.logp_model = Model(inputs, logp, name='logp')
 self.logp_model.summary()
 plot_model(self.logp_model,
 to_file='logp_model.png',
 show_shapes=True)

 entropy = Lambda(self.entropy,
 output_shape=(1,),
 name='entropy')([mean, stddev])
 self.entropy_model = Model(inputs, entropy, name='entropy')
 self.entropy_model.summary()
 plot_model(self.entropy_model,
 to_file='entropy_model.png',
 show_shapes=True)

 value = Dense(1,
 activation='linear',
 kernel_initializer='zero',
 name='value')(x)
 self.value_model = Model(inputs, value, name='value')
 self.value_model.summary()
 plot_model(self.value_model,
 to_file='value_model.png',
 show_shapes=True)

 # logp loss of policy network
 loss = self.logp_loss(self.get_entropy(self.state),
 beta=self.beta)
 optimizer = RMSprop(lr=1e-3)
 self.logp_model.compile(loss=loss, optimizer=optimizer)

 optimizer = Adam(lr=1e-3)
 self.value_model.compile(loss=self.loss, optimizer=optimizer)

Policy Gradient Methods

[354]

Figure 10.6.6: Gaussian log probability model of the policy

Apart from the policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , we must also have the action log
probability (logp) network 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , since this is actually the one that calculates
the gradient. As shown in Figure 10.6.6, the logp network is simply the policy
network where an additional Lambda(1) layer computes the log probability of
the Gaussian distribution given the action, mean, and standard deviation.

The logp network and actor (policy) model share the same set of parameters. The
Lambda layer does not have any parameters. It is implemented by the following
function:

 def logp(self, args):
 """Given mean, stddev, and action compute
 the log probability of the Gaussian distribution
 Arguments:
 args (list) : mean, stddev action, list
 """
 mean, stddev, action = args
 dist = tfp.distributions.Normal(loc=mean, scale=stddev)
 logp = dist.log_prob(action)
 return logp

Chapter 10

[355]

Training the logp network trains the actor model as well. In the training methods
that are discussed in this section, only the logp network is trained.

As shown in Figure 10.6.7, the entropy model also shares parameters with the
policy network:

Figure 10.6.7: Entropy model

The output Lambda(1) layer computes the entropy of the Gaussian distribution
given the mean and standard deviation using the following function:

 def entropy(self, args):
 """Given the mean and stddev compute
 the Gaussian dist entropy
 Arguments:
 args (list) : mean, stddev list
 """
 mean, stddev = args
 dist = tfp.distributions.Normal(loc=mean, scale=stddev)
 entropy = dist.entropy()
 return entropy

The entropy model is only used by the A2C method.

Policy Gradient Methods

[356]

Figure 10.6.8 shows the value model:

Figure 10.6.8: A value model

The model also uses the pretrained encoder with frozen weights to implement
the following equation, Equation 10.3.2, which is repeated here for convenience:

𝑣𝑣𝑡𝑡 = 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝑣𝑣 (Equation 10.3.2)

𝜃𝜃𝑣𝑣 are the weights of the Dense(1) layer, the only layer that receives value gradient
updates. Figure 10.6.8 represents 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) in Algorithm 10.3.1 to Algorithm 10.5.1.
The value model can be built in a few lines:

inputs = Input(shape=(self.state_dim,), name='state')
self.encoder.trainable = False
x = self.encoder(inputs)

value = Dense(1,
 activation='linear',
 kernel_initializer='zero',
 name='value')(x)
self.value_model = Model(inputs, value, name='value')

These lines are also implemented in the build_actor_critic() method, which is
shown in Listing 10.6.2.

After building the network models, the next step is training. In Algorithm 10.2.1 to
Algorithm 10.5.1, we perform objective function maximization by gradient ascent.
In tf.keras, we perform loss function minimization by gradient descent. The loss
function is simply the negative of the objective function being maximized. The
gradient descent is the negative of gradient ascent. Listing 10.6.3 shows the logp
and value loss functions.

Chapter 10

[357]

We can take advantage of the common structure of the loss functions to unify
the loss functions in Algorithm 10.2.1 to Algorithm 10.5.1. The performance and
value gradients differ only in their constant factors. All performance gradients
have the common term, 𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) . This is represented by y_pred in the
policy log probability loss function, logp_loss(). The factor to the common term,
𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , depends on which algorithm and is implemented as y_true. Table
10.6.1 shows the values of y_true. The remaining term is the weighted gradient
of entropy, 𝛽𝛽𝛽𝛽𝜽𝜽𝐻𝐻(𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)) . This is implemented as the product of beta and
entropy in the logp_loss() function. Only A2C uses this term, so, by default,
self.beta=0.0. For A2C, self.beta=0.9.

Listing 10.6.3: policygradient-car-10.1.1.py

Loss functions of the logp and value networks:

 def logp_loss(self, entropy, beta=0.0):
 """logp loss, the 3rd and 4th variables
 (entropy and beta) are needed by A2C
 so we have a different loss function structure
 Arguments:
 entropy (tensor): Entropy loss
 beta (float): Entropy loss weight
 """
 def loss(y_true, y_pred):
 return -K.mean((y_pred * y_true) \
 + (beta * entropy), axis=-1)

 return loss

 def value_loss(self, y_true, y_pred):
 """Typical loss function structure that accepts
 2 arguments only
 this will be used by value loss of all methods
 except A2C
 Arguments:
 y_true (tensor): value ground truth
 y_pred (tensor): value prediction
 """
 return -K.mean(y_pred * y_true, axis=-1)

Policy Gradient Methods

[358]

Algorithm y_true of logp_loss y_true of value_loss
10.2.1 REINFORCE 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 Not applicable

10.3.1 REINFORCE with
baseline

𝛾𝛾𝑡𝑡𝛿𝛿 𝛾𝛾𝑡𝑡𝛿𝛿

10.4.1 Actor-Critic 𝛾𝛾𝑡𝑡𝛿𝛿 𝛾𝛾𝑡𝑡𝛿𝛿

10.5.1 A2C (𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜽𝜽𝑣𝑣)) 𝑅𝑅𝑡𝑡

Table 10.6.1: y_true value of logp_loss and value_loss

The code implementation for computing y_true in Table 10.6.1 is shown in
Table 10.6.2:

Algorithm y_true formula y_true in Keras
10.2.1 REINFORCE 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 reward * discount_factor

10.3.1 REINFORCE
with baseline

𝛾𝛾𝑡𝑡𝛿𝛿 (reward - self.value(state)[0]) *
discount_factor

10.4.1 Actor-Critic 𝛾𝛾𝑡𝑡𝛿𝛿 (reward - self.value(state)[0]
+gamma*next_value) * discount_
factor

10.5.1 A2C (𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣))

and 𝑅𝑅𝑡𝑡

(reward - self.value(state)[0])
and reward

Table 10.6.2: y_true value in Table 10.6.1

Similarly, the value loss functions of Algorithm 10.3.1 and Algorithm 10.4.1 have
the same structure. The value loss functions are implemented in tf.keras as
value_loss(), as shown in Listing 10.6.3. The common gradient factor 𝛻𝛻𝜃𝜃𝑣𝑣𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣)
is represented by the tensor, y_pred. The remaining factor is represented by y_true.
The y_true values are also shown in Table 10.6.1. REINFORCE does not use a
value function. A2C uses the MSE loss function to learn the value function. In A2C,
y_true represents the target value or ground truth.

With all the network models and loss functions in place, the last part is the training
strategy, which is different for each algorithm. The training algorithm per policy
gradient method has been discussed in Listing 10.2.1 to Listing 10.5.1. Algorithm
10.2.1, Algorithm 10.3.1, and Algorithm 10.5.1 wait for a complete episode to finish
before training, so it runs both train_by_episode() and train(). The complete
episode is saved in self.memory. Actor-Critic Algorithm 10.4.1 trains per step
and only runs train().

Chapter 10

[359]

Listing 10.6.4 shows how one episode unfolds when the agent executes and trains
the policy and value models. The for loop is executed for 1,000 episodes. An
episode terminates upon reaching 1,000 steps or when the car touches the flag.
The agent executes the action predicted by the policy at every step. After each
episode or step, the training routine is called.

Listing 10.6.4: policygradient-car-10.1.1.py

 # sampling and fitting
 for episode in range(episode_count):
 state = env.reset()
 # state is car [position, speed]
 state = np.reshape(state, [1, state_dim])
 # reset all variables and memory before the start of
 # every episode
 step = 0
 total_reward = 0
 done = False
 agent.reset_memory()
 while not done:
 # [min, max] action = [-1.0, 1.0]
 # for baseline, random choice of action will not move
 # the car pass the flag pole
 if args.random:
 action = env.action_space.sample()
 else:
 action = agent.act(state)
 env.render()
 # after executing the action, get s', r, done
 next_state, reward, done, _ = env.step(action)
 next_state = np.reshape(next_state, [1, state_dim])
 # save the experience unit in memory for training
 # Actor-Critic does not need this but we keep it anyway.
 item = [step, state, next_state, reward, done]
 agent.remember(item)

 if args.actor_critic and train:
 # only actor-critic performs online training
 # train at every step as it happens
 agent.train(item, gamma=0.99)
 elif not args.random and done and train:
 # for REINFORCE, REINFORCE with baseline, and A2C
 # we wait for the completion of the episode before
 # training the network(s)

Policy Gradient Methods

[360]

 # last value as used by A2C
 if args.a2c:
 v = 0 if reward > 0 else agent.value(next_state)
[0]
 agent.train_by_episode(last_value=v)
 else:
 agent.train_by_episode()

 # accumulate reward
 total_reward += reward
 # next state is the new state
 state = next_state
 step += 1

During training, we collected data to determine the performance of each policy
gradient algorithm. In the next section, we summarize the results.

7. Performance evaluation of policy
gradient methods
The 4 policy gradients methods were evaluated by training the agent for 1,000
episodes. We define 1 training session as 1,000 episodes of training. The first
performance metric is measured by accumulating the number of times the car
reached the flag in 1,000 episodes.

In this metric, A2C reached the flag the greatest number of times, followed by
REINFORCE with baseline, Actor-Critic, and REINFORCE. The use of baseline or
critic accelerates the learning. Note that these are training sessions, where the agent
is continuously improving its performance. There were cases in the experiments
where the agent's performance did not improve with time.

The second performance metric is based on the requirement that
MountainCarContinuous-v0 is considered solved if the total reward per episode is at least
90.0. From the 5 training sessions per method, we selected 1 training session with the
highest total reward for the last 100 episodes (episodes 900 to 999).

Figure 10.7.1 to Figure 10.7.4 show the number of times the mountain car reached
the flag during the execution of 1,000 episodes.

Chapter 10

[361]

Figure 10.7.1: The number of times the mountain car reached the flag using the REINFORCE method

Figure 10.7.2: The number of times the mountain car reached the flag using the REINFORCE with baseline
method

Policy Gradient Methods

[362]

Figure 10.7.3: The number of times the mountain car reached the flag using the Actor-Critic method

Figure 10.7.4: The number of times the mountain car reached the flag using the A2C method

Chapter 10

[363]

Figure 10.7.5 to Figure 10.7.8 show the total rewards for 1,000 episodes.

Figure 10.7.5: Total rewards received per episode using the REINFORCE method

Figure 10.7.6: Total rewards received per episode using the REINFORCE with baseline method.

Policy Gradient Methods

[364]

Figure 10.7.7: Total rewards received per episode using the Actor-Critic method

Figure 10.7.8: The total rewards received per episode using the A2C method

REINFORCE with baseline is the only method that was able to consistently achieve
a total reward of about 90 within 1,000 episodes of training. A2C has the second-
best performance, but could not consistently reach at least 90 for the total rewards.

Chapter 10

[365]

In the experiments conducted, we used the same learning rate, 1e-3, for log
probability and value network optimization. The discount factor is set to 0.99,
except for A2C, which is easier to train at a discount factor of 0.95.

The reader is encouraged to run the trained network by executing:

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 --actor_weights=actor_weights.h5

Table 10.7.1 shows other modes of running policygradient-car-10.1.1.py.
The weights file (that is, *.h5) can be replaced by your own pretrained weights file.
Please consult the code to see the other potential options.

Purpose Run

Train REINFORCE from
scratch

python3 policygradient-car-10.1.1.py

Train REINFORCE with
baseline from scratch

python3 policygradient-car-10.1.1.py -b

Train Actor-Critic from
scratch

python3 policygradient-car-10.1.1.py -a

Train A2C from scratch python3 policygradient-car-10.1.1.py -c

Train REINFORCE from
previously saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5 --train

Train REINFORCE with
baseline from previously
saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5

--value-weights=value_weights.h5 -b --train

Train Actor-Critic from
previously saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5

--value-weights=value_weights.h5 -a --train

Train A2C from
previously saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5

--value-weights=value_weights.h5 -c --train

Table 10.7.1: Different options in running policygradient-car-10.1.1.py

Policy Gradient Methods

[366]

As a final note, our implementation of the policy gradient methods in tf.keras
has some limitations. For example, training the actor model requires the action
to be resampled. The action is first sampled and applied to the environment to
observe the reward and next state. Then, another sample is taken to train the
log probability model. The second sample is not necessarily the same as the first
one, but the reward that is used for training comes from the first sampled action,
which can introduce stochastic error in the computation of gradients.

8. Conclusion
In this chapter, we've covered the policy gradient methods. Starting with the policy
gradient theorem, we formulated four methods to train the policy network. The
four methods, REINFORCE, REINFORCE with baseline, Actor-Critic, and A2C
algorithms, were discussed in detail. We explored how the four methods could
be implemented in Keras. We then validated the algorithms by examining the
number of times the agent successfully reached its goal and in terms of the total
rewards received per episode.

Similar to the deep Q-network [2] that we discussed in the previous chapter, there
are several improvements that can be done on the fundamental policy gradient
algorithms. For example, the most prominent one is the A3C [3], which is a
multithreaded version of A2C. This enables the agent to get exposed to different
experiences simultaneously and to optimize the policy and value networks
asynchronously. However, in the experiments conducted by OpenAI, https://
blog.openai.com/baselines-acktr-a2c/, there is no strong advantage of A3C
over A2C since the former could not take advantage of the strong GPUs available
nowadays.

In the next two chapters, we will embark on a different area – object detection and
semantic segmentation. Object detection enables an agent to identify and localize
objects in a given image. Semantic segmentation identifies pixel regions in a given
image based on object category.

https://blog.openai.com/baselines-acktr-a2c/
https://blog.openai.com/baselines-acktr-a2c/

Chapter 10

[367]

9. References
1. Richard Sutton and Andrew Barto: Reinforcement Learning: An Introduction:

http://incompleteideas.net/book/bookdraft2017nov5.pdf (2017)
2. Volodymyr Mnih et al.: Human-level control through deep reinforcement learning,

Nature 518.7540 (2015): 529
3. Volodymyr Mnih et al.: Asynchronous Methods for Deep Reinforcement Learning,

International conference on machine learning, 2016
4. Ronald Williams: Simple statistical gradient-following algorithms for connectionist

reinforcement learning, Machine learning 8.3-4 (1992): 229-256

http://incompleteideas.net/book/bookdraft2017nov5.pdf

[369]

11
Object Detection

Object detection is one of the most important applications of computer vision. Object
detection is the task of simultaneous localization and identification of an object that
is present in an image. For autonomous vehicles to safely navigate the streets, the
algorithm must detect the presence of pedestrians, roads, vehicles, traffic lights,
signs, and unexpected obstacles. In security, the presence of an intruder can be
used to trigger an alarm or inform the appropriate authorities.

Though important, object detection has been a long-standing problem in computer
vision. Many algorithms have been proposed but are generally slow, with low
precision and recall. Similar to what AlexNet [1] has achieved in the ImageNet large-
scale image classification problem, deep learning has significantly advanced the area
of object detection. State-of-the-art object detection methods can now run in real time
and have a much higher precision and recall.

In this chapter, we focus on real-time object detection. In particular, we discuss
the concept and implementation of single-shot detection (SSD)[2] in tf.keras.
Compared to other deep learning detection algorithms, SSD achieves real-time
detection speed on modern GPUs without significant degradation in performance.
SSD is also easy to train end-to-end.

In summary, the goal of this chapter is to present:

• The concept of object detection
• The concept of multi-scale object detection

Object Detection

[370]

• SSD as a multi-scale object detection algorithm
• The implementation of SSD in tf.keras

We'll begin by introducing the concept of object detection.

1. Object detection
In object detection, the objective is to localize and identify an object in an image.
Figure 11.1.1 shows object detection where the target is a Soda can. Localization
means that the bounding box of the object must be estimated. Using upper left
corner pixel and lower right corner pixel coordinates is a common convention that
is used to describe a bounding box. In Figure 11.1.1, the upper left corner pixel has
coordinates. (xmin,ymin), while the lower right corner pixel has coordinates (xmax,ymax).
The pixel coordinate system has the origin (0,0) at the upper left corner pixel of the
entire image.

While performing localization, detection must also identify the object. Identification
is the classic recognition or classification task in computer vision. At the minimum,
object detection must identify if a bounding box belongs to a known object or to the
background. An object detection network can be trained to detect one specific object
only, like the Soda can in Figure 11.1.1. Everything else is considered background,
and there is no need to show its bounding box. Multiple instances of the same object
such as two or more Soda cans can also be detected by the same network, as shown
in Figure 11.1.2.

Figure 11.1.1 Object detection is illustrated as the process of localizing and identifying an object in an image.

Chapter 11

[371]

Figure 11.1.2 Multiple instances of the same object be detected by the same
network trained to detect one object instance.

If multiple objects in the scene are present, such as in Figure 11.1.3, the object
detection method can only identify one object it was trained on. The other two
objects will be classified as background and no bounding box will be assigned.

Figure 11.1.3 If the object detection is trained on detecting Soda cans only,
it will ignore the other two objects in the image.

Object Detection

[372]

However, if the network is retrained to detect the three objects: 1) Soda can, 2) Juice
can, and 3) Bottled water, each will be localized and recognized simultaneously,
as shown in Figure 11.1.4.

Figure 11.1.4 The object detection network can be retrained to detect all three objects even
if the background is cluttered or the illumination is changed.

A good object detector must be robust in real-world environments. Figure 11.1.4
shows a good object detection network can localize and identify known objects even
if the background is cluttered or even in low-light conditions. Other factors that an
object detector must be robust against are object transformation (rotation and/or
translation), surface reflection, texture variation, and noise.

In summary, the objective of object detection is to simultaneously predict the
following for each recognizable object in the image:

• ycls or the category or class in the form of a one-hot vector
• ybox = ((xmin,ymin),(xmax,ymax)) or the bounding box coordinates in the form of

pixel coordinates

With the basic concepts of object detection explained, we can begin to discuss some of
the specific mechanics of object detection. We'll begin by introducing anchor boxes.

2. Anchor boxes
From the discussion in the previous section, we learned that object detection must
predict both the bounding box region and the category of the object inside it.
Suppose for the meantime our focus is on bounding box coordinates estimation.

Chapter 11

[373]

How can a network predict the coordinates (xmin,ymin) and (xmax,ymax)? A network can
make an initial guess such as (0,0) and (w, h) corresponding to the upper left corner
pixel coordinates and the lower right corner pixel coordinates of the image. w is the
image width, while h is the image height. Then, the network iteratively corrects the
estimates by performing regression on the ground truth bounding box coordinates.

Estimating bounding box coordinates using raw pixels is not optimal due to
high variance of possible pixel values. Instead of raw pixels, SSD minimizes pixel
error values between the ground truth bounding box and predicted bounding
box coordinates. For this example, the pixel error values are (xmin, ymin) and
(xmax – w, ymax – h). These values are called offsets.

To help the network figure out the correct bounding box coordinates, the image
is divided into regions. Each region is called an anchor box. Then, the network
estimates the offsets with respect to each anchor box. This results in a prediction
that is closer to the ground truth.

For example, as shown in Figure 11.2.1, a common image size of 640 x 480 is divided
into 2 x 1 regions resulting to two anchor boxes. Unlike the size of 2 x 2, a 2 x 1
division creates approximately square anchor boxes. In the first anchor box, the new
offsets are (xmin, ymin) and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤 2⁄ , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − ℎ) , which are smaller compared to the
pixel error values with no anchor boxes. The offsets for the second anchor box are
also smaller.

In Figure 11.2.2, the image is further divided. This time, the anchor boxes are 3 x 2.
The second anchor box offsets are (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤 3⁄ , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 2𝑤𝑤 3⁄ , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − ℎ 2⁄) ,
the smallest so far. However, if the image is further divided into 5 x 4, the offsets
start to increase again. The main idea is that during the process of creating regions
of various dimensions, an optimal anchor box size that is nearest to the ground
truth bounding box will emerge. The use of multi-scale anchor boxes to effectively
detect objects of different sizes underpins the concept of multi-scale object detection
algorithms.

Finding an optimal anchor box is not zero cost. In particular, there are extraneous
anchor boxes with offsets that are worse than using the entire image. In such
cases, SSD proposes that these anchor boxes should not contribute to the overall
optimization process and must be suppressed. In the following sections, the
algorithm for excluding non-optimal anchor boxes will be discussed with
more details.

So far, we already have three sets of anchor boxes.

Object Detection

[374]

The first one creates a 2 x 1 grid of anchor boxes each with dimensions (𝑤𝑤 2⁄ , ℎ) .

The second one creates a 3 x 2 grid of anchor boxes each with dimensions (𝑤𝑤 3⁄ , ℎ 2⁄) .

The third one creates a 5 x 4 grid of anchor boxes each with dimensions (𝑤𝑤 5⁄ , ℎ 4⁄) .

How many more sets anchor boxes do we need? It depends on the dimensions of the
image and the dimensions of the smallest bounding box of the object. For the 640 x
480 image used in this example, other anchor boxes are:

10 x 8 grid of anchor boxes each with dimensions (𝑤𝑤 10⁄ , ℎ 8⁄)

20 x 15 grid of anchor boxes each with dimensions (𝑤𝑤 20⁄ , ℎ 15⁄)

40 x 30 grid of anchor boxes each with dimensions (𝑤𝑤 40⁄ , ℎ 30⁄)

For the 640 x 480 image with 40 x 30 grid of anchor boxes, the smallest anchor box
covers a 16 x 16 pixels patch of the input image, also known as the receptive field. So
far, the total number of bounding boxes is 1608. From the smallest, the scaling factor
for all sizes can be summarized as:

𝑠𝑠 = [(1
2 , 1) , (1

3 , 1
2) , (1

5 , 1
4) , (1

10 , 1
8) , (1

20 , 1
15) , (1

40 , 1
30)] (Equation 11.2.1)

How can the anchor boxes be further improved? The offsets may be reduced if we
allow the anchor boxes to have different aspect ratios. The centroid of each resized
anchor box is the same as the original anchor box. Other than the aspect ratio of 1,
SSD [2] includes additional aspect ratios:

 (Equation 11.2.2)

For each aspect ratio, 𝑎𝑎𝑖𝑖 , the corresponding anchor box dimensions are:

(𝑤𝑤𝑖𝑖, ℎ𝑖𝑖) = (𝑤𝑤𝑤𝑤𝑥𝑥𝑥𝑥√𝑎𝑎𝑖𝑖, ℎ𝑤𝑤𝑦𝑦𝑥𝑥
1

√𝑎𝑎𝑖𝑖
) (Equation 11.2.3)

(sxj, syj) is the j – th scaling factor from Equation 11.2.1.

Using five different aspect ratios per anchor box, the total number of anchor boxes
increases to 1,608 x 5 = 8,040. Figure 11.2.3 shows the anchor boxes for the case where

(𝑠𝑠𝑥𝑥4, 𝑠𝑠𝑦𝑦4) = (
1
3 ,

1
2) and 𝑎𝑎𝑖𝑖∈{0,1,3} = 1, 2, 12 .

