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Preface
In recent years, Deep Learning has made unprecedented success stories in difficult 
problems in vision, speech, natural language processing and understanding, and 
all other areas with abundance of data. The interest in this field from companies, 
universities, governments, and research organizations has accelerated the advances 
in the field. This book covers select important topics in Deep Learning with three 
new chapters, Object Detection, Semantic Segmentation, and Unsupervised Learning using 
Mutual Information. The advanced theories are explained by giving a background 
of the principles, digging into the intuition behind the concepts, implementing 
the equations and algorithms using Keras, and examining the results.

Artificial Intelligence (AI), as it stands today, is still far from being a well-
understood field. Deep Learning (DL), as a sub field of AI, is in the same position. 
While it is far from being a mature field, many real-world applications such 
as vision-based detection and recognition, autonomous navigation, product 
recommendation, speech recognition and synthesis, energy conservation, drug 
discovery, finance, and marketing are already using DL algorithms. Many more 
applications will be discovered and built. The aim of this book is to explain advanced 
concepts, give sample implementations, and let the readers as experts in their field 
identify the target applications.

A field that is not completely mature is a double-edged sword. On one edge, 
it offers a lot of opportunities for discovery and exploitation. There are many 
unsolved problems in deep learning. This translates into opportunities to be the first 
to market – be that in product development, publication, or recognition. The other 
edge is it would be difficult to trust a not-fully-understood field in a mission-critical 
environment. We can safely say that if asked, very few machine learning engineers 
will ride an auto-pilot plane controlled by a deep learning system. There is a lot of 
work to be done to gain this level of trust. The advanced concepts that are discussed 
in this book have a high chance of playing a major role as the foundation in gaining 
this level of trust.
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No DL book will be able to completely cover the whole field. This book is not an 
exception. Given time and space, we could have touched interesting areas like 
natural language processing and understanding, speech synthesis, automated 
machine learning (AutoML), graph neural networks (GNNs), Bayesian deep 
learning, and many others. However, this book believes in choosing and explaining 
select areas so that readers can take up other fields that are not covered.

As the reader who is about to embark upon reading this book, keep in mind 
that you chose an area that is exciting and can have a huge impact on society. 
We are fortunate to have a job that we look forward to working on as we wake 
up in the morning.

Who this book is for
The book is intended for machine learning engineers and students who would like 
to gain a better understanding of advanced topics in deep learning. Each discussion 
is supplemented with code implementation in Keras. In particular, the Keras API 
of TensorFlow 2 or simply tf.keras is what's used This book is for readers who 
would like to understand how to translate theory into working code implementation 
in Keras. Apart from understanding theories, code implementation is usually one 
of the difficult tasks in applying machine learning to real-world problems.

What this book covers
Chapter 1, Introducing Advanced Deep Learning with Keras, covers the key concepts 
of deep learning such as optimization, regularization, loss functions, fundamental 
layers, and networks and their implementation in tf.keras. This chapter serves  
as a review of both deep learning and tf.keras using the sequential API.

Chapter 2, Deep Neural Networks, discusses the functional API of tf.keras. Two 
widely used deep network architectures, ResNet and DenseNet, are examined 
and implemented in tf.keras using the functional API.

Chapter 3, Autoencoders, covers a common network structure called the autoencoder, 
which is used to discover the latent representation of input data. Two example 
applications of autoencoders, denoising and colorization, are discussed and 
implemented in tf.keras.

Chapter 4, Generative Adversarial Networks (GANs), discusses one of the recent 
significant advances in deep learning. GAN is used to generate new synthetic 
data that appear real. This chapter explains the principles of GAN. Two examples 
of GAN, DCGAN and CGAN, are examined and implemented in tf.keras.
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Chapter 5, Improved GANs, covers algorithms that improve the basic GAN. The 
algorithms address the difficulty in training GANs and improve the perceptual 
quality of synthetic data. WGAN, LSGAN, and ACGAN are discussed and 
implemented in tf.keras.

Chapter 6, Disentangled Representation GANs, discusses how to control the attributes of 
the synthetic data generated by GANs. The attributes can be controlled if the latent 
representations are disentangled. Two techniques in disentangling representations, 
InfoGAN and StackedGAN, are covered and implemented in tf.keras.

Chapter 7, Cross-Domain GANs, covers a practical application of GAN, translating 
images from one domain to another, commonly known as cross-domain transfer. 
CycleGAN, a widely used cross-domain GAN, is discussed and implemented in 
tf.keras. This chapter demonstrates CycleGAN performing colorization and style 
transfer.

Chapter 8, Variational Autoencoders (VAEs), discusses another important topic in DL. 
Similar to GAN, VAE is a generative model that is used to produce synthetic data. 
Unlike GAN, VAE focuses on decodable continuous latent space that is suitable for 
variational inference. VAE and its variations, CVAE and β-VAE, are covered and 
implemented in tf.keras.

Chapter 9, Deep Reinforcement Learning, explains the principles of reinforcement 
learning and Q-learning. Two techniques in implementing Q-learning for discrete 
action space are presented, Q-table update and Deep Q-Networks (DQNs). 
Implementation of Q-learning using Python and DQN in tf.keras are demonstrated in 
OpenAI Gym environments.

Chapter 10, Policy Gradient Methods, explains how to use neural networks to learn the 
policy for decision making in reinforcement learning. Four methods are covered and 
implemented in tf.keras and OpenAI Gym environments, REINFORCE, REINFORCE 
with Baseline, Actor-Critic, and Advantage Actor-Critic. The example presented in 
this chapter demonstrates policy gradient methods on a continuous action space.

Chapter 11, Object Detection, discusses one of the most common applications of 
computer vision, object detection or identifying and localizing objects in an image. 
Key concepts of a multi-scale object detection algorithm called SSD are covered 
and an implementation is built step by step using tf.keras. An example technique for 
dataset collection and labeling is presented. Afterward, the tf.keras implementation of 
SSD is trained and evaluated using the dataset.
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Chapter 12, Semantic Segmentation, discusses another common application of 
computer vision, semantic segmentation or identifying the object class of each pixel 
in an image. Principles of segmentation are discussed. Then, semantic segmentation 
is covered in more detail. An example implementation of a semantic segmentation 
algorithm called FCN is built and evaluated using tf.keras. The same dataset 
collected in the previous chapter is used but relabeled for semantic segmentation.

Chapter 13, Unsupervised Learning Using Mutual Information, looks at how DL is not 
going to advance if it heavily depends on human labels. Unsupervised learning 
focuses on algorithms that do not require human labels. One effective technique 
to achieve unsupervised learning is to take advantage of the concept of Mutual 
Information (MI). By maximizing MI, unsupervised clustering/classification is 
implemented and evaluated using tf.keras.

To get the most out of this book
• Deep learning and Python: The reader should have a fundamental knowledge 

of deep learning and its implementation in Python. While previous experience 
in using Keras to implement deep learning algorithms is important, it is not 
required. Chapter 1, Introducing Advanced Deep Learning with Keras, offers a 
review of deep learning concepts and their implementation in tf.keras.

• Math: The discussions in this book assume that the reader is familiar with 
calculus, linear algebra, statistics, and probability at college level.

• GPU: The majority of the tf.keras implementations in this book require 
a GPU. Without a GPU, it is not practical to execute many of the code 
examples because of the time involved (many hours to days). The examples 
in this book use reasonable amounts of data as much as possible in order to 
minimize the use of high-performance computers. The reader is expected to 
have access to at least NVIDIA GTX 1060.

• Editor: The example code in this book was edited using vim in Ubuntu Linux 
18.04 LTS and MacOS Catalina. Any Python-aware text editor is acceptable.

• TensorFlow 2: The code examples in this book are written using the Keras 
API of TensorFlow 2 or tf2. Please ensure that the NVIDIA GPU driver and 
tf2 are both properly installed.

• GitHub: We learn by example and experimentation. Please git pull or fork 
the code bundle for the book from its GitHub repository. After getting the 
code, examine it. Run it. Change it. Run it again. Do creative experiments by 
tweaking the code. It is the only way to appreciate all the theory explained 
in the chapters. Giving a star on the book's GitHub repository https://
github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras 
is also highly appreciated.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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Download the example code files
The code bundle for the book is hosted on GitHub at:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

We also have other code bundles from our rich catalog of books and videos available 
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide color images of figures used in this book. You can download it here: 
https://static.packt-cdn.com/downloads/9781838821654_ColorImages.pdf.

Conventions used
The code in this book is in Python. More specifically, Python 3. For example:

A block of code is set as follows:

def build_generator(inputs, image_size):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    Arguments:
        inputs (Layer): Input layer of the generator 
            the z-vector)
        image_size (tensor): Target size of one side
            (assuming square image)

    Returns:
        generator (Model): Generator Model
    """

    image_resize = image_size // 4
    # network parameters 
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    x = Dense(image_resize * image_resize * layer_filters[0])(inputs)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras 
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9787838821654_ColorImages.pdf
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    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    x = Activation('sigmoid')(x)
    generator = Model(inputs, x, name='generator')
    return generator

When we wish to draw your attention to a particular part of a code block, 
the relevant lines or items are set in bold:

# generate fake images
fake_images = generator.predict([noise, fake_labels])
# real + fake images = 1 batch of train data
x = np.concatenate((real_images, fake_images))
# real + fake labels = 1 batch of train data labels
labels = np.concatenate((real_labels, fake_labels))

Whenever possible, docstrings are is included. At the very least, text comments 
are used to minimize space usage.

Any command-line code execution is written as follows:

python3 dcgan-mnist-4.2.1.py

The above example has the following layout: algorithm-dataset-chapter.
section.number.py. The command-line example is DCGAN on the MNIST dataset 
in Chapter 4, Generative Adversarial Networks (GANs) second section and first listing. 
In some cases, the explicit command line to execute is not written but it is assumed 
to be:

python3 name-of-the-file-in-listing

The file name of the code example is included in the Listing caption. This book uses 
Listing to identify code examples in the text.
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Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
StackedGAN has two additional loss functions, Conditional and Entropy.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title 
in the subject of your message. If you have questions about any aspect of this book, 
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packtpub.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and use 
your unbiased opinion to make purchase decisions, we at Packt can understand what 
you think about our products, and our authors can see your feedback on their book. 
Thank you!

For more information about Packt, please visit packtpub.com.

Warnings or important notes appear like this. 

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com
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1
Introducing Advanced Deep 

Learning with Keras
In this first chapter, we will introduce three deep learning artificial neural networks 
that we will be using throughout the book. These networks are MLP, CNN, and 
RNN (defined and described in Section 2), which are the building blocks of selected 
advanced deep learning topics covered in this book, such as autoregressive networks 
(autoencoder, GAN, and VAE), deep reinforcement learning, object detection and 
segmentation, and unsupervised learning using mutual information.

Together, we'll discuss how to implement MLP, CNN, and RNN based models 
using the Keras library in this chapter. More specifically, we will use the TensorFlow 
Keras library called tf.keras. We'll start by looking at why tf.keras is an excellent 
choice as a tool for us. Next, we'll dig into the implementation details within the 
three deep learning networks.

This chapter will:

• Establish why the tf.keras library is a great choice to use for advanced deep 
learning

• Introduce MLP, CNN, and RNN – the core building blocks of advanced deep 
learning models, which we'll be using throughout this book

• Provide examples of how to implement MLP, CNN, and RNN based models 
using tf.keras

• Along the way, start to introduce important deep learning concepts, 
including optimization, regularization, and loss function
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By the end of this chapter, we'll have the fundamental deep learning networks 
implemented using tf.keras. In the next chapter, we'll get into the advanced 
deep learning topics that build on these foundations. Let's begin this chapter by 
discussing Keras and its capabilities as a deep learning library.

1. Why is Keras the perfect deep learning 
library?
Keras [1] is a popular deep learning library with over 370,000 developers using it at 
the time of writing – a number that is increasing by about 35% every year. Over 800 
contributors actively maintain it. Some of the examples we'll use in this book have 
been contributed to the official Keras GitHub repository.

Google's TensorFlow, a popular open source deep learning library, uses Keras as a 
high-level API for its library. It is commonly called tf.keras. In this book, we will 
use the word Keras and tf.keras interchangeably.

tf.keras is a popular choice as a deep learning library since it is highly integrated 
into TensorFlow, which is known in production deployments for its reliability. 
TensorFlow also offers various tools for production deployment and maintenance, 
debugging and visualization, and running models on embedded devices and 
browsers. In the technology industry, Keras is used by Google, Netflix, Uber, and 
NVIDIA.

We have chosen tf.keras as our tool of choice to work with in this book because 
it is a library dedicated to accelerating the implementation of deep learning models. 
This makes Keras ideal for when we want to be practical and hands-on, such as 
when we're exploring the advanced deep learning concepts in this book. Because 
Keras is designed to accelerate the development, training, and validation of deep 
learning models, it is essential to learn the key concepts in this field before someone 
can maximize the use of the library.

In the tf.keras library, layers are connected to one another like pieces of 
Lego, resulting in a model that is clean and easy to understand. Model training 
is straightforward, requiring only data, a number of epochs of training, and 
metrics to monitor. 

All of the examples in this book can be found on GitHub at the 
following link: https://github.com/PacktPublishing/
Advanced-Deep-Learning-with-Keras.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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The end result is that most deep learning models can be implemented with 
significantly fewer lines of code compared to other deep learning libraries 
such as PyTorch. By using Keras, we'll boost productivity by saving time in 
code implementation, which can instead be spent on more critical tasks such as 
formulating better deep learning algorithms.

Likewise, Keras is ideal for the rapid implementation of deep learning models, 
like the ones that we will be using in this book. Typical models can be built in just 
a few lines of code using the Sequential model API. However, do not be misled by 
its simplicity.

Keras can also build more advanced and complex models using its functional 
API and Model and Layer classes for dynamic graphs, which can be customized 
to satisfy unique requirements. The functional API supports building graph-
like models, layer reuse, and creating models that behave like Python functions. 
Meanwhile, the Model and Layer classes provide a framework for implementing 
uncommon or experimental deep learning models and layers.

Installing Keras and TensorFlow
Keras is not an independent deep learning library. As you can see in Figure 
1.1.1, it is built on top of another deep learning library or backend. This could 
be Google's TensorFlow, MILA's Theano, Microsoft's CNTK, or Apache MXNet. 
However, unlike the previous edition of this book, we will use Keras as provided 
by TensorFlow 2.0 (tf2 or simply tf), which is better known as tf.keras, to 
take advantage of the useful tools offered by tf2. tf.keras is also considered the 
de facto frontend of TensorFlow, which has exhibited its proven reliability in the 
production environment. Furthermore, Keras' support for backends other than 
TensorFlow will no longer be available in the near future.

Migration from Keras to tf.keras is generally as straightforward as changing:

from keras... import ...

to

from tensorflow.keras... import ...

In this book, the code examples are all written in Python 3 as support for Python 2 
ends in the year 2020.



Introducing Advanced Deep Learning with Keras

[ 4 ]

On hardware, Keras runs on a CPU, GPU, and Google's TPU. In this book, we'll test 
on a CPU and NVIDIA GPUs (specifically, the GTX 1060, GTX 1080Ti, RTX 2080Ti, 
V100, and Quadro RTX 8000 models):

Figure 1.1.1: Keras is a high-level library that sits on top of other  
deep learning frameworks. Keras is supported on CPU, GPU, and TPU.

Before proceeding with the rest of the book, we need to ensure that tf2 is correctly 
installed. There are multiple ways to perform the installation; one example is by 
installing tf2 using pip3:

$ sudo pip3 install tensorflow

If we have a supported NVIDIA GPU, with properly installed drivers, and both 
NVIDIA CUDA toolkit and the cuDNN Deep Neural Network library, it is highly 
recommended that you install the GPU-enabled version since it can accelerate both 
training and predictions:

$ sudo pip3 install tensorflow-gpu

There is no need to install Keras as it is already a package in tf2. If you are 
uncomfortable installing libraries system-wide, it is highly recommended to use an 
environment such as Anaconda (https://www.anaconda.com/distribution/). 
Other than having an isolated environment, the Anaconda distribution installs 
commonly used third-party packages for data sciences that are indispensable for 
deep learning.

The examples presented in this book will require additional packages, such as 
pydot, pydot_ng, vizgraph, python3-tk, and matplotlib. We'll need to install 
these packages before proceeding beyond this chapter.

The following should not generate any errors if tf2 is installed along with its 
dependencies:

https://www.anaconda.com/distribution/
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$ python3

>>> import tensorflow as tf

>>> print(tf.__version__)

2.0.0

>>> from tensorflow.keras import backend as K

>>> print(K.epsilon())

1e-07

This book does not cover the complete Keras API. We'll only be covering the 
materials needed to explain selected advanced deep learning topics in this book. 
For further information, we can consult the official Keras documentation, which can 
be found at https://keras.io or https://www.tensorflow.org/guide/keras/
overview.

In the succeeding sections, the details of MLP, CNN, and RNN will be discussed. 
These networks will be used to build a simple classifier using tf.keras.

2. MLP, CNN, and RNN
We've already mentioned that we'll be using three deep learning networks, they are:

• MLP: Multilayer Perceptron
• CNN: Convolutional Neural Network
• RNN: Recurrent Neural Network

These are the three networks that we will be using throughout this book. Later on, 
you'll find that they are often combined together in order to take advantage of the 
strength of each network.

In this chapter, we'll discuss these building blocks one by one in more detail. In the 
following sections, MLP is covered alongside other important topics such as loss 
functions, optimizers, and regularizers. Following this, we'll cover both CNNs and 
RNNs.

The differences between MLP, CNN, and RNN
An MLP is a fully connected (FC) network. You'll often find it referred to as either 
deep feed-forward network or feed-forward neural network in some literature. In 
this book, we will use the term MLP. Understanding this network in terms of known 
target applications will help us to get insights about the underlying reasons for the 
design of the advanced deep learning models.

https://keras.io
https://www.tensorflow.org/guide/keras/overview
https://www.tensorflow.org/guide/keras/overview
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MLPs are common in simple logistic and linear regression problems. However, 
MLPs are not optimal for processing sequential and multi-dimensional data 
patterns. By design, an MLP struggles to remember patterns in sequential data 
and requires a substantial number of parameters to process multi-dimensional data.

For sequential data input, RNNs are popular because the internal design allows 
the network to discover dependency in the history of the data, which is useful 
for prediction. For multi-dimensional data like images and videos, CNNs excel 
in extracting feature maps for classification, segmentation, generation, and other 
downstream tasks. In some cases, a CNN in the form of a 1D convolution is also 
used for networks with sequential input data. However, in most deep learning 
models, MLP and CNN or RNN are combined to make the most out of each network.

MLP, CNN, and RNN do not complete the whole picture of deep networks. There 
is a need to identify an objective or loss function, an optimizer, and a regularizer. 
The goal is to reduce the loss function value during training, since such a reduction 
is a good indicator that a model is learning.

To minimize this value, the model employs an optimizer. This is an algorithm that 
determines how weights and biases should be adjusted at each training step. A 
trained model must work not only on the training data but also on data outside of 
the training environment. The role of the regularizer is to ensure that the trained 
model generalizes to new data.

Now, let's get into the three networks – we'll begin by talking about the MLP 
network.

3. Multilayer Perceptron (MLP)
The first of the three networks we will be looking at is the MLP network. Let's 
suppose that the objective is to create a neural network for identifying numbers 
based on handwritten digits. For example, when the input to the network is an 
image of a handwritten number 8, the corresponding prediction must also be 
the digit 8. This is a classic job of classifier networks that can be trained using 
logistic regression. To both train and validate a classifier network, there must be 
a sufficiently large dataset of handwritten digits. The Modified National Institute 
of Standards and Technology dataset, or MNIST [2] for short, is often considered as 
the Hello World! of deep learning datasets. It is a suitable dataset for handwritten 
digit classification.

Before we discuss the MLP classifier model, it's essential that we understand the 
MNIST dataset. A large number of examples in this book use the MNIST dataset. 
MNIST is used to explain and validate many deep learning theories because the 
70,000 samples it contains are small, yet sufficiently rich in information:
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Figure 1.3.1: Example images from the MNIST dataset. Each grayscale image is 28 × 28-pixels.

In the following section, we'll briefly introduce MNIST.

The MNIST dataset
MNIST is a collection of handwritten digits ranging from 0 to 9. It has a training 
set of 60,000 images, and 10,000 test images that are classified into corresponding 
categories or labels. In some literature, the term target or ground truth is also used 
to refer to the label.

In the preceding figure, sample images of the MNIST digits, each being sized at 28 
x 28 - pixel, in grayscale, can be seen. To use the MNIST dataset in Keras, an API 
is provided to download and extract images and labels automatically. Listing 1.3.1 
demonstrates how to load the MNIST dataset in just one line, allowing us to both 
count the train and test labels and then plot 25 random digit images.