Note that to achieve a certain aspect ratio, we do not deform the anchor box. Instead,
the anchor box width and height are adjusted.

For 𝑎𝑎0 = 1 , SSD recommends an additional anchor box with dimensions:

Chapter 11

[375]

(𝑤𝑤5, ℎ5) = (𝑤𝑤√𝑠𝑠𝑗𝑗𝑠𝑠𝑗𝑗+1, ℎ√𝑠𝑠𝑗𝑗𝑠𝑠𝑗𝑗+1) (Equation 11.2.4)

There are now six anchor boxes per region. Five are due to five aspect ratios and
there's an additional one for an aspect ratio of 1. The new total number of anchor
boxes increases to 9,648.

Figure 11.2.1 Dividing the image into regions, also known as anchor boxes,
enables the network to have a prediction that is closer to the ground truth.

Figure 11.2.2 Using smaller anchor boxes further reduces the offsets.

Object Detection

[376]

Figure 11.2.3 Anchor boxes for one region with scaling factor (𝑠𝑠𝑥𝑥4, 𝑠𝑠𝑦𝑦4) = (1
3 , 1

2) and aspect

ratios 𝑎𝑎𝑖𝑖∈{0,1,3} = 1, 2, 12 .

Listing 11.2.1 below shows the anchor boxes generation function anchor_boxes().
Given the input image shape (image_shape), aspect ratios (aspect_ratios), and
scaling factors (sizes), the different anchor box sizes are computed and stored in
a list named width_height. From the given feature map shape, (feature_shape)
or (hfmap,wfmap), and width_height, a tensor of anchor boxes is generated with
dimensions (hfmap,wfmap,nboxes,4). nboxes or the number of anchor boxes per feature map
point is computed based on the aspect ratios and one additional size for the aspect
ratio equal to 1.

Listing 11.2.1: layer_utils.py function for the anchor box generation function:

def anchor_boxes(feature_shape,
 image_shape,
 index=0,
 n_layers=4,
 aspect_ratios=(1, 2, 0.5)):
 """ Compute the anchor boxes for a given feature map.
 Anchor boxes are in minmax format

 Arguments:
 feature_shape (list): Feature map shape
 image_shape (list): Image size shape
 index (int): Indicates which of ssd head layers

Chapter 11

[377]

 are we referring to
 n_layers (int): Number of ssd head layers

 Returns:
 boxes (tensor): Anchor boxes per feature map
 """

 # anchor box sizes given an index of layer in ssd head
 sizes = anchor_sizes(n_layers)[index]
 # number of anchor boxes per feature map pt
 n_boxes = len(aspect_ratios) + 1
 # ignore number of channels (last)
 image_height, image_width, _ = image_shape
 # ignore number of feature maps (last)
 feature_height, feature_width, _ = feature_shape

 # normalized width and height
 # sizes[0] is scale size, sizes[1] is sqrt(scale*(scale+1))
 norm_height = image_height * sizes[0]
 norm_width = image_width * sizes[0]

 # list of anchor boxes (width, height)
 width_height = []
 # anchor box by aspect ratio on resized image dims
 # Equation 11.2.3
 for ar in aspect_ratios:
 box_width = norm_width * np.sqrt(ar)
 box_height = norm_height / np.sqrt(ar)
 width_height.append((box_width, box_height))
 # multiply anchor box dim by size[1] for aspect_ratio = 1
 # Equation 11.2.4
 box_width = image_width * sizes[1]
 box_height = image_height * sizes[1]
 width_height.append((box_width, box_height))

 # now an array of (width, height)
 width_height = np.array(width_height)

 # dimensions of each receptive field in pixels
 grid_width = image_width / feature_width
 grid_height = image_height / feature_height

 # compute center of receptive field per feature pt
 # (cx, cy) format

Object Detection

[378]

 # starting at midpoint of 1st receptive field
 start = grid_width * 0.5
 # ending at midpoint of last receptive field
 end = (feature_width - 0.5) * grid_width
 cx = np.linspace(start, end, feature_width)

 start = grid_height * 0.5
 end = (feature_height - 0.5) * grid_height
 cy = np.linspace(start, end, feature_height)

 # grid of box centers
 cx_grid, cy_grid = np.meshgrid(cx, cy)

 # for np.tile()
 cx_grid = np.expand_dims(cx_grid, -1)
 cy_grid = np.expand_dims(cy_grid, -1)

 # tensor = (feature_map_height, feature_map_width, n_boxes, 4)
 # aligned with image tensor (height, width, channels)
 # last dimension = (cx, cy, w, h)
 boxes = np.zeros((feature_height, feature_width, n_boxes, 4))

 # (cx, cy)
 boxes[..., 0] = np.tile(cx_grid, (1, 1, n_boxes))
 boxes[..., 1] = np.tile(cy_grid, (1, 1, n_boxes))

 # (w, h)
 boxes[..., 2] = width_height[:, 0]
 boxes[..., 3] = width_height[:, 1]

 # convert (cx, cy, w, h) to (xmin, xmax, ymin, ymax)
 # prepend one dimension to boxes
 # to account for the batch size = 1
 boxes = centroid2minmax(boxes)
 boxes = np.expand_dims(boxes, axis=0)
 return boxes

def centroid2minmax(boxes):
 """Centroid to minmax format
 (cx, cy, w, h) to (xmin, xmax, ymin, ymax)

Chapter 11

[379]

 Arguments:
 boxes (tensor): Batch of boxes in centroid format

 Returns:
 minmax (tensor): Batch of boxes in minmax format
 """
 minmax= np.copy(boxes).astype(np.float)
 minmax[..., 0] = boxes[..., 0] - (0.5 * boxes[..., 2])
 minmax[..., 1] = boxes[..., 0] + (0.5 * boxes[..., 2])
 minmax[..., 2] = boxes[..., 1] - (0.5 * boxes[..., 3])
 minmax[..., 3] = boxes[..., 1] + (0.5 * boxes[..., 3])
 return minmax

We've covered how anchor boxes assist object detections, and how they can be
generated. In the next section, we'll look at a special kind of anchor box: the ground
truth anchor box. Given an object in an image, it must be assigned to one of the many
anchor boxes. This is called the ground truth anchor box.

3. Ground truth anchor boxes
From Figure 11.2.3, it appears that given an object bounding box, there are many
ground truth anchor boxes that can be assigned to an object. In fact, just for
the illustration in Figure 11.2.3, there are already 3 anchor boxes. If all anchor
boxes per region are considered, there are 6 x 6 = 36 ground truth boxes just for

(𝑠𝑠𝑥𝑥4, 𝑠𝑠𝑦𝑦4) = (1
3 , 1

2) . Using all 9,648 anchor boxes is obviously excessive. Only one of

all anchor boxes should be associated with the ground truth bounding box. All other
anchor boxes are background anchor boxes. What is the criterion for choosing which
one should be considered the ground truth anchor box for an object in the image?

The basis for choosing the anchor box is called Intersection over Union (IoU). IoU
is also known as Jaccard index. IoU is illustrated in Figure 11.3.1. Given 2 regions, an
object bounding box, B0 and an anchor box, A1, IoU is equal to the area of overlap
divided by the area of the combined regions:

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴 ∩ 𝐵𝐵
𝐴𝐴 ∪ 𝐵𝐵 (Equation 11.3.1)

Object Detection

[380]

Figure 11.3.1 IoU is equal to Left) the area of intersection divided by Right)
the area of union between a candidate anchor box, A1, and the object bounding box, B0.

We removed the subscripts for generality of the equation. For a given object
bounding box, Bi, and for all anchor boxes, Aj, the ground truth anchor box, Aj(gt),
is the one with the maximum IoU:

𝐴𝐴𝑗𝑗(𝑔𝑔𝑔𝑔) = max
𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼(𝐵𝐵𝑖𝑖, 𝐴𝐴𝑗𝑗) (Equation 11.3.2)

Please note that for each object there is only one ground truth anchor box based on
Equation 11.3.2. Furthermore, the maximization must be done for all anchor boxes
in all scaling factors and sizes (aspect ratios and additional dimensions). In Figure
11.3.1, only one scaling factor-size is shown out of the 9,648 anchor boxes.

To illustrate Equation 11.3.2, suppose anchor boxes with an aspect ratio of 1 in
Figure 11.3.1 are considered. For each anchor box, the estimated IoU is shown in
Table 11.3.1. Since the maximum IoU of bounding box B0 is 0.32 is with anchor box
A1, A1 is assigned the ground truth bounding box B0. A1 is also known as a positive
anchor box.

The category and offsets of a positive anchor box are determined with respect to its
ground truth bounding box. The category of a positive anchor box and its ground
truth bounding box are the same. Meanwhile, a positive anchor box offsets can be
computed as equal to the ground truth bounding box coordinates minus its own
bounding box coordinates.

What happens to the rest of anchor boxes, A0, A2, A3, A4, and A5? We can give them
a second chance by finding which bounding box they have IoU greater than a certain
threshold.

Chapter 11

[381]

For example, if the threshold is 0.5, then there is no ground truth bounding box that
can be assigned to any of them. If the threshold is lowered to 0.25, then A4 is also
assigned the ground truth bounding box B0 since its IoU is 0.30. A4 is added to the
list of positive anchor boxes. In this book, A4 is called an extra positive anchor box.
The remaining anchor boxes with no ground bounding boxes are called negative
anchor boxes.

In the following section on loss functions, negative anchor boxes do not contribute
to the offsets loss function.

B0

A0 0
A1 0.32
A2 0
A3 0
A4 0.30
A5 0

Table 11.3.1 IoU for each anchor box, 𝐴𝐴𝑗𝑗∈{0..5} , with object bounding box B0 as shown in Figure 11.3.1.

If another image with 2 objects to be detected is loaded, we look for 2 positive anchor
boxes with maximum IoU with bounding boxes B0 and B1. Then, we look for extra
positive anchor boxes that satisfy the minimum IoU criterion with bounding boxes
B0 and B1.

For simplicity of the discussion, we only consider one anchor box per region. In
practice, all anchor boxes representing different scaling factor, sizes, and aspect
ratios should be considered. In the next section, we discuss how to formulate the
loss functions that will be optimized by the SSD network.

Listing 11.3.1 shows the implementation of get_gt_data() that computes the
ground truth labels for anchor boxes.

Listing 11.3.1: layer_utils.py

def get_gt_data(iou,
 n_classes=4,
 anchors=None,
 labels=None,
 normalize=False,
 threshold=0.6):
 """Retrieve ground truth class, bbox offset, and mask

Object Detection

[382]

 Arguments:
 iou (tensor): IoU of each bounding box wrt each anchor box
 n_classes (int): Number of object classes
 anchors (tensor): Anchor boxes per feature layer
 labels (list): Ground truth labels
 normalize (bool): If normalization should be applied
 threshold (float): If less than 1.0, anchor boxes>threshold
 are also part of positive anchor boxes

 Returns:
 gt_class, gt_offset, gt_mask (tensor): Ground truth classes,
 offsets, and masks
 """
 # each maxiou_per_get is index of anchor w/ max iou
 # for the given ground truth bounding box
 maxiou_per_gt = np.argmax(iou, axis=0)

 # get extra anchor boxes based on IoU
 if threshold < 1.0:
 iou_gt_thresh = np.argwhere(iou>threshold)
 if iou_gt_thresh.size > 0:
 extra_anchors = iou_gt_thresh[:,0]
 extra_classes = iou_gt_thresh[:,1]
 extra_labels = labels[extra_classes]
 indexes = [maxiou_per_gt, extra_anchors]
 maxiou_per_gt = np.concatenate(indexes,
 axis=0)
 labels = np.concatenate([labels, extra_labels],
 axis=0)

 # mask generation
 gt_mask = np.zeros((iou.shape[0], 4))
 # only indexes maxiou_per_gt are valid bounding boxes
 gt_mask[maxiou_per_gt] = 1.0

 # class generation
 gt_class = np.zeros((iou.shape[0], n_classes))
 # by default all are background (index 0)
 gt_class[:, 0] = 1
 # but those that belong to maxiou_per_gt are not
 gt_class[maxiou_per_gt, 0] = 0
 # we have to find those column indexes (classes)
 maxiou_col = np.reshape(maxiou_per_gt,
 (maxiou_per_gt.shape[0], 1))

Chapter 11

[383]

 label_col = np.reshape(labels[:,4],
 (labels.shape[0], 1)).astype(int)
 row_col = np.append(maxiou_col, label_col, axis=1)
 # the label of object in maxio_per_gt
 gt_class[row_col[:,0], row_col[:,1]] = 1.0

 # offsets generation
 gt_offset = np.zeros((iou.shape[0], 4))

 #(cx, cy, w, h) format
 if normalize:
 anchors = minmax2centroid(anchors)
 labels = minmax2centroid(labels)
 # bbox = bounding box
 # ((bbox xcenter - anchor box xcenter)/anchor box width)/.1
 # ((bbox ycenter - anchor box ycenter)/anchor box height)/.1
 # Equation 11.4.8 Chapter 11
 offsets1 = labels[:, 0:2] - anchors[maxiou_per_gt, 0:2]
 offsets1 /= anchors[maxiou_per_gt, 2:4]
 offsets1 /= 0.1

 # log(bbox width / anchor box width) / 0.2
 # log(bbox height / anchor box height) / 0.2
 # Equation 11.4.8 Chapter 11
 offsets2 = np.log(labels[:, 2:4]/anchors[maxiou_per_gt, 2:4])
 offsets2 /= 0.2

 offsets = np.concatenate([offsets1, offsets2], axis=-1)

 # (xmin, xmax, ymin, ymax) format
 else:
 offsets = labels[:, 0:4] - anchors[maxiou_per_gt]

 gt_offset[maxiou_per_gt] = offsets

 return gt_class, gt_offset, gt_mask

def minmax2centroid(boxes):
 """Minmax to centroid format
 (xmin, xmax, ymin, ymax) to (cx, cy, w, h)

 Arguments:
 boxes (tensor): Batch of boxes in minmax format

Object Detection

[384]

 Returns:
 centroid (tensor): Batch of boxes in centroid format
 """
 centroid = np.copy(boxes).astype(np.float)
 centroid[..., 0] = 0.5 * (boxes[..., 1] - boxes[..., 0])
 centroid[..., 0] += boxes[..., 0]
 centroid[..., 1] = 0.5 * (boxes[..., 3] - boxes[..., 2])
 centroid[..., 1] += boxes[..., 2]
 centroid[..., 2] = boxes[..., 1] - boxes[..., 0]
 centroid[..., 3] = boxes[..., 3] - boxes[..., 2]
 return centroid

maxiou_per_gt = np.argmax(iou, axis=0) implements Equation 11.3.2.
Extra positive anchor boxes are determined based on a user-defined threshold
implemented by: iou_gt_thresh = np.argwhere(iou>threshold).

Finding extra positive anchor boxes happens only when the threshold is less than 1.0.
The indexes of all anchor boxes with ground truth bounding boxes (that is combined
positive anchor boxes and extra positive anchor boxes) become the basis of the
ground truth mask:

gt_mask[maxiou_per_gt] = 1.0.

All other anchor boxes (negative anchor boxes) have mask of 0.0 and do not
contribute in the offsets loss function optimization.

The class of each anchor box, gt_class, is assigned the class of its ground truth
bounding box. Initially, all anchor boxes are assigned the background class:

 # class generation
 gt_class = np.zeros((iou.shape[0], n_classes))
 # by default all are background (index 0)
 gt_class[:, 0] = 1

Then, the class of each positive anchor box is assigned to its non-background object
class:

 # but those that belong to maxiou_per_gt are not
 gt_class[maxiou_per_gt, 0] = 0
 # we have to find those column indexes (classes)
 maxiou_col = np.reshape(maxiou_per_gt,
 (maxiou_per_gt.shape[0], 1))
 label_col = np.reshape(labels[:,4],
 (labels.shape[0], 1)).astype(int)
 row_col = np.append(maxiou_col, label_col, axis=1)

Chapter 11

[385]

 # the label of object in maxio_per_gt
 gt_class[row_col[:,0], row_col[:,1]] = 1.0

row_col[:,0] are the indexes of positive anchor boxes, while row_col[:,1] are
indexes of their non-background object class. Note that gt_class is an array of one-
hot vectors. The values are all zero except at the index of the anchor box object. Index
0 is background, index 1 is the first non-background object, and so on. The last non-
background object has an index equal to n_classes-1.

For example, if anchor box 0 is a negative anchor box and there are 4 object
categories including the background, then:

gt_class[0] = [1.0, 0.0, 0.0, 0.0]

If anchor box 1 is a positive anchor box and its ground truth bounding box contains
a Soda can with label 2, then:

gt_class[1] = [0.0, 0.0, 1.0, 0.0]

Lastly, the offsets are simply ground truth bounding box coordinates minus anchor
box coordinates:

 # (xmin, xmax, ymin, ymax) format

 else:

 offsets = labels[:, 0:4] - anchors[maxiou_per_gt]

Note that we only compute the offsets of positive anchor boxes.

The offsets can be normalized if that option is chosen. Offsets normalization is
discussed in the next section. We will see that:

 #(cx, cy, w, h) format
 if normalize:
 anchors = minmax2centroid(anchors)
 labels = minmax2centroid(labels)
 # bbox = bounding box
 # ((bbox xcenter - anchor box xcenter)/anchor box width)/.1
 # ((bbox ycenter - anchor box ycenter)/anchor box height)/.1
 # Equation 11.4.8
 offsets1 = labels[:, 0:2] - anchors[maxiou_per_gt, 0:2]
 offsets1 /= anchors[maxiou_per_gt, 2:4]
 offsets1 /= 0.1

 # log(bbox width / anchor box width) / 0.2
 # log(bbox height / anchor box height) / 0.2
 # Equation 11.4.8
 offsets2 = np.log(labels[:, 2:4]/anchors[maxiou_per_gt, 2:4])

Object Detection

[386]

 offsets2 /= 0.2

 offsets = np.concatenate([offsets1, offsets2], axis=-1)

is simply the implementation of Equation 11.4.8 that is discussed in the next section
and shown here for convenience:

𝑦𝑦𝑔𝑔𝑔𝑔 = (
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑏𝑏

,
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

ℎ𝑎𝑎
𝜎𝜎𝑏𝑏

,
log𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑤𝑤

,
log ℎ𝑏𝑏ℎ𝑎𝑎
𝜎𝜎ℎ

) (Equation 11.4.8)

Now that we've gained an understanding of the role of ground truth anchor boxes,
we will move on to another key component in object detection: loss functions.

4. Loss functions
In SSD, there are thousands of anchor boxes. As discussed earlier in this chapter, the
goal of object detection is to predict both the category and offsets of each anchor box.
We can use the following loss functions for each prediction:

• ℒ𝑐𝑐𝑐𝑐𝑐𝑐 - Categorical cross-entropy loss for ycls

• ℒ𝑜𝑜𝑜𝑜𝑜𝑜 - L1 or L2 for yoff. Note that only positive anchor boxes contribute to
ℒ𝑜𝑜𝑜𝑜𝑜𝑜 L1 is also known as mean absolute error (MAE) loss, while L2 is also
known as mean squared error (MSE) loss.

The total loss function is:

ℒ = ℒ𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 (Equation 11.4.1)

For each anchor box, the network predicts the following:

• ycls or the category or class in the form of a one-hot vector
• yoff = ((xomin,yomin),(xomax,yomax)) or the offsets in the form of pixel coordinates

relative to anchor box.

For computational convenience, the offsets are better expressed in the form:

yoff = ((xomin,yomin),(xomax,yomax)) (Equation 11.4.2)

Chapter 11

[387]

SSD is a supervised object detection algorithm. The following ground truth values
are available:

• ylabel or the class label of each object to detect
• ygt = (xgmin,xgmax,ygmin,ygmax) or the ground truth offsets which are computed as:

ygt = (xbmin – xamin, xbmax – xamax, ybmin – yamin, ybmax – yamax) (Equation 11.4.3)

In other words, the ground truth offsets are computed as the ground truth offset of
the object bounding box relative to anchor box. The minor tweak in the subscript of
ybox is for clarity. As discussed in the previous section, the ground truth values are
computed by get_gt_data() function.

However, SSD does not recommend to directly predict the raw pixel error values yoff.
Instead, the normalized offset values are used. The ground truth bounding box and
anchor box coordinates are first expressed in centroid-dimensions format:

𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = ((𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)) → (𝑐𝑐𝑏𝑏𝑏𝑏, 𝑐𝑐𝑏𝑏𝑏𝑏,𝑤𝑤𝑏𝑏, ℎ𝑏𝑏)

𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜 = ((𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), (𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) → (𝑐𝑐𝑎𝑎𝑎𝑎, 𝑐𝑐𝑎𝑎𝑎𝑎,𝑤𝑤𝑎𝑎, ℎ𝑎𝑎) (Equation 11.4.4)

where:

(𝑐𝑐𝑏𝑏𝑏𝑏, 𝑐𝑐𝑏𝑏𝑏𝑏) = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 +
𝑥𝑥𝑚𝑚𝑚𝑚𝑏𝑏 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 +
𝑦𝑦𝑚𝑚𝑚𝑚𝑏𝑏 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

2) (Equation 11.4.5)

is the coordinate of the center of bounding box and:

(wb, hb) = (xmax – xmin, ymax – ymin) (Equation 11.4.6)

corresponds to width and height respectively. The anchor box follows the same
convention. The normalized ground truth offsets are expressed as:

𝑦𝑦𝑔𝑔𝑔𝑔 = (𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏
𝑤𝑤𝑎𝑎

,
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

ℎ𝑎𝑎
, log𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎
, log ℎ𝑏𝑏ℎ𝑎𝑎

) (Equation 11.4.7)

Generally, the values of the elements of ygt are small, ||ygt|| << 1.0. Small gradients
can make it more difficult for the network training to converge.

Object Detection

[388]

To alleviate the problem, each element is divided by its estimated standard
deviation. The resulting ground truth offsets:

𝑦𝑦𝑔𝑔𝑔𝑔 = (
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑏𝑏

,
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

ℎ𝑎𝑎
𝜎𝜎𝑏𝑏

,
log𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑤𝑤

,
log ℎ𝑏𝑏ℎ𝑎𝑎
𝜎𝜎ℎ

) (Equation 11.4.8)

The recommended values are: 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 0.1 and 𝜎𝜎𝑤𝑤 = 𝜎𝜎ℎ = 0.2 . In other words, the
expected range of pixel error along x and y axes is ±10% , while for width and height
it is ±20% . These values are purely arbitrary.

Listing 11.4.1: loss.py L1 and smooth L1 loss functions

from tensorflow.keras.losses import Huber
def mask_offset(y_true, y_pred):
 """Pre-process ground truth and prediction data"""
 # 1st 4 are offsets
 offset = y_true[..., 0:4]
 # last 4 are mask
 mask = y_true[..., 4:8]
 # pred is actually duplicated for alignment
 # either we get the 1st or last 4 offset pred
 # and apply the mask
 pred = y_pred[..., 0:4]
 offset *= mask
 pred *= mask
 return offset, pred

def l1_loss(y_true, y_pred):
 """MAE or L1 loss
 """
 offset, pred = mask_offset(y_true, y_pred)
 # we can use L1
 return K.mean(K.abs(pred - offset), axis=-1)

def smooth_l1_loss(y_true, y_pred):
 """Smooth L1 loss using tensorflow Huber loss
 """
 offset, pred = mask_offset(y_true, y_pred)
 # Huber loss as approx of smooth L1
 return Huber()(offset, pred)

Chapter 11

[389]

Furthermore, instead of L1 loss for yoff, SSD was inspired by Fast-RCNN [3] to use
smooth L1:

ℒ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿1𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠ℎ(𝑢𝑢) = {
(𝜎𝜎𝑢𝑢)2

2 𝑖𝑖𝑖𝑖 |𝑢𝑢| < 1
𝜎𝜎2

|𝑢𝑢| − 1
2𝜎𝜎2 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

 (Equation 11.4.9)

where 𝑢𝑢 represents each element in the error between ground truth and prediction:

𝑢𝑢 = 𝑦𝑦𝑔𝑔𝑔𝑔 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Equation 11.4.10)

Smooth L1 is more robust compared to L1 and less sensitive to outliers. In SSD,
𝜎𝜎 = 1 . As 𝜎𝜎 → ∞ , smooth L1 approaches L1. Both L1 and smooth L1 loss functions
are shown in Listing 11.4.1. The mask_offset() method ensures that the offsets are
computed on predictions with ground truth bounding boxes only. The smooth L1
function is the same as Huber loss when 𝜎𝜎 = 1 [8].