Listing 1.3.1: mnist-sampler-1.3.1.py

import numpy as np
from tensorflow.keras.datasets import mnist
import matplotlib.pyplot as plt

# load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# count the number of unique train labels
unique, counts = np.unique(y_train, return_counts=True)
print("Train labels: ", dict(zip(unique, counts)))

# count the number of unique test labels
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unique, counts = np.unique(y_test, return_counts=True)
print("Test labels: ", dict(zip(unique, counts)))

# sample 25 mnist digits from train dataset
indexes = np.random.randint(0, x_train.shape[0], size=25)
images = x_train[indexes]
labels = y_train[indexes]

# plot the 25 mnist digits
plt.figure(figsize=(5,5))
for i in range(len(indexes)):
    plt.subplot(5, 5, i + 1)
    image = images[i]
    plt.imshow(image, cmap='gray')
    plt.axis('off')

plt.savefig("mnist-samples.png")
plt.show()
plt.close('all')

The mnist.load_data() method is convenient since there is no need to load 
all 70,000 images and labels individually and store them in arrays. Execute the 
following:

python3 mnist-sampler-1.3.1.py

On the command line, the code example prints the distribution of labels in the train 
and test datasets:

Train labels:{0: 5923, 1: 6742, 2: 5958, 3: 6131, 4: 5842, 5: 5421, 6: 
5918, 7: 6265, 8: 5851, 9: 5949}

Test labels:{0: 980, 1: 1135, 2: 1032, 3: 1010, 4: 982, 5: 892, 6: 958, 
7: 1028, 8: 974, 9: 1009}

Afterward, the code will plot 25 random digits, as shown in previously in Figure 
1.3.1.

Before discussing the MLP classifier model, it is essential to keep in mind that 
while the MNIST data consists of two dimensional tensors, it should be reshaped 
depending on the type of input layer. The following Figure 1.3.2 shows how a 3 × 3 
grayscale image is reshaped for MLP, CNN, and RNN input layers:
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Figure 1.3.2: An input image similar to the MNIST data is reshaped depending on the type of input layer. 
For simplicity, the reshaping of a 3 × 3 grayscale image is shown.

In the following sections, an MLP classifier model for MNIST will be introduced. 
We will demonstrate how to efficiently build, train, and validate the model using 
tf.keras.

The MNIST digit classifier model
The proposed MLP model shown in Figure 1.3.3 can be used for MNIST digit 
classification. When the units or perceptrons are exposed, the MLP model is a fully 
connected network, as shown in Figure 1.3.4. We will also show how the output 
of the perceptron is computed from inputs as a function of weights, wi, and bias, 
bn, for the n-th unit. The corresponding tf.keras implementation is illustrated 
in Listing 1.3.2:

Figure 1.3.3: The MLP MNIST digit classifier model
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Figure 1.3.4: The MLP MNIST digit classifier in Figure 1.3.3 is made of fully connected layers. For simplicity, 
the activation and dropout layers are not shown. One unit or perceptron is also shown in detail.

Listing 1.3.2: mlp-mnist-1.3.2.py

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist

# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
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y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
  
# image dimensions (assumed square)
image_size = x_train.shape[1]
input_size = image_size * image_size

# resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

# network parameters
batch_size = 128
hidden_units = 256
dropout = 0.45

# model is a 3-layer MLP with ReLU and dropout after each layer
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
# this is the output for one-hot vector
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

# loss function for one-hot vector
# use of adam optimizer
# accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

# validate the model on test dataset to determine generalization
_, acc = model.evaluate(x_test,
                        y_test,
                        batch_size=batch_size,
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                        verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Before discussing the model implementation, the data must be in the correct shape 
and format. After loading the MNIST dataset, the number of labels is computed as:

# compute the number of labels
num_labels = len(np.unique(y_train))

Hardcoding num_labels = 10 is also an option. But, it's always a good practice to 
let the computer do its job. The code assumes that y_train has labels 0 to 9.

At this point, the labels are in digit format, that is, from 0 to 9. This sparse scalar 
representation of labels is not suitable for the neural network prediction layer that 
outputs probabilities per class. A more suitable format is called a one-hot vector, 
a 10-dimensional vector with all elements 0, except for the index of the digit class. 
For example, if the label is 2, the equivalent one-hot vector is [0,0,1,0,0,0,0,0,0,0]. 
The first label has index 0.

The following lines convert each label into a one-hot vector:

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

In deep learning, data are stored in tensors. The term tensor applies to a scalar  
(0D tensor), vector (1D tensor), matrix (two dimensional tensor), and  
multi-dimensional tensor.

From this point, the term tensor is used unless scalar, vector, or matrix makes the 
explanation clearer.

The rest of the code as shown below computes the image dimensions, the input_
size value of the first dense layer, and scales each pixel value from 0 to 255 to 
range from 0.0 to 1.0. Although raw pixel values can be used directly, it is better 
to normalize the input data so as to avoid large gradient values that could make 
training difficult. The output of the network is also normalized. After training, there 
is an option to put everything back to the integer pixel values by multiplying the 
output tensor by 255.

The proposed model is based on MLP layers. Therefore, the input is expected to 
be a 1D tensor. As such, x_train and x_test are reshaped to [60,000, 28 * 28] 
and [10,000, 28 * 28], respectively. In NumPy, a size of -1 means to let the library 
compute the correct dimension. In the case of x_train, this is 60,000.
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# image dimensions (assumed square) 400
image_size = x_train.shape[1]
input_size = image_size * image_size

# resize and normalize
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test = np.reshape(x_test, [-1, input_size])
x_test = x_test.astype('float32') / 255

After preparing the dataset, the following focuses on building the MLP classifier 
model using the Sequential API of Keras.

Building a model using MLP and Keras
After the data preparation, building the model is next. The proposed model is 
made of three MLP layers. In Keras, an MLP layer is referred to as dense, which 
stands for the densely connected layer. Both the first and second MLP layers are 
identical in nature with 256 units each, followed by the Rectified Linear Unit 
(ReLU) activation and dropout. 256 units are chosen since 128, 512, and 1,024 units 
have lower performance metrics. At 128 units, the network converges quickly but 
has a lower test accuracy. The additional number of units for 512 or 1,024 does not 
significantly increase the test accuracy.

The number of units is a hyperparameter. It controls the capacity of the network. 
The capacity is a measure of the complexity of the function that the network can 
approximate. For example, for polynomials, the degree is the hyperparameter. As 
the degree increases, the capacity of the function also increases.

As shown in the following lines of code, the classifier model is implemented using 
the Sequential API of Keras. This is sufficient if the model requires one input and 
one output as processed by a sequence of layers. For simplicity, we'll use this for 
now; however, in Chapter 2, Deep Neural Networks, the Functional API of Keras will 
be introduced to implement advanced deep learning models that require more 
complex structures such as multiple inputs and outputs.

# model is a 3-layer MLP with ReLU and dropout after each layer 
model = Sequential()
model.add(Dense(hidden_units, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(hidden_units))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(num_labels))
# this is the output for one-hot vector model.
add(Activation('softmax'))
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Since a Dense layer is a linear operation, a sequence of Dense layers can only 
approximate a linear function. The problem is that the MNIST digit classification 
is inherently a non-linear process. Inserting a relu activation between the Dense 
layers will enable an MLP network to model non-linear mappings. relu or ReLU is 
a simple non-linear function. It's very much like a filter that allows positive inputs 
to pass through unchanged while clamping everything else to zero. Mathematically, 
relu is expressed in the following equation and is plotted in Figure 1.3.5:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) 

Figure 1.3.5: Plot of the ReLU function. The ReLU function introduces non-linearity in neural networks.

There are other non-linear functions that can be used, such as elu, selu, softplus, 
sigmoid, and tanh. However, relu is the most commonly used function and is 
computationally efficient due to its simplicity. The sigmoid and tanh functions are 
used as activation functions in the output layer and will be described later. Table 1.3.1 
shows the equation for each of these activation functions:
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relu relu(x) = max(0, x) 1.3.1
softplus softplus(x) = log(1 + ex) 1.3.2
elu

  𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑎𝑎) = { 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0
𝑎𝑎(𝑒𝑒𝑥𝑥 − 1) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

where a ≥ 0 and is a tunable hyperparameter

1.3.3

selu selu(x) = k × elu(x, a)
where k = 1.0507009873554804934193349852946 and
a = 1.6732632423543772848170429916717

1.3.4

sigmoid
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 1

1 + 𝑒𝑒−𝑥𝑥 
1.3.5

tanh
tanh(𝑥𝑥) = 𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥 
1.3.6

Table 1.3.1: Definition of common non-linear activation functions

Although we have completed the key layers of the MLP classifier model, we have not 
addressed the issue of generalization or the ability of the model to perform beyond 
the train dataset. To address this issue, we will introduce regularization in the next 
section.

Regularization
A neural network has the tendency to memorize its training data, especially if it 
contains more than enough capacity. In such cases, the network fails catastrophically 
when subjected to the test data. This is the classic case of the network failing to 
generalize. To avoid this tendency, the model uses a regularizing layer or function. A 
common regularizing layer is Dropout.

The idea of dropout is simple. Given a dropout rate (here, it is set to dropout = 0.45), 
the Dropout layer randomly removes that fraction of units from participating in the 
next layer. For example, if the first layer has 256 units, after dropout = 0.45 is applied, 
only (1 - 0.45) * 256 units = 140 units from layer 1 participate in layer 2.
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The Dropout layer makes neural networks robust to unforeseen input data because 
the network is trained to predict correctly, even if some units are missing. It's worth 
noting that dropout is not used in the output layer and it is only active during 
training. Moreover, dropout is not present during predictions.

There are regularizers that can be used other than dropouts such as l1 or l2. In 
Keras, the bias, weight, and activation outputs can be regularized per layer. l1 and 
l2 favor smaller parameter values by adding a penalty function. Both l1 and l2 
enforce the penalty using a fraction of the sum of the absolute (l1) or square (l2) 
of parameter values. In other words, the penalty function forces the optimizer to 
find parameter values that are small. Neural networks with small parameter values 
are more insensitive to the presence of noise from within the input data.

As an example, an l2-weight regularizer with fraction=0.001 can be implemented 
as:

from tensorflow.keras.regularizers import l2
model.add(Dense(hidden_units,
                kernel_regularizer=l2(0.001),
                input_dim=input_size))

No additional layer is added if an l1 or l2 regularization is used. The regularization 
is imposed in the Dense layer internally. For the proposed model, dropout still has 
a better performance than l2.

We are almost complete with our model. The next section focuses on the output 
layer and loss function.

Output activation and loss function
The output layer has 10 units followed by a softmax activation layer. The 10 units 
correspond to the 10 possible labels, classes, or categories. The softmax activation 
can be expressed mathematically, as shown in the following equation:

𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑁𝑁−1
𝑗𝑗=0

     (Equation 1.3.7)
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The equation is applied on all N = 10 outputs, xi for i = 0, 1 … 9 for the final 
prediction. The idea of softmax is surprisingly simple. It squashes the outputs 
into probabilities by normalizing the prediction. Here, each predicted output 
is a probability that the index is the correct label of the given input image. The 
sum of all the probabilities for all outputs is 1.0. For example, when the softmax 
layer generates a prediction, it will be a 10-dim 1D tensor that may look like the 
following output:

[3.57351579e-11 7.08998016e-08   2.30154569e-07 6.35787558e-07

5.57471187e-11 4.15353840e-09   3.55973775e-16 9.99995947e-01

1.29531730e-09 3.06023480e-06]

The prediction output tensor suggests that the input image is going to be 7 given 
that its index has the highest probability. The numpy.argmax() method can be used 
to determine the index of the element with the highest value.

There are other choices of output activation layer, such as linear, sigmoid, or 
tanh. The linear activation is an identity function. It copies its input to its output. 
The sigmoid function is more specifically known as a logistic sigmoid. This will 
be used if the elements of the prediction tensor will be independently mapped 
between 0.0 and 1.0. The summation of all the elements of the predicted tensor is 
not constrained to 1.0 unlike in softmax. For example, sigmoid is used as the last 
layer in sentiment prediction (from 0.0 to 1.0, 0.0 being bad, and 1.0 being good) or 
in image generation (0.0 is mapped to pixel level 0 and 1.0 is mapped to pixel 255).

The tanh function maps its input in the range -1.0 to 1.0. This is important if the 
output can swing in both positive and negative values. The tanh function is more 
popularly used in the internal layer of recurrent neural networks but has also been 
used as an output layer activation. If tanh is used to replace sigmoid in the output 
activation, the data used must be scaled appropriately. For example, instead of 

scaling each grayscale pixel in the range [0.0 1.0] using 𝑥𝑥 =
𝑥𝑥
255 , it is assigned in 

the range [-1.0 to 1.0] using 𝑥𝑥 = 𝑥𝑥 − 127.5
127.5  .

The following graph in Figure 1.3.6 shows the sigmoid and tanh functions. 
Mathematically, sigmoid can be expressed in the following equation:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝜎𝜎(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑥𝑥     (Equation 1.3.5)
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Figure 1.3.6: Plots of sigmoid and tanh

How far the predicted tensor is from the one-hot ground truth vector is called 
loss. One type of loss function is mean_squared_error (MSE), or the average of 
the squares of the differences between the target or label and the prediction. In the 
current example, we are using categorical_crossentropy. It's the negative of 
the sum of the product of the target or label and the logarithm of the prediction per 
category. There are other loss functions that are available in Keras, such as mean_
absolute_error and binary_crossentropy. Table 1.3.2 summarizes the common 
loss functions.

Loss Function Equation
mean_squared_error

1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ (𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝)2
𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐

𝑖𝑖=1
 

mean_absolute_error
1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∑ |𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝|

𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐

𝑖𝑖=1
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categorical_crossentropy

− ∑ 𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙log 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝

𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖𝑙𝑙𝑐𝑐

𝑖𝑖=1
 

binary_crossentropy −𝑦𝑦1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 log 𝑦𝑦1
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −

(1 − 𝑦𝑦1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) log(1 − 𝑦𝑦1
𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

 

Table 1.3.2: Summary of common loss functions. Categories refers to the number of classes (for example: 10 
for MNIST) in both the label and the prediction. Loss equations shown are for one output only. The mean 

loss value is the average for the entire batch.

The choice of the loss function is not arbitrary but should be a criterion that the 
model is learning. For classification by category, either categorical_crossentropy 
or mean_squared_error is a good choice after the softmax activation layer. The 
binary_crossentropy loss function is normally used after the sigmoid activation 
layer, while mean_squared_error is an option for the tanh output.

In the next section, we will discuss optimization algorithms to minimize the loss 
functions that we discussed here.

Optimization
With optimization, the objective is to minimize the loss function. The idea is that 
if the loss is reduced to an acceptable level, the model has indirectly learned the 
function that maps inputs to outputs. Performance metrics are used to determine 
if a model has learned the underlying data distribution. The default metric in Keras 
is loss. During training, validation, and testing, other metrics such as accuracy 
can also be included. Accuracy is the percentage, or fraction, of correct predictions 
based on ground truth. In deep learning, there are many other performance 
metrics. However, it depends on the target application of the model. In literature, 
the performance metrics of the trained model on the test dataset is reported for 
comparison with other deep learning models.
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In Keras, there are several choices for optimizers. The most commonly used 
optimizers are stochastic gradient descent (SGD), Adaptive Moments (Adam), 
and Root Mean Squared Propagation (RMSprop). Each optimizer features tunable 
parameters like learning rate, momentum, and decay. Adam and RMSprop are 
variations of SGD with adaptive learning rates. In the proposed classifier network, 
Adam is used since it has the highest test accuracy.

SGD is considered the most fundamental optimizer. It's a simpler version of the 
gradient descent in calculus. In gradient descent (GD), tracing the curve of a 
function downhill finds the minimum value, much like walking downhill in a valley 
until the bottom is reached.

The GD algorithm is illustrated in Figure 1.3.7. Let's suppose x is the parameter (for 
example, weight) being tuned to find the minimum value of y (for example, the loss 

function). Starting at an arbitrary point of x= -0.5. the gradient 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −2.0 . The GD 

algorithm imposes that x is then updated to 𝑥𝑥 = −0.5 − 𝜖𝜖(−2.0) . The new value of 
x is equal to the old value, plus the opposite of the gradient scaled by 𝜖𝜖 . The small 
number 𝜖𝜖  refers to the learning rate. If 𝜖𝜖 =0.01 then the new value of x = -0.48. GD is 
performed iteratively. At each step, y will get closer to its minimum value. At x = 

0.5, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 0.0 . GD has found the absolute minimum value of y = -1.25. The gradient 

recommends no further change in x.

The choice of learning rate is crucial. A large value of 𝜖𝜖  may not find the minimum 
value since the search will just swing back and forth around the minimum value. 
On one hand, a large value of 𝜖𝜖  may take a significant number of iterations before 
the minimum is found. In the case of multiple minima, the search might get stuck 
in a local minimum.
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Figure 1.3.7: GD is similar to walking downhill on the function curve until the lowest point is reached. In this 
plot, the global minimum is at x = 0.5.

An example of multiple minima can be seen in Figure 1.3.8. If for some reason the 
search started at the left side of the plot and the learning rate is very small, there is 
a high probability that GD will find x = -1.51 as the minimum value of y. GD will 
not find the global minimum at x = 1.66. A sufficiently valued learning rate will 
enable the GD to overcome the hill at x = 0.0. 
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In deep learning practices, it is normally recommended to start with a bigger 
learning rate (for example, 0.1 to 0.001) and gradually decrease this as the loss gets 
closer to the minimum.

Figure 1.3.8: Plot of a function with 2 minima, x = -1.51 and x = 1.66. Also shown is the derivative of the 
function.

GD is not typically used in deep neural networks since it is common to encounter 
millions of parameters to train. It is computationally inefficient to perform a full 
GD. Instead, SGD is used. In SGD, a mini batch of samples is chosen to compute an 
approximate value of the descent. The parameters (for example, weights and biases) 
are adjusted by the following equation:

𝛉𝛉 ← 𝛉𝛉 − ϵ𝐠𝐠 

In this equation, 𝛉𝛉  and 𝐠𝐠 = 1
𝑚𝑚 𝛁𝛁𝜽𝜽 ∑ 𝐿𝐿  are the parameters and gradient tensor of 

the loss function, respectively. The g is computed from partial derivatives of the 
loss function. The mini-batch size is recommended to be a power of 2 for GPU 
optimization purposes. In the proposed network, batch_size = 128.
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Equation 1.3.8 computes the last layer parameter updates. So, how do we adjust the 
parameters of the preceding layers? In this case, the chain rule of differentiation is 
applied to propagate the derivatives to the lower layers and compute the gradients 
accordingly. This algorithm is known as backpropagation in deep learning. The 
details of backpropagation are beyond the scope of this book. However, a good 
online reference can be found at http://neuralnetworksanddeeplearning.com.

Since optimization is based on differentiation, it follows that an important criterion 
of the loss function is that it must be smooth or differentiable. This is an important 
constraint to keep in mind when introducing a new loss function.

Given the training dataset, the choice of the loss function, the optimizer, and the 
regularizer, the model can now be trained by calling the fit() function:

# loss function for one-hot vector 
# use of adam optimizer
# accuracy is a good metric for classification tasks model.
compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

# train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

This is another helpful feature of Keras. By just supplying both the x and y data, 
the number of epochs to train, and the batch size, fit() does the rest. In other deep 
learning frameworks, this translates to multiple tasks such as preparing the input 
and output data in the proper format, loading, monitoring, and so on. While all of 
these must be done inside a for loop, in Keras, everything is done in just one line.

In the fit() function, an epoch is the complete sampling of the entire training data. 
The batch_size parameter is the sample size of the number of inputs to process at 
each training step. To complete one epoch, fit() will process the number of steps 
equal to the size of the train dataset divided by the batch size plus 1 to compensate 
for any fractional part.

After training the model, we can now evaluate its performance.

Performance evaluation
At this point, the model for the MNIST digit classifier is now complete. Performance 
evaluation will be the next crucial step to determine if the proposed trained model 
has come up with a satisfactory solution. Training the model for 20 epochs will be 
sufficient to obtain comparable performance metrics.

http://neuralnetworksanddeeplearning.com
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The following table, Table 1.3.3, shows the different network configurations and 
corresponding performance measures. Under Layers, the number of units is shown 
for layers 1 to 3. For each optimizer, the default parameters in tf.keras are used. 
The effects of varying the regularizer, optimizer, and the number of units per layer 
can be observed. Another important observation in Table 1.3.3 is that bigger networks 
do not necessarily translate to better performance.

Increasing the depth of this network shows no added benefits in terms of accuracy 
for both the training and testing datasets. On the other hand, a smaller number 
of units, like 128, could also lower both the test and train accuracy. The best train 
accuracy at 99.93% is obtained when the regularizer is removed, and 256 units per 
layer are used. The test accuracy, however, is much lower, at 98.0%, as a result of the 
network overfitting.

The highest test accuracy is with the Adam optimizer and Dropout(0.45) at 98.5%. 
Technically, there is still some degree of overfitting given that its training accuracy 
is 99.39%. Both the train and test accuracy are the same at 98.2% for 256-512-256, 
Dropout(0.45), and SGD. Removing both the Regularizer and ReLU layers results 
in it having the worst performance. Generally, we'll find that the Dropout layer has a 
better performance than l2.