As a further improvement to the loss functions, RetinaNet [3] recommends that the
categorical cross-entropy function for ycls, CE, be replaced by focal loss, FL:

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶 = −∑ 𝑦𝑦𝑖𝑖 log𝑝𝑝𝑖𝑖
𝑖𝑖

 (Equation 11.4.11)

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝐹𝐹 = −𝛼𝛼∑ 𝑦𝑦𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝛾𝛾 log𝑝𝑝𝑖𝑖
𝑖𝑖

 (Equation 11.4.12)

The difference is the extra factor, 𝛼𝛼(1 − 𝑝𝑝𝑖𝑖)𝛾𝛾 . In RetinaNet, object detection works
best when 𝛾𝛾 = 2 and 𝛼𝛼 = 0.25 . Focal loss is implemented in Listing 11.4.2.

Listing 11.4.2: loss.py Focal loss

def focal_loss_categorical(y_true, y_pred):
 """Categorical cross-entropy focal loss"""
 gamma = 2.0
 alpha = 0.25

 # scale to ensure sum of prob is 1.0
 y_pred /= K.sum(y_pred, axis=-1, keepdims=True)

 # clip the prediction value to prevent NaN and Inf
 epsilon = K.epsilon()
 y_pred = K.clip(y_pred, epsilon, 1. - epsilon)

 # calculate cross entropy
 cross_entropy = -y_true * K.log(y_pred)

Object Detection

[390]

 # calculate focal loss
 weight = alpha * K.pow(1 - y_pred, gamma)
 cross_entropy *= weight

 return K.sum(cross_entropy, axis=-1)

The motivation behind focal loss is that if we examine an image, the majority of the
anchor boxes should be classified as background or negative anchor boxes. Only
few positive anchor boxes are good candidates to represent the target object. The
major contributors to cross-entropy loss are the negative anchor boxes. Thus, the
contribution of positive anchor boxes during optimization is overpowered by the
contribution of negative anchor boxes. This phenomenon is also known as class
imbalance, where one or few classes dominate the rest. For additional details, Lin
et al. [4] discuss class imbalance in the context of object detection.

With focal loss, we are confident early on during optimization that negative anchors
boxes belong to background. Therefore, the term (1 − 𝑝𝑝𝑖𝑖)𝛾𝛾 reduces the contribution
of negative anchor boxes since 𝑝𝑝𝑖𝑖 → 1.0 . For positive anchor boxes, the contribution
is still significant since pi is far from 1.0.

Now that we have discussed the concept of anchor boxes, ground truth anchor
boxes, and loss functions, we are now ready to present SSD model architecture
that implements the multi-scale object detection algorithm.

5. SSD model architecture
Figure 11.5.1 shows the model architecture of SSD that implements the conceptual
framework of multi-scale single-shot object detection. The network accepts an RGB
image and outputs several levels of prediction. A base or backbone network extracts
features for the downstream task of classification and offset predictions. A good
example of a backbone network is ResNet50 that is similar to what was discussed,
implemented, and evaluated in Chapter 2, Deep Neural Networks. After the backbone
network, the object detection task is performed by the rest of the network which we
call SSD head.

The backbone network can be a pre-trained network with frozen weights
(for example; previously trained for ImageNet classification) or jointly trained
with object detection. If we used a pre-trained base network, we take advantage of
reusing previously learned feature extraction filters from a large dataset. In addition,
it accelerates learning as the backbone network parameters are frozen. Only the top
layers in object detection are trained. In this book, the backbone network is jointly
trained with object detection since we assume that we do not necessarily have access
to a pre-trained backbone network.

Chapter 11

[391]

The backbone network normally implements several rounds of downsampling
either using strides = 2 or by max pooling. In the case of ResNet50, this is 4
times. The resulting dimensions of feature maps after the base network becomes

(𝑤𝑤24 ,
ℎ
24) = (𝑤𝑤16 ,

ℎ
16) . The dimensions are exact if both image width and height are

divisible by 16.

For example, for a 640 x 480 image, the resulting feature maps have dimensions 40 x
30 = 1,200. As discussed in the previous sections, this is the number of anchor boxes
with aspect ratio equal to 1 after the base network. This figure is multiplied by the
number of sizes per anchor box. In the previous sections, there are 6 different sizes
due to aspect ratios and one additional size for aspect ratio of 1.

In this book, we will limit the aspect ratio to 𝑎𝑎𝑖𝑖∈{0,1,3} = 1, 2, 12 . Thus, there will only
be 4 different sizes. For a 640 x 480 image, the total number of anchor boxes for the
first set of anchor boxes is n1 = 4,800.

In Figure 11.5.1, the dense grid is indicated to show that for the first set of predictions
there is a big number of predictions (for example: 40 x 30 x 4) resulting in a huge
number of patches. Although there are 4 sizes per anchor box, only the 16 x 16
anchor box that corresponds to aspect ratio of 1 is shown for clarity.

This anchor box is also the receptive field size of each element in 40 x 30 x nfilters
feature maps. nfilters is the number of filters in the last convolutional layer of the
backbone network. For each anchor box, both the class and offsets are predicted.

All in all, there are n1 class and n1 offsets predictions. The dimension of 1-hot
class prediction is equal to number of categories of object to detect plus 1 for the
background. The dimension of each offsets variable prediction is 4 corresponding
to the (x, y) offsets to the 2 corners of the predicted bounding box.

The class predictor is made of a convolutional layer terminated by an activation
layer that is using softmax for categorical cross-entropy loss. The offsets predictor
is a separate convolutional layer with linear activation.

Additional feature extraction blocks can be applied after the base network. Each
feature extractor block is in the form of Conv2D(strides=2)-BN-ELU. After the
feature extraction block, the feature map size is halved, and the number of filters
is doubled. For example, the first feature extractor block after the base network
has 20 x 15 x 2 nfilters feature maps. From this feature maps, n2 class and n2 offset
predictions are made using convolutional layers. n2 = 20 x 15 x 4 = 1,200

Object Detection

[392]

The process of adding feature extraction blocks with class and offsets predictors can
continue. In the previous sections, for a 640 x 480 image, this could be up to 2 x 1 x 25
nfilters feature maps producing n6 class and n6 offsets predictions where n6 = 2 x 1 x 4 =
8. This corresponds to 6 layers of feature extraction and prediction blocks. After the
6th block, the total number of anchor map predictions for a 640 x 480 image is 9,648.

In the previous sections, the scaling factor sizes of anchor boxes was arranged in
decreasing order:

[(12 , 1) , (
1
3 ,

1
2) , (

1
5 ,

1
4) , (

1
10 ,

1
8) , (

1
20 ,

1
15) , (

1
40 ,

1
30)]

 Equation 11.5.1)

It was done for clarity of the discussion. In this section, it should be realized that
the scaling factor size actually begins with the feature map size after the backbone
network. In reality, the scaling factor should be in increasing order:

[(1
40 ,

1
30) , (

1
20 ,

1
15) , (

1
10 ,

1
8) , (

1
5 ,

1
4) , (

1
3 ,

1
2) , (

1
2 , 1)]

 (Equation 11.5.2)

This means that if we reduced the number of feature extraction blocks to 4, the
scaling factors are:

[(1
40 ,

1
30) , (

1
20 ,

1
15) , (

1
10 ,

1
8) , (

1
5 ,

1
4)]

 (Equation 11.5.3)

In cases where the feature map width or height is not divisible by 2 (for example:

15), the ceiling function is applied (for example: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (152) = 8). However, in

the original SSD [2] implementation, the scaling factors used were simplified to

a [0.2, 0.9] range scaled linearly by the number of scaling factors or the number
of feature extraction blocks, n_layers:

s = np.linspace(0.2, 0.9, n_layers + 1)

Chapter 11

[393]

Figure 11.5.1 The SSD model architecture. Please note that for the
𝑤𝑤
16 ×

ℎ
16 grid, the number of anchor boxes

may not be exact. The grid shows how tightly packed the anchor boxes are.

Having discussed SSD model architecture, let's now look at how the SSD model
architecture is implemented in Keras.

Object Detection

[394]

6. SSD model architecture in Keras
Unlike the code examples in the previous chapters, the tf.keras implementation
of SSD is more involved. In comparison to other tf.keras implementations of SSD,
the code example presented in this chapter focuses on explaining the key concepts
of multi-scale object detection. Some parts of the code implementation can be further
optimized such as caching of ground truth anchor boxes classes, offsets, and masks.
In our example, the ground truth values are computed by a thread every time an
image is loaded from the filesystem.

Figure 11.6.1 shows an overview of code blocks that comprise the tf.keras
implementation of SSD. An SSD object in ssd-11.6.1.py builds, trains, and evaluates
an SSD model. It sits on top of SSD model creator with the help of model.py and
resnet.py and a multi-threaded data generator in data_generator.py. SSD model
implements the SSD architecture as shown in Figure 11.5.1. The implementation of
each major block will be discussed in detail in the succeeding sections.

The SSD model uses a ResNet as its backbone network. It calls the ResNet V1 or V2
model creator in resnet.py. Unlike the examples in previous chapters, the dataset
used by SSD is made of thousands of high-resolution images. A multi-threaded
data generator loads and queues these images from the filesystem. It also computes
the ground truth labels of anchor boxes. Without a multi-threaded data generator,
loading and queueing of images and computation of ground truth values during
training will be very slow.

There are many small but important routines that work behind the scenes. These are
collectively stored in the utilities block. These routines create anchor boxes, compute
IoUs, establish ground truth labels, run non-maximum suppression, draw labels and
boxes, show detected objects on video frames, provide loss functions, and so on.

Figure 11.6.1 Code blocks implementing SSD.

Chapter 11

[395]

7. SSD objects in Keras
Listing 11.7.1, displayed shortly, shows the SSD class. Two main routines are
illustrated:

1. Creation of the SSD model using build_model()
2. Instantiating a data generator through build_generator()

build_model first creates a data dictionary from the train labels. The dictionary
stores image filenames and ground truth bounding box coordinates and class for
every object in each image. Afterward, the backbone and SSD network models
are constructed. The most important product of model creation is self.ssd –
the network model of SSD.

The labels are stored in a csv file. For the sample training images that is used in this
book, the labels are saved in dataset/drinks/labels_train.csv with the format:

frame,xmin,xmax,ymin,ymax,class_id

0001000.jpg,310,445,104,443,1

0000999.jpg,194,354,96,478,1

0000998.jpg,105,383,134,244,1

0000997.jpg,157,493,89,194,1

0000996.jpg,51,435,207,347,1

0000995.jpg,183,536,156,283,1

0000994.jpg,156,392,178,266,2

0000993.jpg,207,449,119,213,2

0000992.jpg,47,348,213,346,2

…

Listing 11.7.1: ssd-11.6.1.py

class SSD:
 """Made of an ssd network model and a dataset generator.
 SSD defines functions to train and validate
 an ssd network model.

 Arguments:
 args: User-defined configurations

 Attributes:
 ssd (model): SSD network model
 train_generator: Multi-threaded data generator for training
 """

Object Detection

[396]

 def __init__(self, args):
 """Copy user-defined configs.
 Build backbone and ssd network models.
 """
 self.args = args
 self.ssd = None
 self.train_generator = None
 self.build_model()

 def build_model(self):
 """Build backbone and SSD models."""
 # store in a dictionary the list of image files and labels
 self.build_dictionary()

 # input shape is (480, 640, 3) by default
 self.input_shape = (self.args.height,
 self.args.width,
 self.args.channels)

 # build the backbone network (eg ResNet50)
 # the number of feature layers is equal to n_layers
 # feature layers are inputs to SSD network heads
 # for class and offsets predictions
 self.backbone = self.args.backbone(self.input_shape,
 n_layers=self.args.layers)

 # using the backbone, build ssd network
 # outputs of ssd are class and offsets predictions
 anchors, features, ssd = build_ssd(self.input_shape,
 self.backbone,
 n_layers=self.args.layers,
 n_classes=self.n_classes)
 # n_anchors = num of anchors per feature point (eg 4)
 self.n_anchors = anchors
 # feature_shapes is a list of feature map shapes
 # per output layer - used for computing anchor boxes sizes
 self.feature_shapes = features
 # ssd network model
 self.ssd = ssd

 def build_dictionary(self):
 """Read input image filenames and obj detection labels

Chapter 11

[397]

 from a csv file and store in a dictionary.
 """
 # train dataset path
 path = os.path.join(self.args.data_path,
 self.args.train_labels)

 # build dictionary:
 # key=image filaname, value=box coords + class label
 # self.classes is a list of class labels
 self.dictionary, self.classes = build_label_dictionary(path)
 self.n_classes = len(self.classes)
 self.keys = np.array(list(self.dictionary.keys()))

 def build_generator(self):
 """Build a multi-thread train data generator."""

 self.train_generator = \
 DataGenerator(args=self.args,
 dictionary=self.dictionary,
 n_classes=self.n_classes,
 feature_shapes=self.feature_shapes,
 n_anchors=self.n_anchors,
 shuffle=True)

Listing 11.7.2 shows another important method in SSD object, train(). Indicated are
the options to use default loss functions or improved loss functions as discussed in
the previous sections. There is also an option to choose smooth L1 only.

self.ssd.fit_generator() is the most important call in this function. It starts
the supervised training with the aid of the multi-threaded data generator. At every
epoch, two callback functions are executed. First, the model weights are saved to a
file. Then, a modified learning rate scheduler used in the same way as in Chapter 2,
Deep Neural Networks, for ResNet models is called:

Listing 11.7.2: ssd-11.6.1.py

 def train(self):
 """Train an ssd network."""
 # build the train data generator
 if self.train_generator is None:
 self.build_generator()

 optimizer = Adam(lr=1e-3)
 # choice of loss functions via args
 if self.args.improved_loss:

Object Detection

[398]

 print_log("Focal loss and smooth L1", self.args.verbose)
 loss = [focal_loss_categorical, smooth_l1_loss]
 elif self.args.smooth_l1:
 print_log("Smooth L1", self.args.verbose)
 loss = ['categorical_crossentropy', smooth_l1_loss]
 else:
 print_log("Cross-entropy and L1", self.args.verbose)
 loss = ['categorical_crossentropy', l1_loss]

 self.ssd.compile(optimizer=optimizer, loss=loss)
...
 # prepare callbacks for saving model weights
 # and learning rate scheduler
 # learning rate decreases by 50% every 20 epochs
 # after 60th epoch
 checkpoint = ModelCheckpoint(filepath=filepath,
 verbose=1,
 save_weights_only=True)
 scheduler = LearningRateScheduler(lr_scheduler)

 callbacks = [checkpoint, scheduler]
 # train the ssd network
 self.ssd.fit_generator(generator=self.train_generator,
 use_multiprocessing=True,
 callbacks=callbacks,
 epochs=self.args.epochs,
 workers=self.args.workers)

In the next sections, we will discuss additional details of the SSD architecture
implementation in Keras. In particular, the implementation of SSD model and the
multi-threaded data generator.

8. SSD model in Keras
Listing 11.8.1 shows the SSD model creation function build_ssd(). The model is
illustrated in Figure 11.5.1. The function retrieves n_layers of output features from
the backbone or base network by calling base_outputs = backbone(inputs).

In this book, the backbone() is build_resnet(). The ResNet models that can be
generated by build_resnet() are similar to the residual networks discussed in
Chapter 2, Deep Neural Networks. The build_resnet() function can be replaced by
any function name that builds the base network.

Chapter 11

[399]

As shown in Figure 11.5.1, the return value base_outputs is a list of output features
that will be the input to class and offset prediction layers. For example, the first
output base_outputs[0], is used to generate n1 class predictions and n1 offset
predictions.

In the for loop of build_ssd() the class prediction is the classes variable, while
the offsets prediction is the offsets variable. After the for loop iteration, the class
predictions are concatenated and eventually merged into one classes variable
with dimensions:

(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, 𝑛𝑛𝑏𝑏𝑚𝑚𝑏𝑏ℎ𝑜𝑜𝑜𝑜−𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏, 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑜𝑜𝑜𝑜𝑚𝑚𝑏𝑏𝑏𝑏)

The same procedure is done for offsets variable. The resulting dimensions are:

(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, 𝑛𝑛𝑏𝑏𝑚𝑚𝑏𝑏ℎ𝑜𝑜𝑜𝑜−𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏, 4)

where nmini-batch is the mini-batch size and nanchor-boxes is the number of anchor boxes. The
number of for loop iterations is equal to n_layers. This number is also equal to the
desired number of anchor boxes scaling factors or the number of feature extraction
blocks of the SSD head.

The function build_ssd() returns the number of anchor boxes per feature point or
region, the feature shape per before class, and offset prediction layers, and the SSD
model itself.

Listing 11.8.1: model.py

def build_ssd(input_shape,
 backbone,
 n_layers=4,
 n_classes=4,
 aspect_ratios=(1, 2, 0.5)):
 """Build SSD model given a backbone

 Arguments:
 input_shape (list): input image shape
 backbone (model): Keras backbone model
 n_layers (int): Number of layers of ssd head
 n_classes (int): Number of obj classes
 aspect_ratios (list): annchor box aspect ratios

 Returns:
 n_anchors (int): Number of anchor boxes per feature pt
 feature_shape (tensor): SSD head feature maps
 model (Keras model): SSD model

Object Detection

[400]

 """
 # number of anchor boxes per feature map pt
 n_anchors = len(aspect_ratios) + 1

 inputs = Input(shape=input_shape)
 # no. of base_outputs depends on n_layers
 base_outputs = backbone(inputs)

 outputs = []
 feature_shapes = []
 out_cls = []
 out_off = []

 for i in range(n_layers):
 # each conv layer from backbone is used
 # as feature maps for class and offset predictions
 # also known as multi-scale predictions
 conv = base_outputs if n_layers==1 else base_outputs[i]
 name = "cls" + str(i+1)
 classes = conv2d(conv,
 n_anchors*n_classes,
 kernel_size=3,
 name=name)

 # offsets: (batch, height, width, n_anchors * 4)
 name = "off" + str(i+1)
 offsets = conv2d(conv,
 n_anchors*4,
 kernel_size=3,
 name=name)

 shape = np.array(K.int_shape(offsets))[1:]
 feature_shapes.append(shape)

 # reshape the class predictions, yielding 3D tensors of
 # shape (batch, height * width * n_anchors, n_classes)
 # last axis to perform softmax on them
 name = "cls_res" + str(i+1)
 classes = Reshape((-1, n_classes),
 name=name)(classes)

 # reshape the offset predictions, yielding 3D tensors of
 # shape (batch, height * width * n_anchors, 4)
 # last axis to compute the (smooth) L1 or L2 loss

Chapter 11

[401]

 name = "off_res" + str(i+1)
 offsets = Reshape((-1, 4),
 name=name)(offsets)
 # concat for alignment with ground truth size
 # made of ground truth offsets and mask of same dim
 # needed during loss computation
 offsets = [offsets, offsets]
 name = "off_cat" + str(i+1)
 offsets = Concatenate(axis=-1,
 name=name)(offsets)

 # collect offset prediction per scale
 out_off.append(offsets)

 name = "cls_out" + str(i+1)

 #activation = 'sigmoid' if n_classes==1 else 'softmax'
 #print("Activation:", activation)

 classes = Activation('softmax',
 name=name)(classes)

 # collect class prediction per scale
 out_cls.append(classes)

 if n_layers > 1:
 # concat all class and offset from each scale
 name = "offsets"
 offsets = Concatenate(axis=1,
 name=name)(out_off)
 name = "classes"
 classes = Concatenate(axis=1,
 name=name)(out_cls)
 else:
 offsets = out_off[0]
 classes = out_cls[0]

 outputs = [classes, offsets]
 model = Model(inputs=inputs,
 outputs=outputs,
 name='ssd_head')

 return n_anchors, feature_shapes, model

Object Detection

[402]

As mentioned in the previous sections, unlike small datasets like MNIST and
CIFAR-10, the images used in SSD are big. Hence, it is not possible to load the
images in a tensor variable. In the next section, we introduce a multi-threaded data
generator that will allow us to load images concurrently from the filesystem and
avoid memory bottleneck.

9. Data generator model in Keras
SSD requires a lot of labeled high-resolution images for object detection. Unlike
the previous chapters where the dataset used can be loaded into memory to train
the model, SSD implements a multi-threaded data generator. The task of the
multi-threaded generator is to load multiple mini-batches of images and their
corresponding labels. Because of multi-threading, the GPU can be kept busy as one
thread feeds it with data while the rest of CPU threads are in the queue ready to feed
another batch data or loading a batch of images from the filesystem and computing
the ground truth values. Listing 11.9.1 shows the data generator model in Keras.

The DataGenerator class inherits from the Sequence class of Keras to ensure that it
supports multi-processing. DataGenerator guarantees that the entire dataset is used
in one epoch.

The length of the entire epoch given a batch size is returned by the __len__()
method. Every request for a mini-batch of data is fulfilled by the __getitem__()
method. After every epoch, the on_epoch_end() method is called to shuffle the
entire batch if self.shuffle is True.

Listing 11.9.1: data_generator.py

class DataGenerator(Sequence):
 """Multi-threaded data generator.
 Each thread reads a batch of images and their object labels

 Arguments:
 args: User-defined configuration
 dictionary: Dictionary of image filenames and object labels
 n_classes (int): Number of object classes
 feature_shapes (tensor): Shapes of ssd head feature maps
 n_anchors (int): Number of anchor boxes per feature map pt
 shuffle (Bool): If dataset should be shuffled bef sampling
 """
 def __init__(self,
 args,
 dictionary,
 n_classes,

Chapter 11

[403]

 feature_shapes=[],
 n_anchors=4,
 shuffle=True):
 self.args = args
 self.dictionary = dictionary
 self.n_classes = n_classes
 self.keys = np.array(list(self.dictionary.keys()))
 self.input_shape = (args.height,
 args.width,
 args.channels)
 self.feature_shapes = feature_shapes
 self.n_anchors = n_anchors
 self.shuffle = shuffle
 self.on_epoch_end()
 self.get_n_boxes()

 def __len__(self):
 """Number of batches per epoch"""
 blen = np.floor(len(self.dictionary) / self.args.batch_size)
 return int(blen)

 def __getitem__(self, index):
 """Get a batch of data"""
 start_index = index * self.args.batch_size
 end_index = (index+1) * self.args.batch_size
 keys = self.keys[start_index: end_index]
 x, y = self.__data_generation(keys)
 return x, y

 def on_epoch_end(self):
 """Shuffle after each epoch"""
 if self.shuffle == True:
 np.random.shuffle(self.keys)

 def get_n_boxes(self):
 """Total number of bounding boxes"""
 self.n_boxes = 0
 for shape in self.feature_shapes:
 self.n_boxes += np.prod(shape) // self.n_anchors
 return self.n_boxes

Object Detection

[404]

The bulk of the data generators work is done by the __data_generation() method
as shown in Listing 11.9.2. Given a mini-batch, the method executes:

• imread() to read an image from the filesystem.
• labels = self.dictionary[key] to access the bounding box and class

labels as stored in a dictionary. The first 4 items are the bounding box offsets.
The last one is the class label.

• anchor_boxes() to generate anchor boxes.
• iou() to compute the IoU per anchor box with respect to the ground truth

bounding box.
• get_gt_data() to assign the ground truth class and offsets per anchor box.

Sample data augmentation functions are also included but no longer discussed here
such as addition of random noise, intensity rescaling, and exposure adjustment.
__data_generation() returns the input x and output y pair where tensor x stores
input images, while tensor y bundles the classes, offsets, and masks together.

Listing 11.9.2: data_generator.py

import layer_utils

from skimage.io import imread
 def __data_generation(self, keys):
 """Generate train data: images and
 object detection ground truth labels

 Arguments:
 keys (array): Randomly sampled keys
 (key is image filename)

 Returns:
 x (tensor): Batch images
 y (tensor): Batch classes, offsets, and masks
 """
 # train input data
 x = np.zeros((self.args.batch_size, *self.input_shape))
 dim = (self.args.batch_size, self.n_boxes, self.n_classes)
 # class ground truth
 gt_class = np.zeros(dim)
 dim = (self.args.batch_size, self.n_boxes, 4)
 # offsets ground truth
 gt_offset = np.zeros(dim)
 # masks of valid bounding boxes
 gt_mask = np.zeros(dim)

Chapter 11

[405]

 for i, key in enumerate(keys):
 # images are assumed to be stored in self.args.data_path
 # key is the image filename
 image_path = os.path.join(self.args.data_path, key)
 image = skimage.img_as_float(imread(image_path))
 # assign image to a batch index
 x[i] = image
 # a label entry is made of 4-dim bounding box coords
 # and 1-dim class label
 labels = self.dictionary[key]
 labels = np.array(labels)
 # 4 bounding box coords are 1st four items of labels
 # last item is object class label
 boxes = labels[:,0:-1]
 for index, feature_shape in enumerate(self.feature_
shapes):
 # generate anchor boxes
 anchors = anchor_boxes(feature_shape,
 image.shape,
 index=index,
 n_layers=self.args.layers)
 # each feature layer has a row of anchor boxes
 anchors = np.reshape(anchors, [-1, 4])
 # compute IoU of each anchor box
 # with respect to each bounding boxes
 iou = layer_utils.iou(anchors, boxes)

 # generate ground truth class, offsets & mask
 gt = get_gt_data(iou,
 n_classes=self.n_classes,
 anchors=anchors,
 labels=labels,
 normalize=self.args.normalize,
 threshold=self.args.threshold)
 gt_cls, gt_off, gt_msk = gt
 if index == 0:
 cls = np.array(gt_cls)
 off = np.array(gt_off)
 msk = np.array(gt_msk)
 else:
 cls = np.append(cls, gt_cls, axis=0)
 off = np.append(off, gt_off, axis=0)
 msk = np.append(msk, gt_msk, axis=0)

Object Detection

[406]

 gt_class[i] = cls
 gt_offset[i] = off
 gt_mask[i] = msk

 y = [gt_class, np.concatenate((gt_offset, gt_mask), axis=-1)]

 return x, y

Now that we have a multi-threaded generator, we can use it to load images from
a filesystem. In the next section, we demonstrate how to build our custom dataset
by taking images of target objects and labeling them.

10. Example dataset
A small dataset made of 1,000 640 X 480 RGB train images and 50 640 X 480 RGB test
images was collected using an inexpensive USB camera (A4TECH PK-635G). The
dataset images were labeled using VGG Image Annotator (VIA) [5] to detect the
three objects: 1) Soda can, 2) Juice can, and 3) Bottled water. Figure 11.10.1 shows
a sample UI of the labeling process.

A utility script for collecting images can be found in utils/video_capture.py in
the GitHub repository. The script can speed up the data collection process since it
automatically captures an image every 5 seconds.

Figure 11.10.1 Dataset labeling process using VGG Image Annotator (VIA)

Chapter 11

[407]

Data collection and labeling is a time-consuming activity. In the industry, this is
typically outsourced to a third-party annotation company. The use of automatic
data labeling software is another option to accelerate the data labeling task.

With this example dataset, we can now train our object detection network.

11. SSD model training
The train and test datasets including labels in csv format can be downloaded from
this link:

https://bit.ly/adl2-ssd

In the top-level folder (that is, Chapter 11, Object Detection), create the dataset folder,
copy the downloaded file there, and extract it by running:

mkdir dataset

cp drinks.tar.gz dataset

cd dataset

tar zxvf drinks.tar.gz

cd..

The SSD model is trained for 200 epochs by executing:

python3 ssd-11.6.1.py --train

The default batch size, --batch-size=4, can be adjusted depending on the GPU
memory. On 1080Ti, the batch size is 2. On 32GB V100, this could be 4 or 8 per GPU.
--train represents model training option.

To support normalization of bounding box offsets, the --normalize option is
included. To use improved loss functions, the --improved_loss option is added.
If only smooth L1 is desired (no focal loss), use –smooth-l1. To illustrate:

• L1, no normalization:
 ° python3 ssd-11.1.1.py –-train

• Improved loss functions, no normalization:
 ° python3 ssd-11.1.1.py –-train --improved-loss

• Improved loss functions, with normalization:
 ° python3 ssd-11.1.1.py –-train –improved-loss --normalize

https://bit.ly/adl2-ssd

Object Detection

[408]

• Smooth L1, with normalization:
 ° python3 ssd-11.1.1.py –-train –-smooth-l1 --normalize

After training the SSD network, there is one more issue that we need to address.
How do we deal with multiple predictions for a given object? Before we test our
trained model, we will first discuss the Non-Maximum Suppression (NMS)
algorithm.

12. Non-Maximum Suppression (NMS)
algorithm
After the model training is completed, the network predicts bounding box offsets
and corresponding categories. In some cases, two or more bounding boxes refer
to the same object creating redundant predictions. The situation is shown in the
case of a Soda can in Figure 11.12.1. To remove redundant predictions, a NMS
algorithm is called. In this book, both classic NMS and soft NMS [6] are covered as
shown in Algorithm 11.12.1. Both algorithms assume that bounding boxes and the
corresponding confidence scores or probabilities are known.

Figure 11.12.1 The network predicted two overlapping bounding boxes for the Soda can object.
Only one valid bounding box is chosen and that is the one with the higher score of 0.99.

In classic NMS, the final bounding boxes are selected based on probabilities
and stored in list 𝒟𝒟 and with corresponding scores 𝒮𝒮 . All bounding boxes and
corresponding probabilities are stored in initial lists ℬ and 𝒫𝒫 . In lines 3 and 4, the
bounding box with the maximum score pm is used as reference, bm.

Chapter 11

[409]

The reference bounding box is added to the list of final selected bounding boxes
𝒟𝒟 and removed from the list ℬ as shown in line 5. Its score is added to list 𝒮𝒮 and
removed from 𝒫𝒫 . For the remaining bounding boxes, if the IoU with bm is greater
than or equal to a set threshold Nt, it is removed from ℬ . Its corresponding score is
also removed from 𝒫𝒫 .

The steps are shown in lines 6 and 9-11. The steps remove all redundant bounding
boxes with smaller scores. After all the remaining bounding boxes have been
examined, the process starting at line 3 is repeated. The process continues until
the list of bounding boxes ℬ has been emptied. The algorithm returns the selected
bounding boxes 𝒟𝒟 and corresponding scores 𝒮𝒮 .

The problem with classic NMS is a bounding box that contains another object but
with significant IoU with bm will be unceremoniously removed from the list. Soft
NMS [6] proposes that instead of outright removal from the list, the score of the
overlapping bounding box is decreased at a negative exponential rate in proportion
to the square of its IoU with bm as shown in line 8.

The overlapping bounding box is given a second chance. Bounding boxes with
smaller IoUs will have higher chances of survival in future iterations. In the future
selections, it may in fact prove that it contains a different object that is different from
bm. Soft NMS is an easy drop-in replacement to classic NMS as shown in Algorithm
11.12.1. There is no need to retrain the SSD network. Soft NMS exhibits higher
average precision compared to classic NMS.

Listing 11.12.1 illustrates both classic and soft NMS. Other than the final bounding
boxes and corresponding scores, the corresponding objects are also returned. The
code implements an early termination of NMS when the maximum score of the
remaining bounding boxes is less than a certain threshold (for example: 0.2).

Algorithm 11.12.1 NMS and Soft NMS

Require: Bounding box predictions: B = {b1, b2,…,bn,}

Require: Bounding box class confidence or scores: B = {b1, b2,…,bn,}

Require: NMS minimum IoU threshold: Nt

1. 𝒟𝒟 ← { } ; 𝒮𝒮 ← { }
2. while ℬ ≠ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 do
3. 𝑚𝑚 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝒫𝒫
4. ℳ ← 𝑏𝑏𝑚𝑚 ; 𝒩𝒩 ← 𝑝𝑝𝑚𝑚 ,
5. 𝒟𝒟 ← 𝒟𝒟⋃ℳ ; ℬ ← ℬ −ℳ ; 𝒮𝒮 ← 𝒮𝒮⋃𝒩𝒩 ; 𝒫𝒫 ← 𝒫𝒫 −𝒩𝒩 ;
6. for steps 𝑏𝑏𝑖𝑖 𝑖𝑖𝑖𝑖 ℬ do

Object Detection

[410]

7. if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 then

8. 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑒𝑒− 𝐼𝐼𝐼𝐼𝐼𝐼(ℳ,𝑏𝑏𝑖𝑖)2
𝜎𝜎

9. elif 𝐼𝐼𝐼𝐼𝐼𝐼(ℳ, 𝑏𝑏𝑖𝑖) ≥ 𝑁𝑁𝑡𝑡 then
10. ℬ = ℬ − 𝑏𝑏𝑖𝑖 ; 𝒫𝒫 = 𝒫𝒫 − 𝑝𝑝𝑖𝑖
11. end
12. end
13. end
14. return 𝒟𝒟, 𝒮𝒮

Listing 11.12.1: boxes.py

def nms(args, classes, offsets, anchors):
 """Perform NMS (Algorithm 11.12.1).

 Arguments:
 args: User-defined configurations
 classes (tensor): Predicted classes
 offsets (tensor): Predicted offsets

 Returns:
 objects (tensor): class predictions per anchor
 indexes (tensor): indexes of detected objects
 filtered by NMS
 scores (tensor): array of detected objects scores
 filtered by NMS
 """

 # get all non-zero (non-background) objects
 objects = np.argmax(classes, axis=1)
 # non-zero indexes are not background
 nonbg = np.nonzero(objects)[0]

 # D and S indexes in Line 1
 indexes = []
 while True:
 # list of zero probability values
 scores = np.zeros((classes.shape[0],))
 # set probability values of non-background
 scores[nonbg] = np.amax(classes[nonbg], axis=1)

 # max probability given the list

Chapter 11

[411]

 # Lines 3 and 4
 score_idx = np.argmax(scores, axis=0)
 score_max = scores[score_idx]

 # get all non max probability & set it as new nonbg
 # Line 5
 nonbg = nonbg[nonbg != score_idx]

 # if max obj probability is less than threshold (def 0.8)
 if score_max < args.class_threshold:
 # we are done
 break

 # Line 5
 indexes.append(score_idx)
 score_anc = anchors[score_idx]
 score_off = offsets[score_idx][0:4]
 score_box = score_anc + score_off
 score_box = np.expand_dims(score_box, axis=0)
 nonbg_copy = np.copy(nonbg)

 # get all overlapping predictions (Line 6)
 # perform Non-Max Suppression (NMS)
 for idx in nonbg_copy:
 anchor = anchors[idx]
 offset = offsets[idx][0:4]
 box = anchor + offset
 box = np.expand_dims(box, axis=0)
 iou = layer_utils.iou(box, score_box)[0][0]
 # if soft NMS is chosen (Line 7)
 if args.soft_nms:
 # adjust score: Line 8
 iou = -2 * iou * iou
 classes[idx] *= math.exp(iou)
 # else NMS (Line 9), (iou threshold def 0.2)
 elif iou >= args.iou_threshold:
 # remove overlapping predictions with iou>threshold
 # Line 10
 nonbg = nonbg[nonbg != idx]

 # Line 2, nothing else to process
 if nonbg.size == 0:
 break

Object Detection

[412]

 # get the array of object scores
 scores = np.zeros((classes.shape[0],))
 scores[indexes] = np.amax(classes[indexes], axis=1)

 return objects, indexes, scores

Given that we have a trained SSD network and a method to suppress redundant
predictions, the next section discusses the validation on our test dataset. Basically, we
want to know if our SSD can perform object detection on never seen before images.

13. SSD model validation
After training the SSD model for 200 epochs, the performance can be validated.
Three possible metrics for evaluation are used: 1) IoU, 2) Precision, and 3) Recall.

The first metric is mean IoU (mIoU). Given the ground truth test dataset, the IoU
between the ground truth bounding box and predicted bounding box is computed.
This is done for all ground truth and predicted bounding boxes after performing
NMS. The average of all IoUs is computed as mIoU:

𝑚𝑚𝐼𝐼𝑜𝑜𝑜𝑜 = 1
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏

∑ max
𝑗𝑗∈{1,2,..𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}

𝐼𝐼𝑜𝑜𝑜𝑜(𝑏𝑏𝑖𝑖, 𝑑𝑑𝑗𝑗)
𝑖𝑖∈{1,2,..𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏}

 (Equation 11.13.1)

where nbox is the number of ground truth bounding boxes bi and npred is the number of
predicted bounding boxes dj. Please note that this metric does not validate if the two
overlapping bounding boxes belong to the same class. If this is required, then the
code can be easily modified. Listing 11.13.1 shows the code implementation.

The second metric is precision as shown in Equation 11.3.2. It is the number of object
categories correctly predicted (true positive or TP) divided by the sum of the number
of object categories correctly predicted (true positive or TP) plus the number of object
categories wrongly predicted (false positive or FP). Precision is a measure of how
good SSD is at correctly identifying objects in an image. The closer precision is to 1.0,
the better.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 (Equation 11.3.2)

Chapter 11

[413]

The third metric is recall, as shown in Equation 11.3.3. It is the number of object
categories correctly predicted (true positive or TP) divided by the sum of the number
of object categories correctly predicted (true positive or TP) plus the number of
objects missed (false negative or FN). Recall is a measure of how good SSD is at not
misclassifying objects in an image. The closer recall is to 1.0, the better.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 (Equation 11.3.3)

If we take the mean for all images in the test dataset, they are called average
precision and average recall. In object detection, the precision and recall curves over
different mIoUs are used to measure the performance. For the sake of simplicity,
we only compute values of these metrics for a certain class threshold (default is 0.5).
Interested readers are referred to the Pascal VOC [7] paper for more details on object
detection metrics.

The results of the evaluation are shown in Table 11.13.1. The results can be obtained
by running:

• No normalization:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-extra_anchors-drinks-200.h5 --evaluate

• No normalization, smooth L1:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-smooth_l1-extra_anchors-drinks-200.h5 --evaluate

• With normalization:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-norm-extra_anchors-drinks-200.h5 --evaluate
--normalize

• With normalization, smooth L1:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-norm-smooth_l1-extra_anchors-drinks-200.h5
--evaluate --normalize

• With normalization, smooth L1, focal loss:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-norm-improved_loss-extra_anchors-drinks-200.h5
--evaluate --normalize

The weights are available on GitHub.

Object Detection

[414]

On mIoU, the best performance is the unnormalized offsets option, while the
normalized offsets setting has the highest average precision and recall. It is expected
that the performance is not state of the art considering there are only 1,000 images in
the training dataset. There is also no data augmentation applied.

From the results, the performance suffers when the improvements on loss functions
are used. This happens either when using smooth L1 or focal loss function or both.
Figure 11.13.1 to Figure 11.13.5 show sample predictions. Object detections on an
image can be obtained by executing:

python3 ssd-11.6.1.py –-restore-weights=<weights_file>
--image-file=<target_image_file> --evaluate

For example, to run object detection on dataset/drinks/0010050.jpg:

python3 ssd-11.6.1.py --restore-weights=ResNet56v2-4layer-extra_
anchors-drinks-200.h5 --image-file=dataset/drinks/0010050.jpg
--evaluate

If the model weights filename has the word norm in it, please append the
--normalize option.

Listing 11.13.1: ssd-11.6.1.py

 def evaluate_test(self):
 # test labels csv path
 path = os.path.join(self.args.data_path,
 self.args.test_labels)
 # test dictionary
 dictionary, _ = build_label_dictionary(path)
 keys = np.array(list(dictionary.keys()))
 # sum of precision
 s_precision = 0
 # sum of recall
 s_recall = 0
 # sum of IoUs
 s_iou = 0
 # evaluate per image
 for key in keys:
 # ground truth labels
 labels = np.array(dictionary[key])
 # 4 boxes coords are 1st four items of labels
 gt_boxes = labels[:, 0:-1]
 # last one is class
 gt_class_ids = labels[:, -1]
 # load image id by key
 image_file = os.path.join(self.args.data_path, key)

Chapter 11

[415]

 image = skimage.img_as_float(imread(image_file))
 image, classes, offsets = self.detect_objects(image)
 # perform nms
 _, _, class_ids, boxes = show_boxes(args,
 image,
 classes,
 offsets,
 self.feature_shapes,
 show=False)

 boxes = np.reshape(np.array(boxes), (-1,4))
 # compute IoUs
 iou = layer_utils.iou(gt_boxes, boxes)
 # skip empty IoUs
 if iou.size ==0:
 continue
 # the class of predicted box w/ max iou
 maxiou_class = np.argmax(iou, axis=1)

 # true positive
 tp = 0
 # false positiove
 fp = 0
 # sum of objects iou per image
 s_image_iou = []
 for n in range(iou.shape[0]):
 # ground truth bbox has a label
 if iou[n, maxiou_class[n]] > 0:
 s_image_iou.append(iou[n, maxiou_class[n]])
 # true positive has the same class and gt
 if gt_class_ids[n] == class_ids[maxiou_class[n]]:
 tp += 1
 else:
 fp += 1

 # objects that we missed (false negative)
 fn = abs(len(gt_class_ids) - tp)
 s_iou += (np.sum(s_image_iou) / iou.shape[0])
 s_precision += (tp/(tp + fp))
 s_recall += (tp/(tp + fn))

 n_test = len(keys)
 print_log("mIoU: %f" % (s_iou/n_test),
 self.args.verbose)

Object Detection

[416]

 print_log("Precision: %f" % (s_precision/n_test),
 self.args.verbose)
 print_log("Recall: %f" % (s_recall/n_test),
 self.args.verbose)

The results are as follows, in Table 11.13.1:

Un-
normalized
offsets

Un-
normalized
offsets,
smooth L1

Normalized
offsets

Normalized
offsets,
smooth L1

Normalized
offsets,
smooth L1,
focal loss

mIoU 0.64 0.61 0.53 0.50 0.51
Average
precision

0.87 0.86 0.90 0.85 0.85

Average
recall

0.87 0.85 0.87 0.83 0.83

Table 11.13.1 Performance benchmark of SSD on the test dataset.

Figure 11.13.1 Example predictions on an image from the test dataset (unnormalized offsets).

Chapter 11

[417]

Figure 11.13.2 Example predictions on an image from the test dataset (unnormalized offsets, smooth L1).

Figure 11.13.3 Example predictions on an image from the test dataset (normalized offsets).

Object Detection

[418]

Figure 11.13.4 Example predictions on an image from the test dataset (normalized offsets, smooth L1).

Figure 11.13.5 Example predictions on an image from the test dataset (normalized offsets, smooth L1, focal loss).

Chapter 11

[419]

The results in this section validate our SSD model. An important lesson to learn
is that as long as we understand the problem, no matter how complex it is we can
incrementally build a working solution. SSD is by far the most complex model that
we have covered in this book. It requires many utilities, modules, and a lot of data
preparation and management to work.

14. Conclusion
In this chapter, the concept of multi-scale single shot object detection was discussed.
Using anchor boxes that are centered on the centroid of the receptive field patches,
the ground truth bounding box offsets are computed. Instead of raw pixel error,
normalized pixel error encourages a bounded range that is more suitable for
optimization.

The ground truth class label is assigned per anchor box. If an anchor box does not
overlap an object, it is assigned the background class and its offset is not included
in the offset loss computation. Focal loss has been proposed to improve the category
loss function. The default L1 offset loss function can be replaced by a smooth L1 loss
function.

Evaluation on the test dataset shows that normalized offset using default loss
functions results in the best performance for average precision and recall while
mIoU is improved when offsets normalization is removed. The performance can
be improved by increasing the number and variation of train images.

In Chapter 12, Semantic Segmentation, builds upon the concepts developed in
this chapter. In particular, we reuse the ResNet backbone network to build the
segmentation network and the IoU metric for validation.

15. References
1. Krizhevsky Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet

classification with deep convolutional neural networks." Advances in neural
information processing systems. 2012.

2. Liu Wei, et al. "SSD: Single Shot MultiBox Detector." European conference on
computer vision. Springer, Cham, 2016.

3. Girshick Ross. "Fast R-CNN." Proceedings of the IEEE international
conference on computer vision. 2015.

4. Lin Tsung-Yi, et al. "Focal loss for Dense Object Detection. "Proceedings of the
IEEE international conference on computer vision. 2017.

Object Detection

[420]

5. Dutta, et al. VGG Image Annotator http://www.robots.ox.ac.uk/~vgg/
software/via/

6. Bodla Navaneeth, et al. "Soft-NMS--Improving Object Detection With One
Line of Code." Proceedings of the IEEE international conference on computer
vision. 2017.

7. Everingham Mark, et al. "The Pascal Visual Object Classes (VOC) challenge."
International journal of computer vision 88.2 (2010): 303-338.

8. "Huber Loss." https://en.wikipedia.org/wiki/Huber_loss

http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.robots.ox.ac.uk/~vgg/software/via/
https://en.wikipedia.org/wiki/Huber_loss

[421]

12
Semantic Segmentation

In Chapter 11, Object Detection, we discussed object detection as an important
computer vision algorithm with diverse practical applications. In this chapter,
we will discuss another related algorithm called Semantic Segmentation. If the
goal of object detection is to perform simultaneous localization and identification
of each object in the image, in semantic segmentation, the aim is to classify each
pixel according to its object class.

Extending the analogy further, in object detection, we use bounding boxes to
show results. In semantic segmentation, all pixels for the same object belong to
the same category. Visually, all pixels of the same object will have the same color.
For example, all pixels belonging to the soda can category will be blue in color.
Pixels for non-soda can objects will have a different color.

Similar to object detection, semantic segmentation has many practical applications.
In medical imaging, it can be used to separate and measure regions of normal
from abnormal cells. In satellite imaging, semantic segmentation can be used to
measure forest cover or the extent of flooding during disasters. In general, semantic
segmentation can be used to identify pixels belonging to the same class of object.
Identifying the individual instances of each object is not important.

Curious readers may wonder what is the difference between different segmentation
algorithms in general, and the semantic segmentation algorithm in particular? In the
following section, we will qualify the different segmentation algorithms.

In summary, the goal of this chapter is to present:

• Different types of segmentation algorithms

Semantic Segmentation

[422]

• Fully Convolutional Networks (FCNs) as an implementation of the semantic
segmentation algorithm

• Implementation and evaluation of FCN in tf.keras

We'll begin by discussing the different segmentation algorithms.

1. Segmentation
Segmentation algorithms partition an image into sets of pixels or regions. The
purpose of partitioning is to understand better what the image represents. The
sets of pixels may represent objects in the image that are of interest for a specific
application. The manner in which we partition distinguishes the different
segmentation algorithms.

In some applications, we are interested in specific countable objects in a given image.
For example, in autonomous navigation, we are interested in instances of vehicles,
traffic signs, pedestrians, and other objects on the roads. Collectively, these countable
objects are called things. All other pixels are lumped together as background. This
type of segmentation is called instance segmentation.

In other applications, we are not interested in countable objects but in amorphous
uncountable regions, such as the sky, forests, vegetation, roads, grass, buildings, and
bodies of water. These objects are collectively called stuff. This type of segmentation
is called semantic segmentation.