The following table demonstrates a typical deep neural network performance during 
tuning:

Layers Regularizer Optimizer ReLU Train 
Accuracy 
(%)

Test 
Accuracy 
(%)

256-256-256 None SGD None 93.65 92.5
256-256-256 L2(0.001) SGD Yes 99.35 98.0
256-256-256 L2(0.01) SGD Yes 96.90 96.7
256-256-256 None SGD Yes 99.93 98.0
256-256-256 Dropout(0.4) SGD Yes 98.23 98.1
256-256-256 Dropout(0.45) SGD Yes 98.07 98.1
256-256-256 Dropout(0.5) SGD Yes 97.68 98.1
256-256-256 Dropout(0.6) SGD Yes 97.11 97.9
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256-512-256 Dropout(0.45) SGD Yes 98.21 98.2
512-512-512 Dropout(0.2) SGD Yes 99.45 98.3
512-512-512 Dropout(0.4) SGD Yes 98.95 98.3
512-1024-512 Dropout(0.45) SGD Yes 98.90 98.2
1024-1024-
1024

Dropout(0.4) SGD Yes 99.37 98.3

256-256-256 Dropout(0.6) Adam Yes 98.64 98.2
256-256-256 Dropout(0.55) Adam Yes 99.02 98.3
256-256-256 Dropout(0.45) Adam Yes 99.39 98.5
256-256-256 Dropout(0.45) RMSprop Yes 98.75 98.1
128-128-128 Dropout(0.45) Adam Yes 98.70 97.7

Table 1.3.3 Different MLP network configurations and performance measures

The example indicates that there is a need to improve the network architecture. 
After discussing the MLP classifier model summary in the next section, we 
will present another MNIST classifier. The next model is based on CNN and 
demonstrates a significant improvement in test accuracy.

Model summary
Using the Keras library provides us with a quick mechanism to double-check the 
model description by calling:

model.summary()

Listing 1.3.3 below shows the model summary of the proposed network. It requires 
a total of 269,322 parameters. This is substantial considering that we have a simple 
task of classifying MNIST digits. MLPs are not parameter efficient. The number of 
parameters can be computed from Figure 1.3.4 by focusing on how the output of the 
perceptron is computed. From the input to the Dense layer: 784 × 256 + 256 = 
200,960. From the first Dense layer to the second Dense layer: 256 × 256 + 256 = 
65,792. From the second Dense layer to the output layer: 10 × 256 + 10 = 2,570. 
The total is 269,322.
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Listing 1.3.3: Summary of an MLP MNIST digit classifier model:

Layer (type)                Output Shape   Param #

=================================================================

dense_1 (Dense) (None, 256) 200960

activation_1 (Activation) (None, 256) 0

dropout_1 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 256) 65792

activation_2 (Activation) (None, 256) 0

dropout_2 (Dropout) (None, 256) 0

dense_3 (Dense) (None, 10) 2570

activation_3 (Activation) (None, 10) 0

=================================================================

Total params: 269,322

Trainable params: 269,322

Non-trainable params: 0

Another way of verifying the network is by calling:

plot_model(model, to_file='mlp-mnist.png', show_shapes=True)

Figure 1.3.9 shows the plot. You'll find that this is similar to the results of summary() 
but graphically shows the interconnection and I/O of each layer.
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Figure 1.3.9: The graphical description of the MLP MNIST digit classifier

Having summarized our model, this concludes our discussion of MLPs. In the next 
section, we will build a MNIST digit classifier model based on CNN.
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4. Convolutional Neural Network (CNN)
We are now going to move onto the second artificial neural network, CNN. In this 
section, we're going to solve the same MNIST digit classification problem, but this 
time using a CNN.

Figure 1.4.1 shows the CNN model that we'll use for the MNIST digit classification, 
while its implementation is illustrated in Listing 1.4.1. Some changes in the previous 
model will be needed to implement the CNN model. Instead of having an input 
vector, the input tensor now has new dimensions (height, width, channels) or 
(image_size, image_size, 1) = (28, 28, 1) for the grayscale MNIST images. Resizing 
the train and test images will be needed to conform to this input shape requirement.

Figure 1.4.1: The CNN model for MNIST digit classification

Implement the preceding figure:

Listing 1.4.1: cnn-mnist-1.4.1.py

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, Dropout
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist

# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# input image dimensions
image_size = x_train.shape[1]
# resize and normalize
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
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x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
# image is processed as is (square grayscale)
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
pool_size = 2
filters = 64
dropout = 0.2

# model is a stack of CNN-ReLU-MaxPooling
model = Sequential()
model.add(Conv2D(filters=filters,
                 kernel_size=kernel_size,
                 activation='relu',
                 input_shape=input_shape))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
                 kernel_size=kernel_size,
                 activation='relu'))
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=filters,
                 kernel_size=kernel_size,
                 activation='relu'))
model.add(Flatten())
# dropout added as regularizer
model.add(Dropout(dropout))
# output layer is 10-dim one-hot vector
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='cnn-mnist.png', show_shapes=True)

# loss function for one-hot vector
# use of adam optimizer
# accuracy is good metric for classification tasks
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=10, batch_size=batch_size)

_, acc = model.evaluate(x_test,
                        y_test,
                        batch_size=batch_size,
                   verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))
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The major change here is the use of the Conv2D layers. The ReLU activation function 
is already an argument of Conv2D. The ReLU function can be brought out as an 
Activation layer when the batch normalization layer is included in the model. 
Batch normalization is used in deep CNNs so that large learning rates can be 
utilized without causing instability during training.

Convolution
If, in the MLP model, the number of units characterizes the Dense layers, the kernel 
characterizes the CNN operations. As shown in Figure 1.4.2, the kernel can be 
visualized as a rectangular patch or window that slides through the whole image 
from left to right, and from top to bottom. This operation is called convolution. It 
transforms the input image into a feature map, which is a representation of what the 
kernel has learned from the input image. The feature map is then transformed into 
another feature map in the succeeding layer and so on. The number of feature maps 
generated per Conv2D is controlled by the filters argument.

Figure 1.4.2: A 3 × 3 kernel is convolved with an MNIST digit image.
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The convolution is shown in steps tn and tn+1 where the kernel moved by a stride of 1 
pixel to the right.

The computation involved in the convolution is shown in Figure 1.4.3:

Figure 1.4.3: The convolution operation shows how one element of the feature map is computed

For simplicity, a 5 × 5 input image (or input feature map) where a 3 × 3 kernel is 
applied is illustrated. The resulting feature map is shown after the convolution. The 
value of one element of the feature map is shaded. You'll notice that the resulting 
feature map is smaller than the original input image, this is because the convolution 
is only performed on valid elements. The kernel cannot go beyond the borders of the 
image. If the dimensions of the input should be the same as the output feature maps, 
Conv2D accepts the option padding='same'. The input is padded with zeros around 
its borders to keep the dimensions unchanged after the convolution.

Pooling operations
The last change is the addition of a MaxPooling2D layer with the argument pool_
size=2. MaxPooling2D compresses each feature map. Every patch of size pool_size 
× pool_size is reduced to 1 feature map point. The value is equal to the maximum 
feature point value within the patch. MaxPooling2D is shown in the following figure 
for two patches:

Figure 1.4.4: MaxPooling2D operation.  
For simplicity, the input feature map is 4 × 4, resulting in a 2 × 2 feature map.
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The significance of MaxPooling2D is the reduction in feature map size, which 
translates to an increase in receptive field size. For example, after MaxPooling2D(2), 
the 2 × 2 kernel is now approximately convolving with a 4 × 4 patch. The CNN has 
learned a new set of feature maps for a different receptive field size.

There are other means of pooling and compression. For example, to achieve a 50% 
size reduction as MaxPooling2D(2), AveragePooling2D(2) takes the average of a 
patch instead of finding the maximum. Strided convolution, Conv2D(strides=2,…), 
will skip every two pixels during convolution and will still have the same 50% size 
reduction effect. There are subtle differences in the effectiveness of each reduction 
technique.

In Conv2D and MaxPooling2D, both pool_size and kernel can be non-square. In 
these cases, both the row and column sizes must be indicated. For example, pool_ 
size = (1, 2) and kernel = (3, 5).

The output of the last MaxPooling2D operation is a stack of feature maps. The role 
of Flatten is to convert the stack of feature maps into a vector format that is suitable 
for either Dropout or Dense layers, similar to the MLP model output layer.

In the next section, we will evaluate the performance of the trained MNIST CNN 
classifier model.

Performance evaluation and model summary
As shown in Listing 1.4.2, the CNN model in Listing 1.4.1 requires a smaller number 
of parameters at 80,226 compared to 269,322 when MLP layers are used. The 
conv2d_1 layer has 640 parameters because each kernel has 3 × 3 = 9 parameters, 
and each of the 64 feature maps has one kernel and one bias parameter. The number 
of parameters for other convolution layers can be computed in a similar way.

Listing 1.4.2: Summary of a CNN MNIST digit classifier

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 26, 26, 64) 640

max_pooling2d_1 (MaxPooling2) (None, 13, 13, 64) 0

conv2d_2 (Conv2D) (None, 11, 11, 64) 36928

max_pooling2d_2 (MaxPooling2) (None, 5.5, 5, 64) 0

conv2d_3 (Conv2D) (None, 3.3, 3, 64) 36928

flatten_1 (Flatten) (None, 576) 0

dropout_1 (Dropout) (None, 576) 0

dense_1 (Dense) (None, 10) 5770

activation_1 (Activation) (None, 10) 0



Chapter 1

[ 33 ]

===================================================================

Total params: 80,266

Trainable params: 80,266

Non-trainable params: 0

Figure 1.4.5: shows a graphical representation of the CNN MNIST digit classifier.

Figure 1.4.5: Graphical description of the CNN MNIST digit classifier
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Table 1.4.1 shows a maximum test accuracy of 99.4%, which can be achieved for a 
3-layer network with 64 feature maps per layer using the Adam optimizer with 
dropout=0.2. CNNs are more parameter efficient and have a higher accuracy than 
MLPs. Likewise, CNNs are also suitable for learning representations from sequential 
data, images, and videos.

Layers Optimizer Regularizer Train Accuracy 
(%)

Test Accuracy (%)

64-64-64 SGD Dropout(0.2) 97.76 98.50
64-64-64 RMSprop Dropout(0.2) 99.11 99.00
64-64-64 Adam Dropout(0.2) 99.75 99.40
64-64-64 Adam Dropout(0.4) 99.64 99.30

Table 1.4.1: Different CNN network configurations and performance measures for the CNN MNIST digit 
classifier.

Having looked at CNNs and evaluated the trained model, let's look at the final core 
network that we will discuss in this chapter: RNN.