Roughly, things and stuff together compose the entire image. If an algorithm can
identify both things and stuff pixels, it is called panoptic segmentation, as defined
by Kirilov et al. (2019) [1].

However, the distinction between things and stuff is not rigid. An application may
consider countable objects collectively as stuff. For example, in a department store,
it is impossible to identify instances of clothing on racks. They can be collectively
lumped together as cloth stuff.

Figure 12.1.1 shows the distinction between different types of segmentation.
The input image shows two soda cans and two juice cans on top of a table. The
background is cluttered. Assuming that we are only interested in soda and juice
cans, in instance segmentation, we assign a unique color to each object instance to
distinguish the four objects individually. For semantic segmentation, we assume that
we lump together all soda cans as stuff, juice cans as another stuff, and background
as the last stuff. Basically, we have a unique color assigned to each stuff. Finally, in
panoptic segmentation, we assume that only the background is stuff and we are only
interested in instances of soda and juice cans.

Chapter 12

[423]

For this book, we only explore semantic segmentation. Following the example in
Figure 12.1.1, we will assign unique stuff categories to the objects that we used in
Chapter 11, Object Detection: 1) Water bottle, 2) Soda can, and 3) Juice can. The fourth
and last category is background.

Semantic Segmentation

[424]

Figure 12.1.1: Four images showing the different segmentation algorithms. Best viewed in color. The original
images can be found at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/

master/chapter12-segmentation

Chapter 12

[425]

2. Semantic segmentation network
From the previous section, we learned that the semantic segmentation network
is a pixel-wise classifier. The network block diagram is shown in Figure 12.2.1.
However, unlike a simple classifier (for example, the MNIST classifier in Chapter 1,
Introducing Advanced Deep Learning with Keras and Chapter 2, Deep Neural Networks),
where there is only one classifier generating a one-hot vector as output, in
semantic segmentation, we have parallel classifiers running simultaneously. Each
one is generating its own one-hot vector prediction. The number of classifiers is equal
to the number of pixels in the input image or the product of image width and height.
The dimension of each one-hot vector prediction is equal to the number of stuff
object categories of interest.

Figure 12.2.1: The semantic segmentation network can be viewed as a pixel-wise classifier. Best viewed in color.
The original images can be found at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-

Keras/tree/master/chapter12-segmentation

For example, assuming we are interested in four of the categories: 0) Background, 1)
Water bottle, 2) Soda can, and 3) Juice can, we can see in Figure 12.2.2 that there are
four pixels from each object category.

Semantic Segmentation

[426]

Each pixel is classified accordingly using a 4-dim one-hot vector. We use color
shading to indicate the class category of the pixel. Using this knowledge, we can
imagine that a semantic segmentation network predicts image_width x image_
height 4-dim one-hot vectors as output, and one 4-dim one-hot vector per pixel:

Figure 12.2.2: Four different sample pixels. Using a 4-dim one-hot vector, each pixel is classified according to
its category. Best viewed in color. The original images can be found at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter12-segmentation

Having understood the concept of semantic segmentation, we can now introduce
a neural network pixel-wise classifier. Our semantic segmentation network
architecture is inspired by Fully Convolutional Network (FCN) by Long et al. (2015) [2].
The key idea of FCN is to use multiple scales of feature maps in generating the final
prediction.

Chapter 12

[427]

Our semantic segmentation network is shown in Figure 12.2.3. Its input is an RGB
image (for example, 640 x 480 x 3) and it outputs a tensor with similar dimensions
except that the last dimension is the number of stuff categories (for example, 640 x
480 x 4 for a 4-stuff category). For visualization purposes, we map the output into
RGB by assigning a color to each category:

Figure 12.2.3: Network architecture of semantic segmentation. Kernel size is 3 unless indicated. Strides
is 1 unless indicated. Best viewed in color. The original images can be found at https://github.com/

PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter12-segmentation

Similar to SSD that was discussed in Chapter 11, Object Detection, we employ a
backbone network as a feature extractor. We use a similar ResNetv2 network in
SSD. The ResNet backbone performs max pooling twice to arrive at the first set
of feature maps with the dimensions being 1 4⁄ of the input image. The additional
sets of feature maps are generated by using successive Conv2D(strides=2)-BN-
ReLU layers, resulting in feature maps with dimensions (1 8⁄ , 1 16⁄ , 1 32⁄) of the
input image.

Our semantic segmentation network architecture is further enhanced by the
improvements made by Pyramid Scene Parsing Network (PSPNet) by Zhao et al. (2017)
[3]. In PSPNet, each feature map is further processed by another convolutional layer.
Furthermore, the first set of feature maps is also used.

Semantic Segmentation

[428]

Both FCN and PSPNet upsample the features pyramid to arrive at the same size as
the first set of feature maps. Afterward, all upsampled features are fused together
using a Concatenate layer. The concatenated layers are then processed twice by
a transposed convolution with strides equal to 2 to put the original image width
and height back. Lastly, a transposed convolution with a kernel size of 1 and filters
equal to 4 (in other words, the number of categories) and a Softmax layer are used
to generate the pixel-wise categorical prediction.

In the next section, we will discuss the tf.keras implementation of our
segmentation network. We can reuse some network blocks in SSD from Chapter 11,
Object Detection, to speed up our implementation.

3. Semantic segmentation network in
Keras
As shown in Figure 12.2.3, we already have some of the key building blocks of our
semantic segmentation network. We can reuse the ResNet model presented in
Chapter 2, Deep Neural Networks. We just need to build the features' pyramid and the
upsampling and prediction layers.

Borrowing the ResNet model that we developed in Chapter 2, Deep Neural Networks,
and which was reused in Chapter 11, Object Detection, we extract a features' pyramid
with four levels. Listing 12.3.1 shows features' pyramid extraction from ResNet.
conv_layer() is just a helper function to create a Conv2D(strides=2)-BN-
ReLU layer.

Listing 12.3.1: resnet.py:

Features' pyramid function:

def features_pyramid(x, n_layers):
 """Generate features pyramid from the output of the
 last layer of a backbone network (e.g. ResNetv1 or v2)

 Arguments:
 x (tensor): Output feature maps of a backbone network
 n_layers (int): Number of additional pyramid layers

 Return:
 outputs (list): Features pyramid
 """
 outputs = [x]
 conv = AveragePooling2D(pool_size=2, name='pool1')(x)

Chapter 12

[429]

 outputs.append(conv)
 prev_conv = conv
 n_filters = 512

 # additional feature map layers
 for i in range(n_layers - 1):
 postfix = "_layer" + str(i+2)
 conv = conv_layer(prev_conv,
 n_filters,
 kernel_size=3,
 strides=2,
 use_maxpool=False,
 postfix=postfix)
 outputs.append(conv)
 prev_conv = conv

 return outputs

Listing 12.3.1 is just half of the features' pyramid. The remaining half is the
convolution after each set of features. The other half is shown in Listing 12.3.2,
together with the upsampling of each level of the pyramid. For example, features
with dimensions of 1 8⁄ of the image size are upsampled by 2 to match their
dimensions with the first set of features, which are 1 4⁄ of the image size. In the
same listing, we also build the entire segmentation model, from the backbone
network to the features' pyramid, to concatenating upsampled features' pyramids,
and finally to further feature extractions, upsampling, and prediction. We use the
n-dim (for example, 4-dim) Softmax layer at the output layer to perform pixel-wise
classification.

Listing 12.3.2: model.py:

Building the semantic segmentation network:

def build_fcn(input_shape,
 backbone,
 n_classes=4):
 """Helper function to build an FCN model.

 Arguments:
 backbone (Model): A backbone network
 such as ResNetv2 or v1
 n_classes (int): Number of object classes
 including background.
 """

Semantic Segmentation

[430]

 inputs = Input(shape=input_shape)
 features = backbone(inputs)

 main_feature = features[0]
 features = features[1:]
 out_features = [main_feature]
 feature_size = 8
 size = 2
 # other half of the features pyramid
 # including upsampling to restore the
 # feature maps to the dimensions
 # equal to 1/4 the image size
 for feature in features:
 postfix = "fcn_" + str(feature_size)
 feature = conv_layer(feature,
 filters=256,
 use_maxpool=False,
 postfix=postfix)
 postfix = postfix + "_up2d"
 feature = UpSampling2D(size=size,
 interpolation='bilinear',
 name=postfix)(feature)
 size = size * 2
 feature_size = feature_size * 2
 out_features.append(feature)

 # concatenate all upsampled features
 x = Concatenate()(out_features)
 # perform 2 additional feature extraction
 # and upsampling
 x = tconv_layer(x, 256, postfix="up_x2")
 x = tconv_layer(x, 256, postfix="up_x4")
 # generate the pixel-wise classifier
 x = Conv2DTranspose(filters=n_classes,
 kernel_size=1,
 strides=1,
 padding='same',
 kernel_initializer='he_normal',
 name="pre_activation")(x)
 x = Softmax(name="segmentation")(x)

 model = Model(inputs, x, name="fcn")

 return model

Chapter 12

[431]

Given the segmentation network model, we use the Adam optimizer with a learning
rate of 1e-3 and a categorical cross-entropy loss function to train the network. Listing
12.3.3 shows the model building and train function calls. The learning rate is halved
every 20 epochs after 40 epochs. We monitor the network performance using the
AccuracyCallback, similar to the SSD network in Chapter 11, Object Detection. The
callback computes the performance using mean IoU (mIoU) metrics similar to the
mean IoU for object detection. The weights of the best performing mean IoU are
saved on a file. The network is trained for 100 epochs by calling fit_generator().

Listing 12.3.3: fcn-12.3.1.py:

Initialization and training of a semantic segmentation network:

 def build_model(self):
 """Build a backbone network and use it to
 create a semantic segmentation
 network based on FCN.
 """

 # input shape is (480, 640, 3) by default
 self.input_shape = (self.args.height,
 self.args.width,
 self.args.channels)

 # build the backbone network (eg ResNet50)
 # the backbone is used for 1st set of features
 # of the features pyramid
 self.backbone = self.args.backbone(self.input_shape,
 n_layers=self.args.layers)

 # using the backbone, build fcn network
 # output layer is a pixel-wise classifier
 self.n_classes = self.train_generator.n_classes
 self.fcn = build_fcn(self.input_shape,
 self.backbone,
 self.n_classes)

 def train(self):
 """Train an FCN"""
 optimizer = Adam(lr=1e-3)
 loss = 'categorical_crossentropy'
 self.fcn.compile(optimizer=optimizer, loss=loss)

 log = "# of classes %d" % self.n_classes

Semantic Segmentation

[432]

 print_log(log, self.args.verbose)
 log = "Batch size: %d" % self.args.batch_size
 print_log(log, self.args.verbose)

 # prepare callbacks for saving model weights
 # and learning rate scheduler
 # model weights are saved when test iou is highest
 # learning rate decreases by 50% every 20 epochs
 # after 40th epoch
 accuracy = AccuracyCallback(self)
 scheduler = LearningRateScheduler(lr_scheduler)

 callbacks = [accuracy, scheduler]
 # train the fcn network
 self.fcn.fit_generator(generator=self.train_generator,
 use_multiprocessing=True,
 callbacks=callbacks,
 epochs=self.args.epochs,
 workers=self.args.workers)

The multithreaded data generator class, DataGenerator, is similar to what was used
in Chapter 11, Object Detection. As shown in Listing 12.3.4, the __data_generation
(self, keys) signature method was modified to generate a pair of image tensors
and its corresponding pixel-wise ground truth labels or segmentation mask. In the
next section, we will discuss how to generate ground truth labels.

Listing 12.3.4: data_generator.py:

Data generation method of the DataGenerator class for semantic segmentation:

 def __data_generation(self, keys):
 """Generate train data: images and
 segmentation ground truth labels

 Arguments:
 keys (array): Randomly sampled keys
 (key is image filename)

 Returns:
 x (tensor): Batch of images

Chapter 12

[433]

 y (tensor): Batch of pixel-wise categories
 """
 # a batch of images
 x = []
 # and their corresponding segmentation masks
 y = []

 for i, key in enumerate(keys):
 # images are assumed to be stored
 # in self.args.data_path
 # key is the image filename
 image_path = os.path.join(self.args.data_path, key)
 image = skimage.img_as_float(imread(image_path))
 # append image to the list
 x.append(image)
 # and its corresponding label (segmentation mask)
 labels = self.dictionary[key]
 y.append(labels)

 return np.array(x), np.array(y)

The semantic segmentation network is now complete. Using tf.keras, we have
discussed its architecture implementation, initialization, and training.

Before we can run the training procedure, we need the training and test datasets with
ground truth labels. In the next section, we will discuss the semantic segmentation
dataset that we will use in this chapter.

4. Example dataset
We can use the dataset that we used in Chapter 11, Object Detection. Recall that we
used a small dataset comprising 1,000 640 x 480 RGB train images and 50 640 x 480
RGB test images collected using an inexpensive USB camera (A4TECH PK-635G).
However, instead of labeling using bounding boxes and categories, we traced the
edges of each object category using a polygon shape. We used the same dataset
annotator called VGG Image Annotator (VIA) [4] to manually trace the edges and
assign the following labels: 1) Water bottle, 2) Soda can, and 3) Juice can.

Semantic Segmentation

[434]

Figure 12.4.1 shows a sample UI of the labeling process.

Figure 12.4.1: Dataset labeling process for semantic segmentation using the VGG Image Annotator (VIA)

The VIA labeling software saves the annotation on a JSON file. For the training and
test datasets, these are:

segmentation_train.json
segmentation_test.json

The polygon region stored on the JSON files could not be used as it is. Each region
has to be converted into a segmentation mask, which is a tensor with the dimensions
imagewidth x imageheight x pixel – wise_category. In this dataset, the dimensions of the
segmentation mask are 640 x 480 x 4. The category 0 is for background, and the rest
are 1) for Water bottle, 2) for Soda can, and 3) for Juice can. In the utils folder,
we created a tool, generate_gt_segmentation.py, to convert the JSON file into
segmentation masks. For convenience, the ground truth data for training and testing
is stored inside the compressed dataset, which we downloaded from https://bit.
ly/adl2-ssd in the previous chapter:

segmentation_train.npy
segmentation_test.npy

https://bit.ly/adl2-ssd
https://bit.ly/adl2-ssd

Chapter 12

[435]

Each file contains a dictionary of ground truth data in the format image filename:
segmentation mask, which is loaded during training and validation. Figure 12.4.2
shows an example of the segmentation mask of the image in Figure 12.4.1, visualized
using colored pixels.

Figure 12.4.2: Visualization of the segmentation mask for the annotation done in Figure 12.4.1

We are now ready to train and validate the semantic segmentation network. In the
next section, we will show the results of the semantic segmentation on the dataset
that we annotated in this section.

5. Semantic segmentation validation
To train the semantic segmentation network, run the following command:

python3 fcn-12.3.1.py --train

At every epoch, the validation is also executed to determine the best performing
parameters. For semantic segmentation, two metrics can be used. The first is mean
IoU. This is similar to the mean IoU in object detection in the previous chapter. The
difference is that the IoU is computed between the ground truth segmentation mask
and the predicted segmentation mask for each stuff category. This includes the
background. The mean IoU is simply the average of all IoUs for the test dataset.

Semantic Segmentation

[436]

Figure 12.5.1 shows the performance of our semantic segmentation network using
mIoU at every epoch. The maximum mIoU is 0.91. This is relatively high. However,
our dataset only has four object categories:

Figure 12.5.1: Semantic segmentation performance during training using mIoU for the test dataset

The second metric is average pixel accuracy. This is similar to how the accuracy
is computed on a classifier prediction. The difference is that, instead of having
one prediction, the segmentation network has a number of predictions equal to
the number of pixels in the image. For each test input image, an average pixel
accuracy is computed. Then, the mean for all the test images is computed.

Figure 12.5.2 shows the performance of our semantic segmentation network using
average pixel accuracy at every epoch. The maximum average pixel accuracy is
97.9%. We can see the correlation between average pixel accuracy and mIoU:

Figure 12.5.2: Semantic segmentation performance during training using average
pixel accuracy for the test dataset

Chapter 12

[437]

Figure 12.5.3 shows a sample of the input image, the ground truth semantic
segmentation mask, and the predicted semantic segmentation mask:

Figure 12.5.3: Sample input, ground truth, and prediction for semantic segmentation.
We assigned the color black for the background class instead of purple, as was used earlier

Semantic Segmentation

[438]

Overall, our semantic segmentation network that is based on FCN and improved
by ideas from PSPNet is performing relatively well. Our semantic segmentation
network is by no means optimized. The number of filters in the features' pyramid
can be reduced to minimize the number of parameters, which is about 11.1 million.
It is also interesting to explore increasing the number of levels in the features'
pyramid. The reader may run validation by executing:

python3 fcn-12.3.1.py --evaluate

--restore-weights=ResNet56v2-3layer-drinks-best-iou.h5

In the next chapter, we will introduce unsupervised learning algorithms. There has
been a strong motivation to develop unsupervised learning techniques considering
the costly and time-consuming labeling needed in supervised learning. For example,
in the semantic segmentation dataset in this chapter, it took one person about 4 days
of manual labeling. Deep learning will not advance if it requires human labeling all
the time.

6. Conclusion
In this chapter, the concept of segmentation was discussed. We learned that there
are different categories of segmentation. Each has its own target application. This
chapter focused on the network design, implementation, and validation of semantic
segmentation.

Our semantic segmentation network was inspired by FCN, which has been the basis
of many modern-day, state-of-the-art segmentation algorithms, such as Mask-R-
CNN [5]. Our network was further enhanced by ideas from PSPNet, which won first
place in the ImageNet 2016 parsing challenge.

Using the VIA labeling tool, a new dataset label for semantic segmentation was
generated using the same set of images employed in Chapter 11, Object Detection.
The segmentation mask labels all pixels belonging to the same object class.

Our semantic segmentation network was trained and validated using mean IoU
and average pixel accuracy metrics. The performance on the test dataset shows
that it can effectively classify pixels in our test images.

As mentioned in the last section of this chapter, the field of deep learning is realizing
the limits of supervised learning due to the costs and time involved. The next chapter
focuses on unsupervised learning. It takes advantage of the concept of mutual
information that is used in information theory in the field of communications.

Chapter 12

[439]

7. References
1. Kirillov, Alexander, et al.: Panoptic Segmentation. Proceedings of the IEEE

conference on computer vision and pattern recognition. 2019.
2. Long, Jonathan, Evan Shelhamer, and Trevor Darrell: Fully Convolutional

Networks for Semantic Segmentation. Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015.

3. Zhao, Hengshuang, et al.: Pyramid Scene Parsing Network. Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017.

4. Dutta, et al.: VGG Image Annotator http://www.robots.ox.ac.uk/~vgg/
software/via/

5. He Kaiming, et al.: Mask R-CNN. Proceedings of the IEEE international
conference on computer vision. 2017.

http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.robots.ox.ac.uk/~vgg/software/via/

[441]

13
Unsupervised Learning

Using Mutual Information
Many machine learning tasks such as classification, detection, and segmentation are
dependent on labeled data. The performance of a network on these tasks is directly
affected by the quality of labeling and the amount of data. The problem is that
producing a sufficient amount of good-quality annotated data is costly and time-
consuming.

To continue the progress of development in machine learning, new algorithms
should be less dependent on human labelers. Ideally, a network should learn
from unlabeled data, which is abundant due to the growth of the internet and
the popularity of sensing devices such as smartphones and the Internet of Things
(IoT). Learning from unlabeled data is a field of unsupervised learning. In some
cases, unsupervised learning is also called self-supervised learning to emphasize
the use of pure unlabeled data for training and the absence of human supervision.
In this text, we will use the term unsupervised learning.

There are approaches that learn from unlabeled data in machine learning. The
performance of these approaches can be improved using deep neural networks
and new ideas in unsupervised learning. This is especially true when dealing with
highly unstructured data such as text, image, audio, and video.

One of the successful approaches in unsupervised learning is maximizing mutual
information between two random variables in a given neural network. In the field
of information theory, Mutual Information (MI) is a measure of dependency
between two random variables.

Unsupervised Learning Using Mutual Information

[442]

MI has recently been successful in extracting useful information from unlabeled
data that could aid in learning downstream tasks. For example, MI is able to cluster
latent code vectors such that a classification task becomes a simple linear separation
problem.

In summary, the goal of this chapter is to present:

• The concept of Mutual Information
• Estimating MI using neural networks
• The maximization of MI on discrete and continuous random variables for

downstream tasks
• The implementation of MI estimation networks in Keras

We will begin by introducing the concept of Mutual Information.

1. Mutual Information
Mutual Information is a measure of dependency between two random variables,
X and Y. Sometimes, MI is also defined as the amount of information about X
through observing Y. MI is also known as information gain or reduction in the
uncertainty of X upon observing Y.

In contrast with correlation, MI can measure non-linear statistical dependence
between X and Y. In deep learning, MI is a suitable method since most real-world
data is unstructured and the dependency between input and output is generally
non-linear. In deep learning, the end goal is to perform specific tasks such as
classification, translation, regression, or detection on input data and a pre-trained
model. These tasks are also known as downstream tasks.

Since MI can uncover important aspects of dependencies in inputs, intermediate
features, representation, and outputs, which are random variables themselves,
shared information generally improves the performance of models in
downstream tasks.

Mathematically, the MI between two random variables X and Y can be defined as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋, 𝑌𝑌) ∥ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)) (Equation 13.1.1)

where:

• P(X, Y) is the joint distribution of X and Y on sample space X x Y.
• P(X) P(Y) is the product of marginal distributions P(X) and P(Y) on

sample spaces X and Y respectively.

Chapter 13

[443]

In other words, MI is the Kullback-Leibler (KL) divergence between the joint
distribution and the product of marginal distributions. Recall from Chapter 5,
Improved GANs, KL is a measure of distance between two distributions. In the context
of MI, the higher the KL distance, the higher the MI between two random variables,
X and Y. By extension, the higher the MI, the higher the dependency of X on Y.

Since MI is equal to the KL divergence between the joint and product of marginal
distributions, it implies that it is greater or equal to zero: 𝐼𝐼(𝑋𝑋; 𝑌𝑌) ≥ 0 . MI is exactly
equal to zero when X and Y are independent random variables. When X and Y are
independent, observing one random variable (for example, Y) does not give any
information about the other random variable (for example, X). Therefore, MI is a
measure of how far X and Y are from being independent.

If X and Y are discrete random variables, by expanding the KL divergence MI can
be computed as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼(𝑋𝑋,𝑌𝑌)~𝑃𝑃(𝑋𝑋,𝑌𝑌) 𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌) = ∑ ∑𝑃𝑃(𝑋𝑋, 𝑌𝑌) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)

𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)
𝑌𝑌∈𝒴𝒴𝑋𝑋∈𝒳𝒳

 (Equation 13.1.2)

where:

• P(X, Y) is the joint probability mass function (PMF).
• P(X) and P(Y) are marginal PMFs.

If the joint and marginal distributions are known, MI has an exact computation.

If X and Y are continuous random variables, by expanding the KL divergence,
MI can be expressed as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ∫ ∫ 𝑝𝑝(𝑥𝑥, 𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥, 𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)ⅆ𝑥𝑥 ⅆ𝑦𝑦

𝒴𝒴𝒳𝒳

 (Equation 13.1.3)

where:

• p(x, y) is the joint probability distribution function (PDF).
• p(x) and p(y) are marginal PDFs.

MI for continuous random variables is generally intractable and estimated by
variational methods. In this chapter, we will discuss techniques for estimating MI
between two continuous random variables.

Before discussing techniques for computing Mutual Information, let's first explain
the relationship between MI and entropy. Entropy was informally introduced in
Chapter 6, Disentangled Representation GANs, with applications in InfoGAN.

Unsupervised Learning Using Mutual Information

[444]

2. Mutual Information and Entropy
MI can also be interpreted in terms of entropy. Recall from Chapter 6, Disentangled
Representation GANs, that entropy, H(X), is a measure of the expected amount of
information of a random variable X:

𝐻𝐻(𝑋𝑋) = −𝔼𝔼𝑥𝑥~𝑃𝑃(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑥𝑥)] (Equation 13.2.1)

Equation 13.2.1 implies that entropy is also a measure of uncertainty. The occurrence
of uncertain events gives us a higher amount of surprise, or information. For
example, news about an employee's unexpected promotion has a high amount
of information, or entropy.

Using Equation 13.2.1, MI can be expressed as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋, 𝑌𝑌) ∥ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑋𝑋)) + 𝐻𝐻(𝑃𝑃(𝑌𝑌)) − 𝐻𝐻(𝑃𝑃(𝑋𝑋, 𝑌𝑌))

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑋𝑋) +𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑋𝑋, 𝑌𝑌) (Equation 13.2.2)

Equation 13.2.2 implies that MI increases with marginal entropy but decreases with
joint entropy. A more common expression for MI in terms of entropy is as follows:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋|𝑌𝑌)

𝑃𝑃(𝑋𝑋)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋|𝑌𝑌)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑋𝑋)) − 𝐻𝐻(𝑃𝑃(𝑋𝑋|𝑌𝑌)) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌) (Equation 13.2.3)

Equation 13.2.3 tells us that MI increases with the entropy of a random variable but
decreases with the conditional entropy on another random variable. Alternatively,
MI is how much decrease in information or uncertainty in X, had we known Y.

Chapter 13

[445]

Equivalently,

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌|𝑋𝑋)

𝑃𝑃(𝑌𝑌)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑌𝑌)) − 𝐻𝐻(𝑃𝑃(𝑌𝑌|𝑋𝑋)) = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) (Equation 13.2.4)

Equation 13.2.4 implies that MI is symmetric:

𝐼𝐼(𝑌𝑌; 𝑋𝑋) = 𝐼𝐼(𝑋𝑋; 𝑌𝑌) (Equation 13.2.5)

MI can also be expressed in terms of the conditional entropy of X and Y:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌)] (Equation 13.2.6)

Using Bayes' theorem:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] − 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑌𝑌|𝑋𝑋)] − 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)

𝑃𝑃(𝑋𝑋|𝑌𝑌)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = −𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] + 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌|𝑋𝑋)] + 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋|𝑌𝑌)]

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑋𝑋, 𝑌𝑌)) − 𝐻𝐻(𝑃𝑃(𝑌𝑌|𝑋𝑋)) − 𝐻𝐻(𝑃𝑃(𝑋𝑋|𝑌𝑌))

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑋𝑋, 𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌) (Equation 13.2.7)

Figure 13.2.1 summarizes all the relationships between MI and conditional and
marginal entropies that we have discussed so far:

Figure 13.2.1 Venn diagram showing the relationships between MI and conditional and marginal entropies

Unsupervised Learning Using Mutual Information

[446]

Another interesting interpretation of MI is from Equation 13.2.3, which can be
rewritten as:

𝐻𝐻(𝑋𝑋|𝑌𝑌) = 𝐻𝐻(𝑋𝑋) − 𝐼𝐼(𝑋𝑋; 𝑌𝑌) (Equation 13.2.8)

Since H(X| Y) is the uncertainty of X upon observing Y, Equation 13.2.8 tells us
that we are more certain about X given Y if we can maximize MI. In Figure 13.2.1,
the area of crescent shape H(X| Y) decreases as the intersection between the circles
representing MI increases.

As a more concrete example, suppose X is a random variable representing the
event of observing a number between 0 and 255 inclusive in a given random byte.

Assuming a uniform distribution, this translates to a probability of 𝑃𝑃(𝑋𝑋) =
1
256 .

The entropy of X in base 2 is:

𝐻𝐻(𝑋𝑋) = − ∑ 𝑃𝑃(𝑋𝑋) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃(𝑋𝑋) =
𝑋𝑋~𝑃𝑃(𝑋𝑋)

− ∑ 1
256 𝑙𝑙𝑙𝑙𝑙𝑙2

1
256 = 256 × 8

256 = 8
𝑋𝑋~𝑃𝑃(𝑋𝑋)

Suppose the random variable Y represents the 4 most significant bits of a random
byte. If we observed that the 4 most significant bits are all zeros, then numbers 0 to
15 inclusive have 𝑃𝑃(𝑋𝑋) = 1

16 , while the rest have P(X) = 0. The conditional entropy in
base 2 is:

𝐻𝐻(𝑋𝑋|𝑌𝑌) = − ∑ 𝑃𝑃(𝑋𝑋|𝑌𝑌) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃(𝑋𝑋|𝑌𝑌) =
𝑋𝑋~𝑃𝑃(𝑋𝑋|𝑌𝑌)

− ∑ 1
16 𝑙𝑙𝑙𝑙𝑙𝑙2

1
16 = 16 × 4

16 = 4
𝑋𝑋~𝑃𝑃(𝑋𝑋|𝑌𝑌)

This gives us MI of 𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 8 − 4 = 4 . Note that the uncertainty or the amount of
expected information in random variable X decreased upon knowing Y. The mutual
information shared by X and Y is 4, which is also equal to the number of bits shared
by the two random variables. Figure 13.2.2 illustrates two cases where all bits are
random and the four most significant bits are all 0.

Chapter 13

[447]

Figure 13.2.2 Entropy when all bits are unknown versus when some bits are known

Given that we already have a good understanding of MI and entropy, we can now
exploit this concept as a method for unsupervised learning.

3. Unsupervised learning by maximizing
the Mutual Information of discrete
random variables
A classic problem in deep learning is supervised classification. In Chapter 1,
Introducing Advanced Deep Learning with Keras, and Chapter 2, Deep Neural Networks,
we learned that in supervised classification, we need labeled input images. We
performed classification on both the MNIST and CIFAR10 datasets. For MNIST,
a 3-layer CNN and a Dense layer can achieve as much as 99.3% accuracy. For
CIFAR10, using ResNet or DenseNet, we can achieve about 93% to 94% accuracy.
Both MNIST and CIFAR10 are labeled datasets.

Unsupervised Learning Using Mutual Information

[448]

Unlike supervised learning, our objective in this chapter is to perform unsupervised
learning. Our focus is on classification without labels. The idea is if we learn how
to cluster latent code vectors of all training data, then a linear separation algorithm
can classify each test input data latent vector.

To learn the clustering of latent code vectors without labels, our training objective
is to maximize MI between the input image X and its latent code Y. Both X and
Y are random variables. The idea is that similar looking images will have latent
vectors that cluster into the same regions. Regions that are far from each other
can be easily separated by a linear assignment problem. Thus, the problem
of classification can be done in an unsupervised manner. Mathematically, the
objective is to maximize:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑋𝑋) −𝐻𝐻(𝑋𝑋|𝑌𝑌) (Equation 13.2.3)

Intuitively, once we have observed Y, we are confident about X. The problem with
Equation 13.2.3 is we do not have a good estimate of the density P(X| Y) to measure
H(X| Y).

Invariant Information Clustering (IIC) by Ji et al. [1] proposed to measure 𝐼𝐼(𝑋𝑋; 𝑌𝑌)
directly from joint and marginal distributions. The objective is to use Equation 13.1.2
to measure the MI between two latent code random variables that refer to the same
input. Let's assume that the input X is encoded as Z:

𝑍𝑍 = ℰ(𝑋𝑋)

The same input X is transformed as �̅�𝑋 = 𝒢𝒢(𝑋𝑋) such that �̅�𝑋 remains clearly classifiable
with the same category as X. In image processing, 𝒢𝒢 can be a common operation
such as small rotation, random cropping, and shearing. Sometimes, operations
such as contrast and brightness adjustment, edge detection, the addition of small
amounts of noise, and normalization are also acceptable as long as the meaning of
the resulting image remains the same. For example, if X is an image of a dog, after 𝒢𝒢 ,
�̅�𝑋 is still obviously a dog.

The latent code vector using the same encoder network is:

�̅�𝑍 = ℰ(�̅�𝑋)

Chapter 13

[449]

Therefore, we can rewrite Equation 13.1.2 in terms of the two random variables Z and
�̅�𝑍 as:

𝐼𝐼(𝑍𝑍; �̅�𝑍) = ∑∑𝑃𝑃(𝑍𝑍, �̅�𝑍) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑍𝑍, �̅�𝑍)
𝑃𝑃(𝑍𝑍)𝑃𝑃(�̅�𝑍)

𝑍𝑍∈𝑍𝑍𝑍𝑍∈𝒵𝒵
 (Equation 13.3.1)

Where P(Z) and 𝑃𝑃(�̅�𝑍) can be interpreted as the marginal distributions of Z and
�̅�𝑍 . For discrete random variables, Z and �̅�𝑍 both P(Z) and 𝑃𝑃(�̅�𝑍) are categorical
distributions. We can imagine that the encoder output is a softmax with
dimensionality equal to the number of classes, N, in the train and test data
distributions. For example, for MNIST, the encoder output is a 10-dimensional
one-hot vector corresponding to the 10 digits in both the train and test datasets.

To determine each term in Equation 13.3.1, we start by estimating 𝑃𝑃(𝑍𝑍, �̅�𝑍) .
IIC assumes Z and �̅�𝑍 are independent such that the joint distribution can be
estimated as:

𝑃𝑃(𝑍𝑍, �̅�𝑍) = 𝑃𝑃(𝑍𝑍)𝑃𝑃(�̅�𝑍)𝑇𝑇 (Equation 13.3.2)

This creates an N x N matrix 𝑃𝑃(𝑍𝑍, �̅�𝑍) where each element Zij corresponds to
the probability of simultaneously observing two random variables (𝑍𝑍𝑖𝑖, �̅�𝑍𝑗𝑗) . If
this estimation is done for a large batch size, the mean of the large sample size
estimates the joint probability.

Since we will use MI to estimate the density functions, IIC constraints the
sampling to (𝑍𝑍𝑖𝑖, �̅�𝑍𝑖𝑖) . Essentially, for every sample Xi, we compute its latent code,
𝑃𝑃(𝑍𝑍𝑖𝑖) = ℰ(𝑋𝑋𝑖𝑖) . Then, we transform Xi and compute its latent code, 𝑃𝑃(�̅�𝑍𝑖𝑖) = 𝜀𝜀(�̅�𝑋𝑖𝑖) .
The joint distribution is computed as:

𝑃𝑃(𝑍𝑍, �̅�𝑍) = 1
𝑀𝑀∑𝑃𝑃(𝑍𝑍𝑖𝑖)𝑃𝑃(�̅�𝑍𝑖𝑖)𝛵𝛵

𝑀𝑀

𝑖𝑖=1
 (Equation 13.3.3)

Where M is the batch size. Since we use the same encoder ℰ for both Xi and �̅�𝑋𝑖𝑖 ,
the resulting joint distribution should be symmetrical. We enforce symmetry by
executing:

𝑃𝑃(𝑍𝑍, �̅�𝑍) = 𝑃𝑃(𝑍𝑍, �̅�𝑍) + 𝑃𝑃(𝑍𝑍, �̅�𝑍)𝛵𝛵
2 (Equation 13.3.4)

Unsupervised Learning Using Mutual Information

[450]

Given 𝑃𝑃(𝑍𝑍, �̅�𝑍) , the marginal distributions can be computed as:

𝑃𝑃(𝑍𝑍) =∑𝑃𝑃(𝑍𝑍𝑖𝑖, �̅�𝑍𝑗𝑗)
𝑁𝑁

𝑗𝑗=1
 (Equation 13.3.5)

We sum all entries of the matrix row-wise. Similarly:

𝑃𝑃(�̅�𝑍) =∑𝑃𝑃(𝑍𝑍𝑖𝑖, �̅�𝑍𝑗𝑗)
𝑁𝑁

𝑖𝑖=1
 (Equation 13.3.6)

We sum all entries of the matrix column-wise.

Given all the terms in Equation 13.3.1 we can train a neural network encoder ℰ that
maximizes MI or minimizes the negative MI using the loss function:

ℒ(𝑍𝑍, �̅�𝑍) = −𝐼𝐼(𝑍𝑍; �̅�𝑍) = ∑∑𝑃𝑃(𝑍𝑍, �̅�𝑍)(𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑍𝑍) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(�̅�𝑍) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑍𝑍, �̅�𝑍))
𝑍𝑍∈𝑍𝑍𝑍𝑍∈𝒵𝒵

 (Equation 13.3.7)

Before we implement unsupervised clustering, let us reflect again on the objective –
maximize 𝐼𝐼(𝑍𝑍; �̅�𝑍) . Since X and �̅�𝑋 = 𝒢𝒢(𝑋𝑋) and their corresponding latent code vectors
Z and �̅�𝑍 share the same information, then the neural network encoder ℰ should
learn to map X and �̅�𝑋 into latent vectors Z and �̅�𝑍 that have almost the same value
in order to maximize their MI. In the context of MNIST, similar-looking digits will
have latent code vectors that cluster in the same region in space.

If the latent code vector is the output of softmax, then it implies that we are
performing unsupervised clustering, which can be converted to a classifier using
a linear assignment algorithm. In this chapter, we will present two possible linear
assignment algorithms that can be used to convert unsupervised clustering into
unsupervised classification.

In the next section, we will discuss the encoder network model that can be used to
implement unsupervised clustering. In particular, we will introduce the encoder
network that can be used to estimate both P(Z) and 𝑃𝑃(�̅�𝑍) .

4. Encoder network for unsupervised
clustering
The encoder network implementation for unsupervised clustering is shown in
Figure 13.4.1. It is an encoder with a VGG-like [2] backbone and a Dense layer with
a softmax output. The simplest VGG-11 has a backbone, as shown in Figure 13.4.2.

Chapter 13

[451]

For MNIST, using the simplest VGG-11 backbone decimates the feature map size to
zero from 5 times the MaxPooling2D operations. Therefore, a scaled-down version of
the VGG-11 backbone is used, as shown in Figure 13.4.3, when implemented in Keras.
The same set of filters is used.

Figure 13.4.1 Network implementation of IIC encoder network ℰ . The input MNIST image is center cropped to
24 x 24 pixels. In this example, �̅�𝑋 = 𝒢𝒢(𝑋𝑋) is a random 24 x 24-pixel cropping operation.

Figure 13.4.2 VGG-11 classifier backbone

Unsupervised Learning Using Mutual Information

[452]

In Figure 13.4.3, there are 4 Conv2D-BN-ReLU Activation-MaxPooling2D layers
with filter sizes (64,128,256,512). The last Conv2D layer does not use MaxPooling2D.
Therefore, the last Conv2D layer outputs a (3,3,512) feature map for a 24 x 24 x 1
cropped MNIST input.

Figure 13.4.3 A scaled-down VGG is used as the encoder backbone

Chapter 13

[453]

Figure 13.4.4 shows the Keras model diagram of Figure 13.4.1. To improve its
performance, IIC performs overclustering. Two or more encoders are used to
generate two or more marginal distributions P(Z) and 𝑃𝑃(�̅�𝑍) . The corresponding
joint distributions 𝑃𝑃(𝑍𝑍, �̅�𝑍) are generated. In terms of the network model, this is
implemented by an encoder with two or more heads.

Figure 13.4.4 Network implementation of IIC encoder ℰ in Keras

Figure 13.4.4 is a single-headed encoder, while Figure 13.4.5 is a two-headed encoder.
Notice that the two heads share the same VGG backbone.

Figure 13.4.5 A two-headed encoder network ℰ in Keras

Unsupervised Learning Using Mutual Information

[454]

In the following two sections, we will look into how the IIC network model is
implemented, trained, and evaluated. We will also look into the linear assignment
problem as a tool for designating a label for each cluster.

5. Unsupervised clustering
implementation in Keras
The network model implementation in Keras for unsupervised clustering is shown
in Listing 13.5.1. Only the initialization is shown. The network hyperparameters are
stored in args. The VGG backbone object is supplied during initializations. Given
a backbone, the model is actually just a Dense layer with a softmax activation, as
shown in the build_model() method. There is an option to create multiple heads.

Similar to Chapter 11, Object Detection, we implemented a DataGenerator class to
efficiently serve input data in a multithreaded fashion. A DataGenerator object
generates the required paired train input data (that is, a Siamese input image)
made of the input image X and its transformed image �̅�𝑋 . The most critical method,
__data_generation(), of the DataGenerator class is shown in Listing 13.5.2.
The input image X is center cropped from the original input image. In the case
of MNIST, this is 24 x 24-pixel center cropping. The transformed input image �̅�𝑋 is
either randomly rotated by an angle in the range of ±20 or randomly cropped 16
x 16, 18 x 18, or 20 x 20 pixels from any part of the image and is resized back to 24
x 24 pixels. Crop sizes are stored in the crop_sizes list.

Note that only the input and transformed images are important in the data generated
by the DataGenerator object. Also, the paired data that is needed by the loss
function is concatenated along the batch axis. This will allow us to compute the loss
function in a single batch of paired data.

Listing 13.5.1: iic-13.5.1.py. The IIC class showing initialization and model
creation: class IIC:

 def __init__(self,
 args,
 backbone):
 """Contains the encoder model, the loss function,
 loading of datasets, train and evaluation routines
 to implement IIC unsupervised clustering via mutual
 information maximization

 Arguments:
 args : Command line arguments to indicate choice
 of batch size, number of heads, folder to save

Chapter 13

[455]

 weights file, weights file name, etc
 backbone (Model): IIC Encoder backbone (eg VGG)
 """
 self.args = args
 self.backbone = backbone
 self._model = None
 self.train_gen = DataGenerator(args, siamese=True)
 self.n_labels = self.train_gen.n_labels
 self.build_model()
 self.load_eval_dataset()
 self.accuracy = 0

 def build_model(self):
 """Build the n_heads of the IIC model
 """
 inputs = Input(shape=self.train_gen.input_shape, name='x')
 x = self.backbone(inputs)
 x = Flatten()(x)
 # number of output heads
 outputs = []
 for i in range(self.args.heads):
 name = "z_head%d" % i
 outputs.append(Dense(self.n_labels,
 activation='softmax',
 name=name)(x))
 self._model = Model(inputs, outputs, name='encoder')
 optimizer = Adam(lr=1e-3)
 self._model.compile(optimizer=optimizer, loss=self.mi_loss)

Listing 13.5.2: data_generator.py. The DataGenerator class method for generating
paired input data to train the IIC encoder:

 def __data_generation(self, start_index, end_index):
 """Data generation algorithm. The method generates
 a batch of pair of images (original image X and
 transformed imaged Xbar). The batch of Siamese
 images is used to trained MI-based algorithms:
 1) IIC and 2) MINE (Section 7)

 Arguments:
 start_index (int): Given an array of images,
 this is the start index to retrieve a batch
 end_index (int): Given an array of images,
 this is the end index to retrieve a batch

Unsupervised Learning Using Mutual Information

[456]

 """

 d = self.crop_size // 2
 crop_sizes = [self.crop_size*2 + i for i in range(0,5,2)]
 image_size = self.data.shape[1] - self.crop_size
 x = self.data[self.indexes[start_index : end_index]]
 y1 = self.label[self.indexes[start_index : end_index]]

 target_shape = (x.shape[0], *self.input_shape)
 x1 = np.zeros(target_shape)
 if self.siamese:
 y2 = y1
 x2 = np.zeros(target_shape)

 for i in range(x1.shape[0]):
 image = x[i]
 x1[i] = image[d: image_size + d, d: image_size + d]
 if self.siamese:
 rotate = np.random.randint(0, 2)
 # 50-50% chance of crop or rotate
 if rotate == 1:
 shape = target_shape[1:]
 x2[i] = self.random_rotate(image,
 target_shape=shape)
 else:
 x2[i] = self.random_crop(image,
 target_shape[1:],
 crop_sizes)

 # for IIC, we are mostly interested in paired images
 # X and Xbar = G(X)
 if self.siamese:
 # If MINE Algorithm is chosen, use this to generate
 # the training data (see Section 9)
 if self.mine:
 y = np.concatenate([y1, y2], axis=0)
 m1 = np.copy(x1)
 m2 = np.copy(x2)
 np.random.shuffle(m2)

 x1 = np.concatenate((x1, m1), axis=0)
 x2 = np.concatenate((x2, m2), axis=0)
 x = (x1, x2)
 return x, y

Chapter 13

[457]

 x_train = np.concatenate([x1, x2], axis=0)
 y_train = np.concatenate([y1, y2], axis=0)
 y = []
 for i in range(self.args.heads):
 y.append(y_train)
 return x_train, y

 return x1, y1

To implement the VGG backbone, the VGG class is implemented in Keras, as shown
in Listing 13.5.3. The VGG class is flexible in that it can be configured in different ways
(or different flavors of VGG). Option 'F' for IIC VGG backbone configuration cfg is
shown. We use a helper function to generate Conv2D-BN-ReLU-MaxPooling2D layers.

Listing 13.5.3: vgg.py.

The VGG backbone class method in Keras:

cfg = {
 'F': [64, 'M', 128, 'M', 256, 'M', 512],
}

class VGG:
 def __init__(self, cfg, input_shape=(24, 24, 1)):
 """VGG network model creator to be used as backbone
 feature extractor

 Arguments:
 cfg (dict): Summarizes the network configuration
 input_shape (list): Input image dims
 """
 self.cfg = cfg
 self.input_shape = input_shape
 self._model = None
 self.build_model()

 def build_model(self):
 """Model builder uses a helper function
 make_layers to read the config dict and
 create a VGG network model
 """
 inputs = Input(shape=self.input_shape, name='x')
 x = VGG.make_layers(self.cfg, inputs)
 self._model = Model(inputs, x, name='VGG')

 @property

Unsupervised Learning Using Mutual Information

[458]

 def model(self):
 return self._model

 @staticmethod
 def make_layers(cfg,
 inputs,
 batch_norm=True,
 in_channels=1):
 """Helper function to ease the creation of VGG
 network model

 Arguments:
 cfg (dict): Summarizes the network layer
 configuration
 inputs (tensor): Input from previous layer
 batch_norm (Bool): Whether to use batch norm
 between Conv2D and ReLU
 in_channel (int): Number of input channels
 """
 x = inputs
 for layer in cfg:
 if layer == 'M':
 x = MaxPooling2D()(x)
 elif layer == 'A':
 x = AveragePooling2D(pool_size=3)(x)
 else:
 x = Conv2D(layer,
 kernel_size=3,
 padding='same',
 kernel_initializer='he_normal'
)(x)
 if batch_norm:
 x = BatchNormalization()(x)
 x = Activation('relu')(x)

 return x

Going back to the IIC class, the key algorithm of IIC is the loss function that
minimizes the negative MI. This method is shown in Listing 13.5.4. To evaluate
the loss in a single batch, we look into y_pred and break it into two halves, lower
and upper, corresponding to the encoder output for the input image �̅�𝑋 and its
transformed image �̅�𝑋 . Recall that the paired data is made by concatenating a batch
of image �̅�𝑋 and a batch of its transformed image �̅�𝑋 .

Chapter 13

[459]

The lower half of y_pred is Z while the upper half is �̅�𝑍. Following Equation 10.3.2
to Equation 10.3.7, the joint distribution 𝑃𝑃(𝑍𝑍, �̅�𝑍) and marginal distributions are
computed. Finally, the negative MI is returned. Note that each head contributes
equally to the total loss function. Hence the loss is scaled by the number of heads.

Listing 13.5.4: iic-13.5.1.py.