5. Recurrent Neural Network (RNN)
We're now going to look at the last of our three artificial neural networks, RNN.

RNNs are a family of networks that are suitable for learning representations of 
sequential data like text in natural language processing (NLP) or a stream of sensor 
data in instrumentation. While each MNIST data sample is not sequential in nature, 
it is not hard to imagine that every image can be interpreted as a sequence of rows 
or columns of pixels. Thus, a model based on RNNs can process each MNIST image 
as a sequence of 28-element input vectors with timesteps equal to 28. The following 
listing shows the code for the RNN model in Figure 1.5.1:

Figure 1.5.1: RNN model for MNIST digit classification
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Listing 1.5.1: rnn-mnist-1.5.1.py

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, SimpleRNN
from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.datasets import mnist

# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# compute the number of labels
num_labels = len(np.unique(y_train))

# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# resize and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size])
x_test = np.reshape(x_test,[-1, image_size, image_size])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size)
batch_size = 128
units = 256
dropout = 0.2

# model is RNN with 256 units, input is 28-dim vector 28 timesteps
model = Sequential()
model.add(SimpleRNN(units=units,
                    dropout=dropout,
                    input_shape=input_shape))
model.add(Dense(num_labels))
model.add(Activation('softmax'))
model.summary()
plot_model(model, to_file='rnn-mnist.png', show_shapes=True)

# loss function for one-hot vector
# use of sgd optimizer
# accuracy is good metric for classification tasks
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model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
# train the network
model.fit(x_train, y_train, epochs=20, batch_size=batch_size)

_, acc = model.evaluate(x_test,
                        y_test,
                        batch_size=batch_size,
                        verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

There are two main differences between the RNN classifier and the two previous 
models. First is the input_shape = (image_size, image_size), which is actually 
input_ shape = (timesteps, input_dim) or a sequence of input_dim-dimension 
vectors of timesteps length. Second is the use of a SimpleRNN layer to represent an 
RNN cell with units=256. The units variable represents the number of output units. 
If the CNN is characterized by the convolution of kernels across the input feature 
map, the RNN output is a function not only of the present input but also of the 
previous output or hidden state. Since the previous output is also a function of the 
previous input, the current output is also a function of the previous output and input 
and so on. The SimpleRNN layer in Keras is a simplified version of the true RNN. 
The following equation describes the output of SimpleRNN: 

𝐡𝐡𝑡𝑡 = tanh(𝐛𝐛 + 𝐖𝐖𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝐱𝐱𝑡𝑡) ….(Equation 1.5.1)

In this equation, b is the bias, while W and U are called recurrent kernel (weights 
for the previous output) and kernel (weights for the current input), respectively. 
Subscript t is used to indicate the position in the sequence. For a SimpleRNN layer 
with units=256, the total number of parameters is 256 + 256 × 256 + 256 × 28 = 
72,960, corresponding to b, W, and U contributions.

The following figure shows the diagrams of both SimpleRNN and RNN when used 
for classification tasks. What makes SimpleRNN simpler than an RNN is the absence 
of the output values ot = Vht + c before the softmax function is computed:
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Figure 1.5.2: Diagram of SimpleRNN and RNN

RNNs might be initially harder to understand when compared to MLPs or CNNs. In 
an MLP, the perceptron is the fundamental unit. Once the concept of the perceptron 
is understood, an MLP is just a network of perceptrons. In a CNN, the kernel is a 
patch or window that slides through the feature map to generate another feature 
map. In an RNN, the most important is the concept of self-loop. There is in fact just 
one cell.

The illusion of multiple cells appears because a cell exists per timestep, but in fact it 
is just the same cell reused repeatedly unless the network is unrolled. The underlying 
neural networks of RNNs are shared across cells.

The summary in Listing 1.5.2 indicates that using a SimpleRNN requires a fewer 
number of parameters.

Listing 1.5.2: Summary of an RNN MNIST digit classifier

Layer (type)                Output Shape   Param #

=================================================================

simple_rnn_1 (SimpleRNN) (None, 256) 72960

dense_1 (Dense) (None, 10) 2570

activation_1 (Activation) (None, 10) 0
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=================================================================

Total params: 75,530

Trainable params: 75,530

Non-trainable params: 0

Figure 1.5.3 shows the graphical description of the RNN MNIST digit classifier. 
The model is very concise:

Figure 1.5.3: The RNN MNIST digit classifier graphical description

Table 1.5.1 shows that the SimpleRNN has the lowest accuracy among the networks 
presented:

Layers Optimizer Regularizer Train Accuracy 
(%)

Test Accuracy (%)

256 SGD Dropout(0.2) 97.26 98.00
256 RMSprop Dropout(0.2) 96.72 97.60
256 Adam Dropout(0.2) 96.79 97.40
512 SGD Dropout(0.2) 97.88 98.30

Table 1.5.1: The different SimpleRNN network configurations and performance measures
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In many deep neural networks, other members of the RNN family are more 
commonly used. For example, Long Short-Term Memory (LSTM) has been used 
in both machine translation and question answering problems. LSTM addresses the 
problem of long-term dependency or remembering relevant past information to the 
present output.

Unlike an RNN or a SimpleRNN, the internal structure of the LSTM cell is more 
complex. Figure 1.5.4 shows a diagram of LSTM. LSTM uses not only the present 
input and past outputs or hidden states, but it introduces a cell state, st, that carries 
information from one cell to the other. The information flow between cell states is 
controlled by three gates, ft, it, and qt. The three gates have the effect of determining 
which information should be retained or replaced and the amount of information in 
the past and current input that should contribute to the current cell state or output. 
We will not discuss the details of the internal structure of the LSTM cell in this book. 
However, an intuitive guide to LSTMs can be found at http://colah.github.io/
posts/2015-08-Understanding-LSTMs.

The LSTM() layer can be used as a drop-in replacement for SimpleRNN(). If LSTM is 
overkill for the task at hand, a simpler version called a Gated Recurrent Unit (GRU) 
can be used. A GRU simplifies LSTM by combining the cell state and hidden state 
together. A GRU also reduces the number of gates by one. The GRU() function can 
also be used as a drop-in replacement for SimpleRNN().

Figure 1.5.4: Diagram of LSTM. The parameters are not shown for clarity.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
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There are many other ways to configure RNNs. One way is making an RNN model 
that is bidirectional. By default, RNNs are unidirectional in the sense that the 
current output is only influenced by the past states and the current input.

In bidirectional RNNs, future states can also influence the present and past states 
by allowing information to flow backward. Past outputs are updated as needed 
depending on the new information received. RNNs can be made bidirectional by 
calling a wrapper function. For example, the implementation of bidirectional LSTM 
is Bidirectional(LSTM()).

For all types of RNNs, increasing the number of units will also increase the capacity. 
However, another way of increasing the capacity is by stacking the RNN layers. It 
should be noted though that as a general rule of thumb, the capacity of the model 
should only be increased if needed. Excess capacity may contribute to overfitting, 
and, as a result, may lead to both a longer training time and a slower performance 
during prediction.

6. Conclusion
This chapter provided an overview of the three deep learning models – MLP, 
RNN, CNN – and also introduced TensorFlow 2 tf.keras, a library for rapid 
development, training, and testing deep learning models that is suitable for a 
production environment. The Sequential API of Keras was also discussed. In the 
next chapter, the Functional API will be presented, which will enable us to build 
more complex models specifically for advanced deep neural networks.

This chapter also reviewed the important concepts of deep learning such as 
optimization, regularization, and loss functions. For ease of understanding, these 
concepts were presented in the context of MNIST digit classification.

Different solutions to MNIST digit classification using artificial neural networks, 
specifically MLP, CNN, and RNN, which are important building blocks of deep 
neural networks, were also discussed together with their performance measures.

With an understanding of deep learning concepts and how Keras can be used as a 
tool with them, we are now equipped to analyze advanced deep learning models. 
After discussing the Functional API in the next chapter, we'll move on to the 
implementation of popular deep learning models. Subsequent chapters will discuss 
selected advanced topics such as autoregressive models (autoencoder, GAN, VAE), 
deep reinforcement learning, object detection and segmentation, and unsupervised 
learning using mutual information. The accompanying Keras code implementations 
will play an important role in understanding these topics.
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2
Deep Neural Networks

In this chapter, we'll be examining deep neural networks. These networks have 
shown excellent performance in terms of the accuracy of their classification on 
more challenging datasets like ImageNet, CIFAR10 (https://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf), and CIFAR100. For conciseness, 
we'll only be focusing on two networks: ResNet [2][4] and DenseNet [5]. While 
we will go into much more detail, it's important to take a minute to introduce 
these networks.

ResNet introduced the concept of residual learning, which enabled it to build very 
deep networks by addressing the vanishing gradient problem (discussed in section 2) 
in deep convolutional networks.

DenseNet improved ResNet further by allowing every convolution to have direct 
access to inputs, and lower layer feature maps. It's also managed to keep the 
number of parameters low in deep networks by utilizing both the Bottleneck 
and Transition layers.

But why these two models, and not others? Well, since their introduction, there 
have been countless models such as ResNeXt [6] and WideResNet [7] which 
have been inspired by the technique used by these two networks. Likewise, with 
an understanding of both ResNet and DenseNet, we'll be able to use their design 
guidelines to build our own models. By using transfer learning, this will also allow 
us to take advantage of pretrained ResNet and DenseNet models for our own 
purposes such as for object detection and segmentation. These reasons alone, along 
with their compatibility with Keras, make the two models ideal for exploring and 
complimenting the advanced deep learning scope of this book.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
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While this chapter's focus is on deep neural networks; we'll begin this chapter by 
discussing an important feature of Keras called the Functional API. This API acts 
as an alternative method for building networks in tf.keras and enables us to build 
more complex networks that cannot be accomplished by the Sequential model 
API. The reason why we're focusing so much on this API is that it will become 
a very useful tool for building deep networks such as the two we're focusing on 
in this chapter. It's recommended that you've completed Chapter 1, Introducing 
Advanced Deep Learning with Keras, before moving onto this chapter as we'll refer 
to introductory level code and concepts explored in that chapter as we take them 
to an advanced level in this chapter.

The goals of this chapter are to introduce:

• The Functional API in Keras, as well as exploring examples of networks 
running it

• Deep Residual Networks (ResNet versions 1 and 2) implementation in 
tf.keras

• The implementation of Densely Connected Convolutional Networks 
(DenseNet) in tf.keras

• Explore the two popular deep learning models, ResNet and DenseNet

Let's begin by discussing the Functional API.

1. Functional API
In the Sequential model API that we first introduced in Chapter 1, Introducing 
Advanced Deep Learning with Keras, a layer is stacked on top of another layer. 
Generally, the model will be accessed through its input and output layers. We also 
learned that there is no simple mechanism if we find ourselves wanting to add an 
auxiliary input at the middle of the network, or even to extract an auxiliary output 
before the last layer.

That model also had its downsides; for example, it doesn't support graph-like 
models or models that behave like Python functions. In addition, it's also difficult 
to share layers between the two models. Such limitations are addressed by the 
Functional API and are the reason why it's a vital tool for anyone wanting to work 
with deep learning models.
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The Functional API is guided by the following two concepts:

• A layer is an instance that accepts a tensor as an argument. The output of a 
layer is another tensor. To build a model, the layer instances are objects that 
are chained to one another through both input and output tensors. This will 
have a similar end-result to stacking multiple layers in the Sequential model. 
However, using layer instances makes it easier for models to have either 
auxiliary or multiple inputs and outputs since the input/output of each layer 
will be readily accessible.

• A model is a function between one or more input tensors and output tensors. 
In between the model input and output, tensors are the layer instances that 
are chained to one another by layer input and output tensors. A model is, 
therefore, a function of one or more input layers and one or more output 
layers. The model instance formalizes the computational graph on how the 
data flows from input(s) to output(s).

After you've completed building the Functional API model, the training and 
evaluation are then performed by the same functions used in the Sequential model. 
To illustrate, in a Functional API, a two dimensional convolutional layer, Conv2D, 
with 32 filters and with x as the layer input tensor and y as the layer output tensor 
can be written as:

y = Conv2D(32)(x)

We're also able to stack multiple layers to build our models. For example, we can 
rewrite the Convolutional Neural Network (CNN) on MNIST cnn-mnist-1.4.1.py 
using the Functional API as shown in the following listing:

Listing 2.1.1: cnn-functional-2.1.1.py

import numpy as np
from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical

# load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# from sparse label to categorical
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
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# reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 64
dropout = 0.3

# use functional API to build cnn layers
inputs = Input(shape=input_shape)
y = Conv2D(filters=filters,
           kernel_size=kernel_size,
           activation='relu')(inputs)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
           kernel_size=kernel_size,
           activation='relu')(y)
y = MaxPooling2D()(y)
y = Conv2D(filters=filters,
           kernel_size=kernel_size,
           activation='relu')(y)
# image to vector before connecting to dense layer
y = Flatten()(y)
# dropout regularization
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

# build the model by supplying inputs/outputs
model = Model(inputs=inputs, outputs=outputs)
# network model in text
model.summary()

# classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
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# train the model with input images and labels
model.fit(x_train,
          y_train,
          validation_data=(x_test, y_test),
          epochs=20,
          batch_size=batch_size)

# model accuracy on test dataset
score = model.evaluate(x_test,
                       y_test,
                       batch_size=batch_size,
                       verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

By default, MaxPooling2D uses pool_size=2, so the argument has been removed.

In the preceding listing, every layer is a function of a tensor. Each layer generates 
a tensor as an output which becomes the input to the next layer. To create this 
model, we can call Model() and supply both the inputs and outputs tensors, 
or alternatively the lists of tensors. Everything else remains the same.

The same listing can also be trained and evaluated using the fit() and evaluate() 
functions, similar to the Sequential model. The Sequential class is, in fact, a subclass 
of the Model class. We need to remember that we inserted the validation_data 
argument in the fit() function to see the progress of validation accuracy during 
training. The accuracy ranges from 99.3% to 99.4% in 20 epochs.

Creating a two-input and one-output model
We're now going to do something really exciting, creating an advanced model 
with two inputs and one output. Before we start, it's important to know that the 
Sequential model API is designed for building 1-input and 1-output models only.

Let's suppose a new model for the MNIST digit classification is invented, and it's 
called the Y-Network, as shown in Figure 2.1.1. The Y-Network uses the same input 
twice, both on the left and right CNN branches. The network combines the results 
using a concatenate layer. The merge operation concatenate is similar to stacking 
two tensors of the same shape along the concatenation axis to form one tensor. For 
example, concatenating two tensors of shape (3, 3, 16) along the last axis will result 
in a tensor of shape (3, 3, 32).
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Everything else after the concatenate layer will remain the same as the previous 
chapter's CNN MNIST classifier model: Flatten, then Dropout, and then Dense:

Figure 2.1.1: The Y-Network accepts the same input twice but processes the input in two branches 
of convolutional networks. The outputs of the branches are combined using the concatenate layer. 

The last layer prediction is going to be similar to the previous chapter's CNN MNIST classifier model.

To improve the performance of the model in Listing 2.1.1, we can propose several 
changes. Firstly, the branches of the Y-Network are doubling the number of filters 
to compensate for the halving of the feature maps size after MaxPooling2D(). For 
example, if the output of the first convolution is (28, 28, 32), after max pooling the 
new shape is (14, 14, 32). The next convolution will have a filter size of 64 and output 
dimensions of (14, 14, 64).

Second, although both branches have the same kernel size of 3, the right branch 
uses a dilation rate of 2. Figure 2.1.2 shows the effect of different dilation rates on 
a kernel with size 3. The idea is that by increasing the effective receptive field size 
of the kernel using dilation rate, the CNN will enable the right branch to learn 
different feature maps. Using a dilation rate greater than 1 is a computationally 
efficient approximate method to increase receptive field size. It is approximate since 
the kernel is not actually a full-blown kernel. It is efficient since we use the same 
number of operations as with a dilation rate equal to 1.



Chapter 2

[ 49 ]

To appreciate the concept of the receptive field, notice that when the kernel computes 
each point of a feature map, its input is a patch in the previous layer feature map 
which is also dependent on its previous layer feature map. If we continue tracking 
this dependency down to the input image, the kernel depends on an image patch 
called the receptive field.

We'll use the option padding='same' to ensure that we will not have negative tensor 
dimensions when the dilated CNN is used. By using padding='same', we'll keep the 
dimensions of the input the same as the output feature maps. This is accomplished 
by padding the input with zeros to make sure that the output has the same size.

Figure 2.1.2: By increasing the dilation rate from 1, the effective kernel receptive field size also increases

Listing 2.1.2 for cnn-y-network-2.1.2.py shows the implementation of the 
Y-Network using the Functional API. The two branches are created by the two for 
loops. Both branches expect the same input shape. The two for loops will create two 
3-layer stacks of Conv2D-Dropout-MaxPooling2D. While we used the concatenate 
layer to combine the outputs of the left and right branches, we could also utilize 
the other merge functions of tf.keras, such as add, dot, and multiply. The choice 
of the merge function is not purely arbitrary but must be based on a sound model 
design decision.

In the Y-Network, concatenate will not discard any portion of the feature maps. 
Instead, we'll let the Dense layer figure out what to do with the concatenated 
feature maps.

Listing 2.1.2: cnn-y-network-2.1.2.py

import numpy as np

from tensorflow.keras.layers import Dense, Dropout, Input
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.layers import Flatten, concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
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from tensorflow.keras.utils import to_categorical
from tensorflow.keras.utils import plot_model

# load MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# from sparse label to categorical
num_labels = len(np.unique(y_train))
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# reshape and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train,[-1, image_size, image_size, 1])
x_test = np.reshape(x_test,[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
dropout = 0.4
n_filters = 32

# left branch of Y network
left_inputs = Input(shape=input_shape)
x = left_inputs
filters = n_filters
# 3 layers of Conv2D-Dropout-MaxPooling2D
# number of filters doubles after each layer (32-64-128)
for i in range(3):
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
               activation='relu')(x)
    x = Dropout(dropout)(x)
    x = MaxPooling2D()(x)
    filters *= 2

# right branch of Y network
right_inputs = Input(shape=input_shape)
y = right_inputs
filters = n_filters
# 3 layers of Conv2D-Dropout-MaxPooling2Do
# number of filters doubles after each layer (32-64-128)
for i in range(3):
    y = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
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               activation='relu',
               dilation_rate=2)(y)
    y = Dropout(dropout)(y)
    y = MaxPooling2D()(y)
    filters *= 2

# merge left and right branches outputs
y = concatenate([x, y])
# feature maps to vector before connecting to Dense 
y = Flatten()(y)
y = Dropout(dropout)(y)
outputs = Dense(num_labels, activation='softmax')(y)

# build the model in functional API
model = Model([left_inputs, right_inputs], outputs)
# verify the model using graph
plot_model(model, to_file='cnn-y-network.png', show_shapes=True)
# verify the model using layer text description
model.summary()

# classifier loss, Adam optimizer, classifier accuracy
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

# train the model with input images and labels
model.fit([x_train, x_train],
          y_train,
          validation_data=([x_test, x_test], y_test),
          epochs=20,
          batch_size=batch_size)

# model accuracy on test dataset
score = model.evaluate([x_test, x_test],
                       y_test,
                       batch_size=batch_size,
                       verbose=0)
print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))

Taking a step back, we can note that the Y-Network is expecting two inputs 
for training and validation. The inputs are identical, so [x_train, x_train] 
is supplied.

Over the course of the 20 epochs, the accuracy of the Y-Network ranges from 99.4% 
to 99.5%. This is a slight improvement over the 3-stack CNN which achieved a range 
between 99.3% and 99.4% accuracy. However, this was at the cost of both higher 
complexity and more than double the number of parameters. 
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The following figure, Figure 2.1.3, shows the architecture of the Y-Network as 
understood by Keras and generated by the plot_model() function:

Figure 2.1.3: The CNN Y-Network as implemented in Listing 2.1.2
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This concludes our look at the Functional API. We should take this time to remember 
that the focus of this chapter is building deep neural networks, specifically ResNet 
and DenseNet. Therefore, we're only covering the Functional API materials needed 
to build them, as covering the entire API would be beyond the scope of this book. 
With that said, let's move on to discussing ResNet.

2. Deep Residual Network (ResNet)
One key advantage of deep networks is that they have a great ability to learn 
different levels of representation from both inputs and feature maps. In classification, 
segmentation, detection, and a number of other computer vision problems, learning 
different feature maps generally leads to a better performance.

However, you'll find that it's not easy to train deep networks because the gradient 
may vanish (or explode) with depth in the shallow layers during backpropagation. 
Figure 2.2.1 illustrates the problem of vanishing gradient. The network parameters 
are updated by backpropagation from the output layer to all previous layers. Since 
backpropagation is based on the chain rule, there is a tendency for the gradient to 
diminish as it reaches the shallow layers. This is due to the multiplication of small 
numbers, especially for small loss functions and parameter values.

The number of multiplication operations will be proportional to the depth of the 
network. It's also worth noting that if the gradient degrades, the parameters will not 
be updated appropriately. 

The reader is referred to https://keras.io/ for additional 
information on the Functional API.

https://keras.io/
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Hence, the network will fail to improve its performance.

Figure 2.2.1: A common problem in deep networks is that the gradient vanishes as it reaches  
the shallow layers during backpropagation.

To alleviate the degradation of the gradient in deep networks, ResNet introduced 
the concept of a deep residual learning framework. Let's analyze a block: a small 
segment of our deep network.

Figure 2.2.2 shows a comparison between a typical CNN block and a ResNet residual 
block. The idea of ResNet is that in order to prevent the gradient from degrading, 
we'll let the information flow through the shortcut connections to reach the 
shallow layers.

Figure 2.2.2: A comparison between a block in a typical CNN and a block in ResNet. To prevent the degradation 
of the gradient during backpropagation, a shortcut connection is introduced.



Chapter 2

[ 55 ]

Next, we're going to look at more details within the discussion of the differences 
between the two blocks. Figure 2.2.3 shows more details of the CNN block of 
another commonly used deep network, VGG [3], and ResNet. We'll represent 
the layer feature maps as x. The feature maps at layer l are xl. The operations in 
the CNN layer are Conv2D-Batch Normalization(BN)-ReLU.