The IIC class loss function in Keras. The loss function minimizes the negative MI (that
is, it maximizes the MI):

 def mi_loss(self, y_true, y_pred):
 """Mutual information loss computed from the joint
 distribution matrix and the marginals

 Arguments:
 y_true (tensor): Not used since this is
 unsupervised learning
 y_pred (tensor): stack of softmax predictions for
 the Siamese latent vectors (Z and Zbar)
 """
 size = self.args.batch_size
 n_labels = y_pred.shape[-1]
 # lower half is Z
 Z = y_pred[0: size, :]
 Z = K.expand_dims(Z, axis=2)
 # upper half is Zbar
 Zbar = y_pred[size: y_pred.shape[0], :]
 Zbar = K.expand_dims(Zbar, axis=1)
 # compute joint distribution (Eq 10.3.2 & .3)
 P = K.batch_dot(Z, Zbar)
 P = K.sum(P, axis=0)
 # enforce symmetric joint distribution (Eq 10.3.4)
 P = (P + K.transpose(P)) / 2.0
 # normalization of total probability to 1.0
 P = P / K.sum(P)
 # marginal distributions (Eq 10.3.5 & .6)
 Pi = K.expand_dims(K.sum(P, axis=1), axis=1)
 Pj = K.expand_dims(K.sum(P, axis=0), axis=0)
 Pi = K.repeat_elements(Pi, rep=n_labels, axis=1)
 Pj = K.repeat_elements(Pj, rep=n_labels, axis=0)
 P = K.clip(P, K.epsilon(), np.finfo(float).max)
 Pi = K.clip(Pi, K.epsilon(), np.finfo(float).max)
 Pj = K.clip(Pj, K.epsilon(), np.finfo(float).max)
 # negative MI loss (Eq 10.3.7)
 neg_mi = K.sum((P * (K.log(Pi) + K.log(Pj) - K.log(P))))
 # each head contribute 1/n_heads to the total loss
 return neg_mi/self.args.heads

Unsupervised Learning Using Mutual Information

[460]

The IIC network training method is shown in Listing 13.5.5. Since we are using a
DataGenerator object derived from the Sequence class, we can use the Keras fit_
generator() method to train the model.

We use a learning rate scheduler that decreases the learning rate by 80% every
400 epochs. AccuracyCallback calls the eval() method, so we can record the
performance of the network after every epoch.

The weights of the best performing model are optionally saved. In the eval()
method, we use a linear classifier to assign a label to each cluster. The linear classifier
unsupervised_labels() is a Hungarian algorithm that assigns a label to a cluster
with the minimum cost.

This last step converts the unsupervised clustering into unsupervised classification.
The unsupervised_labels() function is shown in Listing 13.5.6.

Listing 13.5.5: iic-13.5.1.py.

The IIC network training and evaluation:

 def train(self):
 """Train function uses the data generator,
 accuracy computation, and learning rate
 scheduler callbacks
 """
 accuracy = AccuracyCallback(self)
 lr_scheduler = LearningRateScheduler(lr_schedule,
 verbose=1)
 callbacks = [accuracy, lr_scheduler]
 self._model.fit_generator(generator=self.train_gen,
 use_multiprocessing=True,
 epochs=self.args.epochs,
 callbacks=callbacks,
 workers=4,
 shuffle=True)
 def eval(self):
 """Evaluate the accuracy of the current model weights
 """
 y_pred = self._model.predict(self.x_test)
 print("")
 # accuracy per head
 for head in range(self.args.heads):
 if self.args.heads == 1:
 y_head = y_pred
 else:

Chapter 13

[461]

 y_head = y_pred[head]
 y_head = np.argmax(y_head, axis=1)

 accuracy = unsupervised_labels(list(self.y_test),
 list(y_head),
 self.n_labels,
 self.n_labels)
 info = "Head %d accuracy: %0.2f%%"
 if self.accuracy > 0:
 info += ", Old best accuracy: %0.2f%%"
 data = (head, accuracy, self.accuracy)
 else:
 data = (head, accuracy)
 print(info % data)
 # if accuracy improves during training,
 # save the model weights on a file
 if accuracy > self.accuracy \
 and self.args.save_weights is not None:
 self.accuracy = accuracy
 folder = self.args.save_dir
 os.makedirs(folder, exist_ok=True)
 path = os.path.join(folder, self.args.save_weights)
 print("Saving weights... ", path)
 self._model.save_weights(path)

Listing 13.5.6: utils.py.

The Hungarian algorithm assigns a label to a cluster with the minimum cost:

from scipy.optimize import linear_sum_assignment
def unsupervised_labels(y, yp, n_classes, n_clusters):
 """Linear assignment algorithm

 Arguments:
 y (tensor): Ground truth labels
 yp (tensor): Predicted clusters
 n_classes (int): Number of classes
 n_clusters (int): Number of clusters
 """
 assert n_classes == n_clusters

 # initialize count matrix
 C = np.zeros([n_clusters, n_classes])

 # populate count matrix

Unsupervised Learning Using Mutual Information

[462]

 for i in range(len(y)):
 C[int(yp[i]), int(y[i])] += 1

 # optimal permutation using Hungarian Algo
 # the higher the count, the lower the cost
 # so we use -C for linear assignment
 row, col = linear_sum_assignment(-C)

 # compute accuracy
 accuracy = C[row, col].sum() / C.sum()

 return accuracy * 100

Figure 13.5.1 The linear assignment algorithm explained in a simple scenario of three clusters to be assigned
optimally to three classes

As shown in Figure 13.5.1, the linear assignment problem is best explained using
a simplified scenario of three clusters to be assigned to three classes. The linear
assignment problem finds the one-to-one assignment of clusters to classes that
result in the minimum total cost. On the left of Figure 13.5.1, the clustering results
and the ground truth labels are shown.

The linear assignment problem finds the class or category for each cluster or how
to assign labels to each cluster. The cost matrix 𝐶𝐶 is also shown. For every cluster-
ground truth pair, a cost matrix cell is decremented by 1. The row-column index
of the cell is the cluster number-ground truth label index. Using the cost matrix,
the job of the linear assignment problem is to find the optimal matrix X that results
in the minimum total cost:

Chapter 13

[463]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚∑𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

 (Equation 13.5.1)

Where cij and xij are the elements of matrices 𝐶𝐶 and X respectively. i and j are the
indexes. The elements of X are subject to the following constraints:

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1}

∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

= 1 for i = 1, 2, … , N

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

= 1 for j = 1, 2, … , N

X is a binary matrix. Each row is assigned to only one column. The linear assignment
problem is therefore a combinatorial problem. The details of the optimal solution
are beyond the scope of this book and are not discussed here.

The optimal weight matrix X is shown in Figure 13.5.1. Cluster 0 is assigned label 1.
Cluster 1 is assigned to label 2. Cluster 2 is assigned to label 0. This can be intuitively
verified from the cost matrix since this results in a minimum cost of -4 while
ensuring each row is assigned to only one column.

Using this matrix, the cluster class assignment is shown in the right most table.
With the cluster class assignment, there is only one error on the fourth row. The
resulting accuracy is four-fifths, or 80%.

We can extend the linear assignment problem to the problem of assigning labels
to our 10 MNIST clusters. We use the linear_sum_assignment() function in
the scipy package. The function is based on the Hungarian algorithm. Listing
13.5.6 shows the implementation of the cluster labeling process. For more details
on the linear_sum_assignment() function see https://docs.scipy.org/
doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_
assignment.html.

To train the IIC model for the case of 1 head, execute:

python3 iic-13.5.1.py --heads=1 --train --save-weights=head1.h5

For other numbers of heads, the options --heads and --save-weights should be
modified accordingly. In the next section, we will examine the performance of IIC
as an MNIST classifier.

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html

Unsupervised Learning Using Mutual Information

[464]

6. Validation using MNIST
In this section, we'll look at the results following the validation of IIC using the
MNIST test dataset. After running the cluster prediction on the test dataset, the
linear assignment problem assigns a label to each cluster, essentially converting the
clustering into classification. We computed the classification accuracy, as shown
in Table 13.6.1. The IIC accuracy is higher than the 99.3% reported in the paper.
However, it should be noted that not every training results in a high-accuracy
classification.

Sometimes, we have to run the training multiple times since it appears that the
optimization is stuck in a local minimum. Furthermore, we do not obtain the same
level of performance for all heads in multi-head IIC models. Table 13.6.1 reports the
best performing head.

Number of heads 1 2 3 4 5

Accuracy, % 99.49 99.47 99.54 99.52 99.53

Table 13.6.1 Accuracy of IIC for different numbers of heads

The weights are available on GitHub. For example, to run validation on one-head
IIC:

python3 iic-13.5.1.py --heads=1 --eval --restore-weights=head1-best.h5

In conclusion, we can see that it is possible to perform unsupervised classification.
The results are in fact better than the supervised classification that we examined
in Chapter 2, Deep Neural Networks. In the following sections, we will turn our
attention to unsupervised learning for continuous random variables.

7. Unsupervised learning by maximizing
the Mutual Information of continuous
random variables
In previous sections, we learned that we can arrive at a good estimator of the MI
of discrete random variables. We also demonstrated that with the help of a linear
assignment algorithm, a network that performs clustering by maximizing MI leads
to an accurate classifier.

Chapter 13

[465]

If IIC is a good estimator of the MI of discrete random variables, what about
continuous random variables? In this section, we discuss the Mutual Information
Network Estimator (MINE) by Belghazi et al. [3] as an estimator of the MI of
continuous random variables.

MINE proposes an alternative expression of KL-divergence in Equation 13.1.1
to implement an MI estimator using a neural network. In MINE, the Donsker-
Varadhan (DV) representation of KL-divergence is used:

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋, 𝑌𝑌) ∥ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇:𝛺𝛺→ℝ

𝔼𝔼𝑥𝑥,𝑦𝑦~𝑃𝑃(𝑋𝑋,𝑌𝑌)[𝑇𝑇(𝑥𝑥, 𝑦𝑦)] − 𝑙𝑙𝑙𝑙𝑙𝑙𝔼𝔼𝑥𝑥~𝑃𝑃(𝑋𝑋),𝑦𝑦~𝑃𝑃(𝑌𝑌)[𝑒𝑒𝑇𝑇(𝑥𝑥,𝑦𝑦)]

(Equation 13.7.1)

Where the supremum is taken all over the space of function T. T is an arbitrary
function that maps from the input space (such as an image) to a real number. Recall
that supremum is roughly interpreted as a maximum. For T, we can choose from
a family of functions 𝑇𝑇𝜃𝜃 = 𝑋𝑋 × 𝑌𝑌 → ℝ that is parameterized by 𝜃𝜃 ∈ 𝛩𝛩 . Therefore,
we can represent 𝑇𝑇𝜃𝜃 , hence T, with a deep neural network that estimates the KL-
divergence.

Given the exact (but intractable) representation of the MI, 𝐼𝐼(𝑋𝑋; 𝑌𝑌) , and its
parameterized estimate 𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌) as a tractable lower bound, we can safely state:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) ≥ 𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌) (Equation 13.7.2)

where the parameterized MI estimate is:

𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝜃𝜃∈𝛩𝛩

𝔼𝔼𝑥𝑥,𝑦𝑦~𝑃𝑃(𝑋𝑋,𝑌𝑌)[𝑇𝑇𝜃𝜃(𝑥𝑥, 𝑦𝑦)] − 𝑙𝑙𝑙𝑙𝑙𝑙𝔼𝔼𝑥𝑥~𝑃𝑃(𝑋𝑋),𝑦𝑦~𝑃𝑃(𝑌𝑌)[𝑒𝑒𝑇𝑇𝜃𝜃(𝑥𝑥,𝑦𝑦)] (Equation 13.7.3)

𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌) is also called the neural information measure. In the first expectation,
the samples (𝑥𝑥, 𝑦𝑦)~𝑃𝑃(𝑋𝑋, 𝑌𝑌) are taken from the joint distribution P(X, Y). In the
second expectation, the samples 𝑥𝑥~𝑃𝑃(𝑋𝑋), 𝑦𝑦~𝑃𝑃(𝑌𝑌) are taken from marginal
distributions P(X) and P(Y).

Algorithm 13.7.1: MINE.

𝜃𝜃 ← initialize all network parameters

Unsupervised Learning Using Mutual Information

[466]

While 𝜃𝜃 has not converged do:

1. Draw a mini batch, b, of samples from the joint distribution
{(𝑥𝑥(1), 𝑦𝑦(1)), (𝑥𝑥(2), 𝑦𝑦(2)),… , (𝑥𝑥(𝑏𝑏), 𝑦𝑦(𝑏𝑏))}~𝑃𝑃(𝑋𝑋, 𝑌𝑌)

2. Draw a mini batch, b, of samples from the marginal distributions

{(𝑥𝑥¯ (1)) , (𝑥𝑥¯ (2)) ,… , (𝑥𝑥¯ (𝑏𝑏))}~𝑃𝑃(𝑋𝑋) and {(𝑦𝑦
¯ (1)) , (𝑦𝑦¯ (2)) , … , (𝑦𝑦¯ (𝑏𝑏))}~𝑃𝑃(𝑌𝑌) .

3. Evaluate the lower-bound: 𝒱𝒱(𝜃𝜃) =
1
𝑏𝑏∑𝑇𝑇𝜃𝜃(𝑥𝑥(𝑖𝑖), 𝑦𝑦(𝑖𝑖)) − 𝑙𝑙𝑙𝑙𝑙𝑙 1𝑏𝑏∑𝑒𝑒𝑇𝑇𝜃𝜃(𝑥𝑥

¯ (𝑖𝑖),𝑦𝑦¯ (𝑖𝑖))
𝑏𝑏

𝑖𝑖=1

𝑏𝑏

𝑖𝑖=1

4. Evaluate the bias-corrected gradients: �̂�𝐺(𝜃𝜃) = ∇̂𝜃𝜃𝒱𝒱(𝜃𝜃)

5. Update the network parameters: 𝜃𝜃 ← 𝜃𝜃 − 𝜖𝜖�̂�𝐺(𝜃𝜃) , where 𝜖𝜖 is the learning rate.

Algorithm 13.7.1 summarizes the MINE algorithm. The samples from the marginal
distribution are samples from the joint distribution with the other variable dropped.
For example, samples x are simply samples (x, y) with the variable y dropped.
After dropping values for variable y, samples x are shuffled. The same sampling
method is done for y. For clarity, we use symbols �̅�𝑥 and �̅�𝑦 to identify samples
from marginal distributions.

In the next section, we will use the MINE algorithm to estimate the MI in the case
of a bivariate Gaussian distribution. We will show both the estimation of MI using
an analytic method and the approximation of MI using MINE.

8. Estimating the Mutual Information of a
bivariate Gaussian
In this section, we validate MINE on a bivariate Gaussian distribution. Figure 13.8.1
shows a bivariate Gaussian distribution with mean and covariance:

𝝁𝝁 = [0 0] (Equation 13.8.1)

𝝈𝝈 = [1 0.5
0.5 1] (Equation 13.8.2)

Chapter 13

[467]

Figure 13.8.1 A two dimensional Gaussian distribution with mean and covariance as shown in Equation 13.8.1
and Equation 13.8.2

Our goal is to estimate MI by approximating Equation 13.1.3. The approximation
can be done by obtaining a huge number of samples (such as 1 million) and creating
a histogram with a large number of bins (such as 100 bins). Listing 13.8.1 shows the
manual computation of the MI of a bivariate Gaussian distribution using binning.

Listing 13.8.1: mine-13.8.1.py:

def sample(joint=True,
 mean=[0, 0],
 cov=[[1, 0.5], [0.5, 1]],
 n_data=1000000):
 """Helper function to obtain samples
 fr a bivariate Gaussian distribution

 Arguments:
 joint (Bool): If joint distribution is desired
 mean (list): The mean values of the 2D Gaussian
 cov (list): The covariance matrix of the 2D Gaussian
 n_data (int): Number of samples fr 2D Gaussian
 """
 xy = np.random.multivariate_normal(mean=mean,
 cov=cov,
 size=n_data)
 # samples fr joint distribution

Unsupervised Learning Using Mutual Information

[468]

 if joint:
 return xy
 y = np.random.multivariate_normal(mean=mean,
 cov=cov,
 size=n_data)

 # samples fr marginal distribution
 x = xy[:,0].reshape(-1,1)
 y = y[:,1].reshape(-1,1)

 xy = np.concatenate([x, y], axis=1)
 return xy

def compute_mi(cov_xy=0.5, n_bins=100):
 """Analytic computation of MI using binned
 2D Gaussian

 Arguments:
 cov_xy (list): Off-diagonal elements of covariance
 matrix
 n_bins (int): Number of bins to "quantize" the
 continuous 2D Gaussian
 """
 cov=[[1, cov_xy], [cov_xy, 1]]
 data = sample(cov=cov)
 # get joint distribution samples
 # perform histogram binning
 joint, edge = np.histogramdd(data, bins=n_bins)
 joint /= joint.sum()
 eps = np.finfo(float).eps
 joint[joint<eps] = eps
 # compute marginal distributions
 x, y = margins(joint)

 xy = x*y
 xy[xy<eps] = eps
 # MI is P(X,Y)*log(P(X,Y)/P(X)*P(Y))
 mi = joint*np.log(joint/xy)
 mi = mi.sum()
 return mi

Chapter 13

[469]

The result of running:

python3 mine-13.8.1.py --gaussian

indicates the manually computed MI:

Computed MI: 0.145158

The covariance can be changed using the --cov_xy option. For example:

python3 mine-13.8.1.py --gaussian --cov_xy=0.8

indicates the manually computed MI:

Computed MI: 0.510342

Figure 13.8.2 A simple MINE model for estimating the MI of random
variables X and Y of a bivariate Gaussian distribution

Unsupervised Learning Using Mutual Information

[470]

Listing 13.8.2: mine-13.8.1.py.

A simple MINE model to estimate the MI of random variables of a bivariate
Gaussian distribution:

class SimpleMINE:
 def __init__(self,
 args,
 input_dim=1,
 hidden_units=16,
 output_dim=1):
 """Learn to compute MI using MINE (Algorithm 13.7.1)

 Arguments:
 args : User-defined arguments such as off-diagonal
 elements of covariance matrix, batch size,
 epochs, etc
 input_dim (int): Input size dimension
 hidden_units (int): Number of hidden units of the
 MINE MLP network
 output_dim (int): Output size dimension
 """
 self.args = args
 self._model = None
 self.build_model(input_dim,
 hidden_units,
 output_dim)

 def build_model(self,
 input_dim,
 hidden_units,
 output_dim):
 """Build a simple MINE model

 Arguments:
 See class arguments.
 """
 inputs1 = Input(shape=(input_dim), name="x")
 inputs2 = Input(shape=(input_dim), name="y")
 x1 = Dense(hidden_units)(inputs1)
 x2 = Dense(hidden_units)(inputs2)
 x = Add()([x1, x2])
 x = Activation('relu', name="ReLU")(x)
 outputs = Dense(output_dim, name="MI")(x)

Chapter 13

[471]

 inputs = [inputs1, inputs2]
 self._model = Model(inputs,
 outputs,
 name='MINE')
 self._model.summary()

 def mi_loss(self, y_true, y_pred):
 """ MINE loss function

 Arguments:
 y_true (tensor): Not used since this is
 unsupervised learning
 y_pred (tensor): stack of predictions for
 joint T(x,y) and marginal T(x,y)
 """
 size = self.args.batch_size
 # lower half is pred for joint dist
 pred_xy = y_pred[0: size, :]

 # upper half is pred for marginal dist
 pred_x_y = y_pred[size : y_pred.shape[0], :]
 # implentation of MINE loss (Eq 13.7.3)
 loss = K.mean(pred_xy) \
 - K.log(K.mean(K.exp(pred_x_y)))
 return -loss

 def train(self):
 """Train MINE to estimate MI between
 X and Y of a 2D Gaussian
 """
 optimizer = Adam(lr=0.01)
 self._model.compile(optimizer=optimizer,
 loss=self.mi_loss)
 plot_loss = []
 cov=[[1, self.args.cov_xy], [self.args.cov_xy, 1]]
 loss = 0.
 for epoch in range(self.args.epochs):
 # joint dist samples
 xy = sample(n_data=self.args.batch_size,
 cov=cov)
 x1 = xy[:,0].reshape(-1,1)
 y1 = xy[:,1].reshape(-1,1)
 # marginal dist samples

Unsupervised Learning Using Mutual Information

[472]

 xy = sample(joint=False,
 n_data=self.args.batch_size,
 cov=cov)
 x2 = xy[:,0].reshape(-1,1)
 y2 = xy[:,1].reshape(-1,1)

 # train on batch of joint & marginal samples
 x = np.concatenate((x1, x2))
 y = np.concatenate((y1, y2))
 loss_item = self._model.train_on_batch([x, y],
 np.zeros(x.shape))
 loss += loss_item
 plot_loss.append(-loss_item)
 if (epoch + 1) % 100 == 0:
 fmt = "Epoch %d MINE MI: %0.6f"
 print(fmt % ((epoch+1), -loss/100))
 loss = 0.

Let's now use MINE to estimate the MI of this bivariate Gaussian distribution.
Figure 13.8.2 shows a simple 2-layer MLP as a model of 𝑇𝑇𝜃𝜃 . The input layers receive
one batch of (x, y) from the joint distribution and one batch of (�̅�𝑥, �̅�𝑦) from the
marginal distribution. The network is implemented in Listing 13.8.2 in build_
model(). Also shown in the same listing is the training routine for this simple
MINE model.

The loss function implementing Equation 13.7.3 is also shown in Listing 13.8.2. Note
that the loss function does not use the ground truth values. It simply minimizes the
negative MI estimate (and thus maximizes the MI). For this simple MINE model,
the moving average loss is not implemented. We use the same function, sample(),
in Listing 13.8.1 to obtain both joint and marginal samples.

We can now estimate the MI of a bivariate Gaussian distribution using the same
command:

python3 mine-13.8.1.py --gaussian

Figure 13.8.3 shows the MI estimate (negative of loss) as a function of the number
of epochs. Below are the quantitative results on specific epochs at intervals of 100.
The results for both manual and MINE computations are close. This validates
MINE as a good estimator of the MI of continuous random variables.

Epoch 100 MINE MI: 0.112297

Epoch 200 MINE MI: 0.141723

Epoch 300 MINE MI: 0.142567

Epoch 400 MINE MI: 0.142087

Chapter 13

[473]

Epoch 500 MINE MI: 0.142083

Epoch 600 MINE MI: 0.144755

Epoch 700 MINE MI: 0.141434

Epoch 800 MINE MI: 0.142480

Epoch 900 MINE MI: 0.143059

Epoch 1000 MINE MI: 0.142186

Computed MI: 0.147247

Figure 13.8.3 MI estimate as a function epoch for the simple MINE model.

So far, we have demonstrated MINE for the case of a bivariate Gaussian distribution.
In the next section, we will use MINE on the same problem of unsupervised
clustering of MNIST as we did with IIC.

9. Unsupervised clustering using
continuous random variables in Keras
In the unsupervised classification of MNIST digits, we used IIC since the MI can
be computed using discrete joint and marginal distributions. We obtained good
accuracy with a linear assignment algorithm.

Unsupervised Learning Using Mutual Information

[474]

In this section, we will attempt to use MINE to perform clustering. We'll use the
same key ideas from IIC: from a pair of images and their transformed versions
(𝑋𝑋, �̅�𝑋) , maximize the MI of the corresponding encoded latent vectors (𝑍𝑍, �̅�𝑍) . By
maximizing the MI, we perform clustering of the encoded latent vectors. The
difference with MINE is that the encoded latent vectors are continuous and not in
one-hot vector format, as used in IIC. Since the output of clustering is not in one-hot
vector format, we will use a linear classifier. A linear classifier is an MLP without a
non-linear activation layer such as ReLU. A linear classifier is used as an alternative
to the linear assignment algorithm in the case of outputs that are not in one-hot
vector format.

Figure 13.9.1 shows the network model of MINE. For the case of MNIST, variable
x is sampled from the MNIST train dataset. Similar to IIC, the other input called
variable y is just a transformed version of image x. During testing, the input image x
is from the MNIST test dataset. Essentially, the data generation is the same as in IIC,
as shown in Listing 13.5.2.

Figure 13.9.1 Network implementation of MINE using encoder network ℰ . The input MNIST image is center
cropped to 24 x 24 pixels. In this example, �̅�𝑋 = 𝑌𝑌 = 𝒢𝒢(𝑋𝑋) is a random 24 x 24-pixel cropping operation.

The encoder network of Figure 13.9.1 is shown in Figure 13.9.2 when implemented in
Keras. We left out the number of dimensions in the Dense output so that we can try
out different dimensions (such as 10, 16, and 32).

Chapter 13

[475]

Figure 13.9.2 Encoder network ℰ is a VGG network similar to the one used in IIC

The MINE network model is shown in Figure 13.9.3, and the code is shown in Listing
13.9.1. It is similar in architecture to the simple MINE implemented in the previous
section except that we used 1,024 hidden units in the MLP instead of 16.

Listing 13.9.1: mine-13.8.1.py.

MINE network model for unsupervised clustering:

class MINE:
 def __init__(self,
 args,
 backbone):
 """Contains the encoder, SimpleMINE, and linear
 classifier models, the loss function,
 loading of datasets, train and evaluation routines
 to implement MINE unsupervised clustering via mutual
 information maximization

 Arguments:
 args : Command line arguments to indicate choice
 of batch size, folder to save
 weights file, weights file name, etc
 backbone (Model): MINE Encoder backbone (eg VGG)

Unsupervised Learning Using Mutual Information

[476]

 """
 self.args = args
 self.latent_dim = args.latent_dim
 self.backbone = backbone
 self._model = None
 self._encoder = None
 self.train_gen = DataGenerator(args,
 siamese=True,
 mine=True)
 self.n_labels = self.train_gen.n_labels
 self.build_model()
 self.accuracy = 0

 def build_model(self):
 """Build the MINE model unsupervised classifier
 """
 inputs = Input(shape=self.train_gen.input_shape,
 name="x")
 x = self.backbone(inputs)
 x = Flatten()(x)
 y = Dense(self.latent_dim,
 activation='linear',
 name="encoded_x")(x)
 # encoder is based on backbone (eg VGG)
 # feature extractor
 self._encoder = Model(inputs, y, name="encoder")
 # the SimpleMINE in bivariate Gaussian is used
 # as T(x,y) function in MINE (Algorithm 13.7.1)
 self._mine = SimpleMINE(self.args,
 input_dim=self.latent_dim,
 hidden_units=1024,
 output_dim=1)
 inputs1 = Input(shape=self.train_gen.input_shape,
 name="x")
 inputs2 = Input(shape=self.train_gen.input_shape,
 name="y")
 x1 = self._encoder(inputs1)
 x2 = self._encoder(inputs2)
 outputs = self._mine.model([x1, x2])
 # the model computes the MI between
 # inputs1 and 2 (x and y)
 self._model = Model([inputs1, inputs2],
 outputs,

Chapter 13

[477]

 name='encoder')
 optimizer = Adam(lr=1e-3)
 self._model.compile(optimizer=optimizer,
 loss=self.mi_loss)
 self._model.summary()
 self.load_eval_dataset()
 self._classifier = LinearClassifier(\
 latent_dim=self.latent_dim)

Figure 13.9.3 The MINE network model

As shown in Listing 13.9.2, the training routine is similar to the one in IIC. The
difference is in the evaluation that is performed after every epoch. In this case, we
train a linear classifier for a few epochs and use it to evaluate the clustered latent
code vectors. When the accuracy improves, the model weights are optionally saved.
The loss function and optimizer are similar in SimpleMINE as shown in Listing
13.8.2 and are not repeated here.

Listing 13.9.2: mine-13.8.1.py.

MINE training and evaluation functions:

 def train(self):
 """Train MINE to estimate MI between
 X and Y (eg MNIST image and its transformed
 version)
 """
 accuracy = AccuracyCallback(self)
 lr_scheduler = LearningRateScheduler(lr_schedule,
 verbose=1)
 callbacks = [accuracy, lr_scheduler]
 self._model.fit_generator(generator=self.train_gen,
 use_multiprocessing=True,
 epochs=self.args.epochs,
 callbacks=callbacks,

Unsupervised Learning Using Mutual Information

[478]

 workers=4,
 shuffle=True)
 def eval(self):
 """Evaluate the accuracy of the current model weights
 """
 # generate clustering predictions fr test data
 y_pred = self._encoder.predict(self.x_test)
 # train a linear classifier
 # input: clustered data
 # output: ground truth labels
 self._classifier.train(y_pred, self.y_test)
 accuracy = self._classifier.eval(y_pred, self.y_test)

 info = "Accuracy: %0.2f%%"
 if self.accuracy > 0:
 info += ", Old best accuracy: %0.2f%%"
 data = (accuracy, self.accuracy)
 else:
 data = (accuracy)
 print(info % data)
 # if accuracy improves during training,
 # save the model weights on a file
 if accuracy > self.accuracy \
 and self.args.save_weights is not None:
 folder = self.args.save_dir
 os.makedirs(folder, exist_ok=True)
 args = (self.latent_dim, self.args.save_weights)
 filename = "%d-dim-%s" % args
 path = os.path.join(folder, filename)
 print("Saving weights... ", path)
 self._model.save_weights(path)

 if accuracy > self.accuracy:
 self.accuracy = accuracy

Figure 13.9.4 A linear classifier model

Chapter 13

[479]

The linear classifier model is shown in Figure 19.3.4. It is an MLP with one hidden
layer with 256 units. Since this model does not use a non-linear activation such
as ReLU, it can be used as an approximation of the linear assignment algorithm to
classify the output of the VGG-Dense encoder ℰ . Listing 13.9.3 shows the linear
classifier network model builder as implemented in Keras.

Listing 13.9.3: mine-13.8.1.py.

Linear classifier network:

class LinearClassifier:
 def __init__(self,
 latent_dim=10,
 n_classes=10):
 """A simple MLP-based linear classifier.
 A linear classifier is an MLP network
 without non-linear activations like ReLU.
 This can be used as a substitute to linear
 assignment algorithm.

 Arguments:
 latent_dim (int): Latent vector dimensionality
 n_classes (int): Number of classes the latent
 dim will be converted to.
 """
 self.build_model(latent_dim, n_classes)

 def build_model(self, latent_dim, n_classes):
 """Linear classifier model builder.

 Arguments: (see class arguments)
 """
 inputs = Input(shape=(latent_dim,), name="cluster")
 x = Dense(256)(inputs)
 outputs = Dense(n_classes,
 activation='softmax',
 name="class")(x)
 name = "classifier"
 self._model = Model(inputs, outputs, name=name)
 self._model.compile(loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])
 self._model.summary()

Unsupervised Learning Using Mutual Information

[480]

The MINE unsupervised classifier can be trained by executing:

python3 mine-13.8.1.py --train --batch-size=1024 --epochs=200

The batch size could be adjusted depending on the GPU memory available. To use
a different latent dimension size (such as 64), use the --latent-dim option:

python3 mine-13.8.1.py --train --batch-size=1024 --latent-dim=64
--epochs=200

In 200 epochs, the MINE network has the accuracy shown in Figure 13.9.5:

Figure 13.9.5 Accuracy of MINE in MNIST classification

As shown in Figure 13.9.5, at the default latent dim of 10, which is similar to IIC,
MINE with a linear classifier achieves 93.86% accuracy. The accuracy increases with
the value of the latent dimension. Since MINE is an approximation of the true MI, it
is expected that its accuracy is less than IIC.

This concludes the chapter and the book. The area of unsupervised learning is
nascent. This is a huge research opportunity given that one of the current barriers
to the progress of AI is human labeling, which is costly and time-consuming. We
expect breakthroughs in unsupervised learning in the next few years.

Chapter 13

[481]

10. Conclusion
In this chapter, we discussed MI and the ways in which it can be useful in solving
unsupervised tasks. Various online resources provide additional background about
MI [4]. When used in clustering, maximizing MI forces the latent code vectors to
cluster in regions that are suitable for easy labeling, either using linear assignment
or a linear classifier.

We presented two measures of MI: IIC and MINE. We can closely approximate
MI that leads to a classifier that performs with high accuracy by using IIC on
discrete random variables. IIC is suitable for discrete probability distributions.
For continuous random variables, MINE uses the Donsker-Varadhan form of KL-
divergence to model a deep neural network that estimates MI. We demonstrated
that MINE can closely approximate the MI of a bivariate Gaussian distribution.
As an unsupervised method, MINE shows acceptable performance on classifying
MNIST digits.

11. References
1. Ji, Xu, João F. Henriques, and Andrea Vedaldi. Invariant Information

Clustering for Unsupervised Image Classification and Segmentation. International
Conference on Computer Vision, 2019.

2. Simonyan, Karen, and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

3. Belghazi, Mohamed Ishmael, et al. Mutual Information Neural Estimation.
International Conference on Machine Learning. 2018.

4. https://en.wikipedia.org/wiki/Mutual_information

https://en.wikipedia.org/wiki/Mutual_information

[483]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Amita Kapoor, Sujit Pal

ISBN: 978-1-83882-341-2

 ● Build machine learning and deep learning systems with TensorFlow 2 and
the Keras API

 ● Use Regression analysis, the most popular approach to machine learning
 ● Understand ConvNets (convolutional neural networks) and how they are

essential for deep learning systems such as image classifiers
 ● Use GANs (generative adversarial networks) to create new data that fits

with existing patterns
 ● Discover RNNs (recurrent neural networks) that can process sequences of

input intelligently, using one part of a sequence to correctly interpret another

https://www.packtpub.com/data/deep-learning-with-tensorflow-2-0-and-keras-second-edition

[484]

Other Books You May Enjoy

 ● Apply deep learning to natural human language and interpret natural language
texts to produce an appropriate response

 ● Train your models on the cloud and put TF to work in real environments
 ● Explore how Google tools can automate simple ML workflows without the

need for complex modelling

[485]

Other Books You May Enjoy

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78995-575-0

 ● Master the frameworks, models, and techniques that enable machines to 'learn'
from data

 ● Use scikit-learn for machine learning and TensorFlow for deep learning
 ● Apply machine learning to image classification, sentiment analysis, intelligent

web applications, and more
 ● Build and train neural networks, GANs, and other models
 ● Discover best practices for evaluating and tuning models
 ● Predict continuous target outcomes using regression analysis
 ● Dig deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/data/python-machine-learning-third-edition

[486]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[487]

Index
Symbols
100-layer DenseNet-BC for CIFAR10

building 69-73
β -VAE 282

A
accuracy 19
Actor-Critic method 338-341
Adaptive Moments (Adam) 20
Advantage Actor-Critic (A2C)

method 341-344
Anaconda

URL 4
anchor box 372-379
Artificial Intelligence (AI) 289
autoencoder

building, with Keras 81-90
CNN, using 268-273
decoder 78
encoder 78
principles 78-80

automatic colorization autoencoder 96-103
auxiliary classifier

GAN (ACGAN) 133-168, 171

B
backbone network 390
backpropagation 23
Batch Normalization (BN) 112, 229
bootstrapping 307
Bottleneck 43

C
callbacks 62
class imbalance 390
CNN MNIST digit classifier

summary 32
conditional GAN (CGAN)

about 121, 171, 219
generator outputs 242-245
implementing, with Keras 227-242
network model 221-227
on MNIST dataset 245-252
on SVHN dataset 245-252

Conditional VAE (CVAE) 274-282
continuous random variables

about 443
used, for unsupervised clustering in

Keras 474-480
Conv2D-Batch Normalization(BN)-ReLU 55
convolution 30, 31
Convolutional Neural Network (CNN)

about 5, 28, 30
model summary 32, 34
performance evaluation 32, 34
used, for AE 268-273
versus Multilayer Perceptron (MLP) 5, 6
versus Recurrent Neural Network (RNN) 5, 7

core equation 258, 259
critic 106
cross-domain transfer 217
Cycle-Consistent Adversarial Domain

Adaptation (CyCADA) 249
CycleGAN

principles 218-220

[488]

D
data generator model

in Keras 402-406
dataset

example 406, 407
decoder testing 261
deconvolution 84
deep convolutional GAN (DCGAN)

design principles 112, 113
implementing, in Keras 112-121

Deep Learning (DL) 289
Deep Q-Network (DQN)

about 290-316
used, on Keras 316-323

Deep Reinforcement Learning (DRL) 289
Deep Residual Network (ResNet) 53-62
Denoising Autoencoder (DAE) 90-96
dense 13
Densely Connected Convolutional Network

(DenseNet)
100-layer DenseNet-BC for CIFAR10,

building 69-73
about 43, 67-69

DenseNet-BC (Bottleneck-Compression) 69
discriminator 106
disentangled latent representation

Variational Autoencoders (VAEs),
using 282-286

disentangled representation 172-174
distance function

reference link 139
Donsker-Varadhan (DV) 465
Double Q-Learning (DDQN) 290, 323, 325
Dropout 15

E
Earth-Mover distance (EMD) 133
encoder network

used, for unsupervised clustering 450-454
Entropy 444-447
example dataset 433-435
experience replay process 315

F
focal loss 390
fully connected (FC) 5
Fully Convolutional Network (FCN) 421
Functional API

about 44-47
one-output model, creating 47-53
two-input model, creating 47-53

Functional API, concepts
layer 45
model 45

G
Gated Recurrent Unit (GRU) 40
generative adversarial networks (GANs)

about 77, 133
overview 105, 106
principles 107-111

generator 106
gradient descent (GD) 20
ground truth 7
ground truth anchor box 379, 380

I
InfoGAN

about 174-177
generator outputs 189-191
implementing, in Keras 178-189
loss functions 177

Instance Normalization (IN) 229
instance segmentation 422
Internet of Things (IoT) 441
Intersection over Union (IoU) 379
Invariant Information Clustering (IIC)

about 448
validating, with MNIST 464

J
Jaccard index 379
Jensen-Shannon (JS) 134-136

[489]

K
Keras

data generator model, using 402-406
DCGAN, implementing 112-121
Deep Q-Network (DQN), using 316-323
InfoGAN, implementing 178-189
installing 3-5
reference link 53
Semantic Segmentation Network 428-433
SSD model architecture, using 394
SSD model, using 398-402
SSD objects, using 395-398
StackedGAN, implementing 193-211
unsupervised clustering,

implementing 454-463
unsupervised clustering, with continuous

random variables 474-480
URL 5
used, as deep learning library 2, 3
used, for building autoencoder 81-90
used, for building model 13-15
used, for implementing Conditional GAN

(CGAN) 227-242
used, for implementing WGAN 144-150
used, in policy gradient method 344-360
Variational Autoencoders (VAEs),

using 261-268
Kullback-Leibler (KL) 135, 258, 443

L
label 7
Leaky ReLU 113
Least Squares GAN (LSGAN) 133, 151-155
linear_sum_assignment() function

reference link 463
logistic sigmoid 17
Long Short-Term Memory (LSTM)

about 39
reference link 40

loss function
about 6, 16-19, 386-390
in Keras 18

lr_reducer() function 62

M
Markov decision process (MDP) 291
mean absolute error (MAE) 223, 386
mean IoU (mIoU) 412
mean squared error

(MSE) 18, 79, 197, 223, 386
MLP MNIST digit classifier model

summary 25-27
MNIST

Invariant Information Clustering (IIC),
validating 464

MNIST dataset 7, 8
MNIST Digit Classifier model 9, 12
model

building, with Keras 13-15
building, with MLP 13-15

model.fit() method 62
Monte-Carlo policy gradient method 331-334
Multilayer Perceptron (MLP)

about 5, 6
used, for building model 13-15
versus Convolutional Neural Network

(CNN) 5, 6
versus Recurrent Neural Network (RNN) 5, 6

multi-scale object detection 373
Mutual Information (MI) 441-447
Mutual Information (MI), of bivariate Gaussian

estimating 466-473
Mutual Information (MI), of continuous

random variables
maximizing, with unsupervised

learning 464-466
Mutual Information (MI), of discrete random

variables
maximizing, with unsupervised

learning 447-450
Mutual Information Network Estimator

(MINE) 465

N
natural language processing (NLP) 35
negative anchor box 381
nondeterministic environment 306
Non-Maximum Suppression (NMS)

algorithm 408-412

[490]

O
object detection 370-372
objective 6
offsets 373
OpenAI gym

Q-learning, using 307-313
reference link 307, 345

optimization 19-23, 259, 260
optimizer 6
output activation 16-19

P
panoptic segmentation 422
partially observable MDP (POMDP) 292
performance

evaluating 23-25
policy gradient method

Keras, using 344-360
performance evaluation 360-366
potential options 365

policy gradient theorem 328-331
pooling operations 31, 32
positive anchor box 380-386
precision 412
probability distribution function (PDF) 443
probability mass function (PMF) 443

Q
Q-learning

example 294-306
used, on OpenAI gym 307-313

Q value 293, 294

R
recall 413
receptive field 374
recognizable object 372
Reconstruction Loss 259
Rectified Linear Unit (ReLU) 113
Recurrent Neural Network (RNN)

about 5, 35-41
versus Convolutional Neural Network

(CNN) 5, 6
versus Multilayer Perceptron (MLP) 5, 6

regularization 15, 16
regularizer 6
reinforce algorithm

about 332-334
with baseline method 335-338

Reinforcement Learning (RL)
about 289
principles 290-292
reference link 330

reparameterization trick 260, 261
ResNet 43, 62
ResNet v1 62
ResNet v2 62-66
ResNeXt 43
RNN MNIST digit classifier

summary 38
Root Mean Squared Propagation

(RMSprop) 20

S
Sampling 261
Sampling block 260
Sampling process 260
scaling factor 374
segmentation 422
semantic segmentation 421, 422
semantic segmentation network

about 425-428
in Keras 428-433

semantic segmentation validation 435-438
Sequential model API 3
SSD head 390
SSD model architecture

about 390-393
in Keras 394, 398-402

SSD model training 407
SSD model validation 412-419
SSD objects

in Keras 395-398
StackedGAN

about 192, 193
generator outputs 211-215
implementing, in Keras 193-211

stochastic gradient descent (SGD) 20
structural similarity index (SSIM) 79
SVHN dataset

reference link 246

[491]

T
target 7
Temporal-Difference (TD) learning 306, 307
TensorFlow

installing 3-5
test dataset 19
Transition layers 43
Transposed CNN 84

U
unsupervised clustering

implementing, in Keras 454-463
with continuous random variables, in

Keras 473-480
with encoder network 450-454

unsupervised learning
about 77
by maximizing Mutual Information

(MI), of continuous random
variables 464-466

by maximizing Mutual Information (MI),
of discrete random variables 447-450

V
Variational Autoencoders (VAEs)

about 77
CNN, used for AE 268-273
core equation 258, 259
decoder testing 261
in Keras 261-268
optimization 259, 260
principles 256, 257
reparameterization trick 260, 261
used, with disentangled latent

representation 282-285
variational inference 257, 258

variational inference 257, 258
variational lower bound or evidence lower

bound (ELBO) 259
Visual Geometry Group (VGG) 55
VGG Image Annotator (VIA) 406, 433

W
Wasserstein 1 133
Wasserstein GAN (WGAN)

about 133, 134
distance function 134-139
implementing, with Keras 144-150
Wasserstein loss, using 139-144

WideResNet 43

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Advanced Deep Learning with Keras
	1. Why is Keras the perfect deep learning library?
	Installing Keras and TensorFlow

	2. MLP, CNN, and RNN
	The differences between MLP, CNN, and RNN

	3. Multilayer Perceptron (MLP)
	The MNIST dataset
	The MNIST digit classifier model
	Building a model using MLP and Keras
	Regularization
	Output activation and loss function
	Optimization
	Performance evaluation
	Model summary

	4. Convolutional Neural Network (CNN)
	Convolution
	Pooling operations
	Performance evaluation and model summary

	5. Recurrent Neural Network (RNN)
	6. Conclusion
	7. References

	Chapter 2: Deep Neural Networks
	1. Functional API
	Creating a two-input and one-output model

	2. Deep Residual Network (ResNet)
	3. ResNet v2
	4. Densely Connected Convolutional Network (DenseNet)
	Building a 100-layer DenseNet-BC for CIFAR10

	5. Conclusion
	6. References

	Chapter 3: Autoencoders
	1. Principles of autoencoders
	2. Building an autoencoder using Keras
	3. Denoising autoencoders (DAEs)
	4. Automatic colorization autoencoder
	5. Conclusion
	6. References

	Chapter 4: Generative Adversarial Networks (GANs)
	1. An Overview of GANs
	Principles of GANs

	2. Implementing DCGAN in Keras
	3. Conditional GAN
	4. Conclusion
	5. References

	Chapter 5: Improved GANs
	1. Wasserstein GAN
	Distance functions
	Distance function in GANs
	Use of Wasserstein loss
	WGAN implementation using Keras

	2. Least-squares GAN (LSGAN)
	3. Auxiliary Classifier GAN (ACGAN)
	4. Conclusion
	5. References

	Chapter 6: Disentangled Representation GANs
	1. Disentangled representations
	InfoGAN
	Implementation of InfoGAN in Keras
	Generator outputs of InfoGAN

	2. StackedGAN
	Implementation of StackedGAN in Keras
	Generator outputs of StackedGAN

	4. Conclusion
	5. References

	Chapter 7: Cross-Domain GANs
	1. Principles of CycleGAN
	The CycleGAN model
	Implementing CycleGAN using Keras
	Generator outputs of CycleGAN
	CycleGAN on MNIST and SVHN datasets

	2. Conclusion
	3. References

	Chapter 8: Variational Autoencoders (VAEs)
	1. Principles of VAE
	Variational inference
	Core equation
	Optimization
	Reparameterization trick
	Decoder testing
	VAE in Keras
	Using CNN for AE

	2. Conditional VAE (CVAE)
	3. ￼-VAE – VAE with disentangled latent representations
	4. Conclusion
	5. References

	Chapter 9: Deep Reinforcement Learning
	1. Principles of Reinforcement Learning (RL)
	2. The Q value
	3. Q-learning example
	Q-Learning in Python

	4. Nondeterministic environment
	5. Temporal-difference learning
	Q-learning on OpenAI Gym

	6. Deep Q-Network (DQN)
	DQN on Keras
	Double Q-learning (DDQN)

	7. Conclusion
	8. References

	Chapter 10: Policy Gradient Methods
	1. Policy gradient theorem
	2. Monte Carlo policy gradient (REINFORCE) method
	3. REINFORCE with baseline method
	4. Actor-Critic method
	5. Advantage Actor-Critic (A2C) method
	6. Policy Gradient methods using Keras
	7. Performance evaluation of policy gradient methods
	8. Conclusion
	9. References

	Chapter 11: Object Detection
	1. Object detection
	2. Anchor boxes
	3. Ground truth anchor boxes
	4. Loss functions
	5. SSD model architecture
	6. SSD model architecture in Keras
	7. SSD objects in Keras
	8. SSD model in Keras
	9. Data generator model in Keras
	10. Example dataset
	11. SSD model training
	12. Non-Maximum Suppression (NMS) algorithm
	13. SSD model validation
	14. Conclusion
	15. References

	Chapter 12: Semantic Segmentation
	1. Segmentation
	2. Semantic segmentation network
	3. Semantic segmentation network in Keras
	4. Example dataset
	5. Semantic segmentation validation
	6. Conclusion
	7. References

	Chapter 13: Unsupervised Learning using Mutual Information
	1. Mutual Information
	2. Mutual Information and Entropy
	3. Unsupervised learning by maximizing the Mutual Information of discrete random variables
	4. Encoder network for unsupervised clustering
	5. Unsupervised clustering implementation in Keras
	6. Validation using MNIST
	7. Unsupervised learning by maximizing the Mutual Information of continuous random variables
	8. Estimating the Mutual Information of a bivariate Gaussian
	9. Unsupervised clustering using continuous random variables in Keras
	10. Conclusion
	11. References

	Other Books You May Enjoy
	Index