Let's suppose we represent this set of operations in the form of H() = Conv2D-Batch 
Normalization(BN)-ReLU; then:

xl-1 = H(xl-2)    (Equation 2.2.1)

xl = H(xl-1)    (Equation 2.2.2)

In other words, the feature maps at layer l - 2 are transformed to xl-1 by H() 
=Conv2D-Batch Normalization(BN)-ReLU. The same set of operations is applied to 
transform xl-1 to xl. To put this another way, if we have an 18-layer VGG, then there 
are 18 H() operations before the input image is transformed to the 18th layer feature 
map.

Generally speaking, we can observe that the layer l output feature maps are directly 
affected by the previous feature maps only. Meanwhile, for ResNet:

xl-1 = H(xl-2)    (Equation 2.2.3)

xl = ReLU(F (xl-1) + xl-2)    (Equation 2.2.4)

Figure 2.2.3: Detailed layer operations for a plain CNN block and a residual block
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F(xl-1) is made of Conv2D-BN, which is also known as the residual mapping. The 
+ sign is a tensor element-wise addition between the shortcut connection and the 
output of F(xl-1). The shortcut connection doesn't add extra parameters nor extra 
computational complexity.

The add operation can be implemented in tf.keras by the add() merge function. 
However, both F(xl-1) and xl-2 should have the same dimensions.

If the dimensions are different, for example, when changing the feature maps size, 
we should perform a linear projection on xl-2 as to match the size of F(xl-1). In the 
original paper, the linear projection for the case, when the feature maps size is 
halved, is done by a Conv2D with a 1 × 1 kernel and strides=2.

Back in Chapter 1, Introducing Advanced Deep Learning with Keras, we discussed that 
stride > 1 is equivalent to skipping pixels during convolution. For example, if 
strides=2, we could skip every other pixel when we slide the kernel during the 
convolution process.

The preceding Equation 2.2.3 and Equation 2.2.4 both model ResNet residual block 
operations. They imply that if the deeper layers can be trained to have fewer errors, 
then there is no reason why the shallower layers should have higher errors.

Knowing the basic building blocks of ResNet, we're able to design a deep residual 
network for image classification. This time, however, we're going to tackle a more 
challenging dataset.

In our examples, we're going to consider CIFAR10, which was one of the datasets 
the original paper was validated on. In this example, tf.keras provides an API to 
conveniently access the CIFAR10 dataset, as shown:

from tensorflow.keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

Like MNIST, the CIFAR10 dataset has 10 categories. The dataset is a collection of 
small (32 × 32) RGB real-world images of an airplane, an automobile, a bird, a cat, 
a deer, a dog, a frog, a horse, a ship, and a truck corresponding to each of the 10 
categories. Figure 2.2.4 shows sample images from CIFAR10.
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In the dataset, there are 50,000 labeled train images and 10,000 labeled test images for 
validation:

Figure 2.2.4: Sample images from the CIFAR10 dataset. The full dataset has 50,000 labeled train images and 
10,000 labeled test images for validation.

For the CIFAR10 data, ResNet can be built using different network architectures 
as shown in Table 2.2.1. Table 2.2.1 means we have three sets of residual blocks. Each 
set has 2n layers corresponding to n residual blocks. The extra layer in 32 × 32 is the 
first layer for the input image.

Layers Output 
Size

Filter 
Size

Operations

Convolution 32 × 32 16 3 x 3    Conv2D
Residual Block (1) 32 × 32 {3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷

3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} ×  𝐶𝐶 

Transition Layer
(1)

32 × 32 {1 x 1    Conv2D, strides = 2}
16 × 16
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Residual Block
(2)

16 × 16 32 {3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 𝑠𝑠𝑖𝑖 1𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷 } ×  𝐶𝐶 

Transition Layer
(2)

16 × 16 {1 x 1    Conv2D, strides = 2}
8 × 8

Residual Block
(3)

8 × 8 64 {3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 𝑠𝑠𝑖𝑖 1𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷 } ×  𝐶𝐶 

Average Pooling 1 × 1 8 x 8    AveragePooling2D

Table 2.2.1: ResNet network architecture configuration

The kernel size is 3, except for the transition between two feature maps with different 
sizes, which implements a linear mapping. For example, a Conv2D with a kernel size 
of 1 and strides=2. For the sake of consistency with DenseNet, we'll use the term 
Transition layer when we join two residual blocks of different sizes.

ResNet uses kernel_initializer='he_normal' in order to aid the 
convergence when backpropagation is taking place [1]. The last layer is made of 
AveragePooling2D-Flatten-Dense. It's worth noting at this point that ResNet 
does not use dropout. It also appears that the add merge operation and the 1 x 1 
convolution have a self-regularizing effect. Figure 2.2.5 shows the ResNet model 
architecture for the CIFAR10 dataset as described in Table 2.2.1.

Figure 2.2.5: The model architecture of ResNet for the CIFAR10 dataset classification

The following code snippet shows the partial ResNet implementation in tf.keras. 
The code has been contributed to the Keras GitHub repository. From Table 2.2.2 (to 
be shown shortly) we can also see that by modifying the value of n, we're able to 
increase the depth of the networks. 
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For example, for n = 18, we already have ResNet110, a deep network with 110 layers. 
To build ResNet20, we use n = 3:

n = 3

# model version
# orig paper: version = 1 (ResNet v1),
# improved ResNet: version = 2 (ResNet v2)
version = 1

# computed depth from supplied model parameter n
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2

   
if version == 2:
    model = resnet_v2(input_shape=input_shape, depth=depth)
else:
    model = resnet_v1(input_shape=input_shape, depth=depth)

The resnet_v1() method is a model builder for ResNet. It uses a utility function, 
resnet_layer(), to help build the stack of Conv2D-BN-ReLU.

It's referred to as version 1, as we will see in the next section, an improved 
ResNet was proposed, and that has been called ResNet version 2, or v2. Over ResNet, 
ResNet v2 has an improved residual block design resulting to a better performance.

The following listing shows the partial code of resnet-cifar10-2.2.1.py, which is 
the tf.keras model implementation of ResNet v1.

Listing 2.2.1: resnet-cifar10-2.2.1.py

def resnet_v1(input_shape, depth, num_classes=10):
    """ResNet Version 1 Model builder [a]

    Stacks of 2 x (3 x 3) Conv2D-BN-ReLU
    Last ReLU is after the shortcut connection.
    At the beginning of each stage, the feature map size is halved
    (downsampled) by a convolutional layer with strides=2, while 
    the number of filters is doubled. Within each stage, 
    the layers have the same number filters and the
    same number of filters.
    Features maps sizes:
    stage 0: 32x32, 16
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    stage 1: 16x16, 32
    stage 2:  8x8,  64
    The Number of parameters is approx the same as Table 6 of [a]:
    ResNet20 0.27M
    ResNet32 0.46M
    ResNet44 0.66M
    ResNet56 0.85M
    ResNet110 1.7M

    Arguments:
        input_shape (tensor): shape of input image tensor
        depth (int): number of core convolutional layers
        num_classes (int): number of classes (CIFAR10 has 10)

    Returns:
        model (Model): Keras model instance
    """
    if (depth - 2) % 6 != 0:
        raise ValueError('depth should be 6n+2 (eg 20, 32, in [a])')
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)

    inputs = Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            # first layer but not first stack
            if stack > 0 and res_block == 0:
                strides = 2  # downsample
            y = resnet_layer(inputs=x,
                             num_filters=num_filters,
                             strides=strides)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters,
                             activation=None)
            # first layer but not first stack
            if stack > 0 and res_block == 0:
                # linear projection residual shortcut
                # connection to match changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters,
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                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = add([x, y])
            x = Activation('relu')(x)
        num_filters *= 2

    # add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

The performance of ResNet on various values of n are shown in Table 2.2.2.

# Layers n % Accuracy on CIFAR10 
(Original paper)

% Accuracy on CIFAR10 
(This book)

ResNet20 3 91.25 92.16
ResNet32 5 92.49 92.46
ResNet44 7 92.83 92.50
ResNet56 9 93.03 92.71
ResNet110 18 93.57 92.65

Table 2.2.2: ResNet architecture validated with CIFAR10 for different values of n

There are some minor differences from the original implementation of ResNet. In 
particular, we don't use SGD, and instead, we'll use Adam. This is because ResNet 
is easier to converge with Adam. We'll also use a learning rate (lr) scheduler, lr_
schedule(), in order to schedule the decrease in lr at 80, 120, 160, and 180 epochs 
from the default 1e-3. The lr_schedule() function will be called after every epoch 
during training as part of the callbacks variable.

The other callback saves the checkpoint every time there is progress made in the 
validation accuracy. When training deep networks, it is a good practice to save the 
model or weight checkpoint. This is because it takes a substantial amount of time to 
train deep networks. 
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When you want to use your network, all you need to do is simply reload the 
checkpoint, and the trained model is restored. This can be accomplished by calling 
tf.keras load_model(). The lr_reducer() function is included. In case the metric 
has plateaued before the scheduled reduction, this callback will reduce the learning 
rate by a certain factor supplied in the argument if the validation loss has not 
improved after patience = 5 epochs.

The callbacks variable is supplied when the model.fit() method is called. Similar 
to the original paper, the tf.keras implementation uses data augmentation, 
ImageDataGenerator(), in order to provide additional training data as part of the 
regularization schemes. As the number of training data increases, generalization will 
improve.

For example, a simple data augmentation is flipping a photo of a dog, as shown in 
Figure 2.2.6 (horizontal_flip = True). If it is an image of a dog, then the flipped 
image is still an image of a dog. You can also perform other transformation, such as 
scaling, rotation, whitening, and so on, and the label will still remain the same:

Figure 2.2.6: A simple data augmentation is flipping the original image

The complete code is available on GitHub: https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

It's often difficult to exactly duplicate the implementation of the original paper. In 
this book, we used a different optimizer and data augmentation. This may result in 
slight differences in the performance of the tf.keras ResNet as implemented in this 
book and the model in the original paper.

After the release of the second paper on ResNet [4], the original model presented 
in this section is known as ResNet v1. The improved ResNet is commonly called 
ResNet v2, which we will discuss in the next section.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras.
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras.
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3. ResNet v2
The improvements for ResNet v2 are mainly found in the arrangement of layers in 
the residual block as shown in Figure 2.3.1.

The prominent changes in ResNet v2 are:

• The use of a stack of 1 x 1 – 3 x 3 – 1 × 1 BN-ReLU-Conv2D
• Batch normalization and ReLU activation come before two dimensional 

convolution

Figure 2.3.1: A comparison of residual blocks between ResNet v1 and ResNet v2

ResNet v2 is also implemented in the same code as resnet-cifar10-2.2.1.py, 
as can be seen in Listing 2.2.1:

Listing 2.2.1: resnet-cifar10-2.2.1.py

def resnet_v2(input_shape, depth, num_classes=10):
    """ResNet Version 2 Model builder [b]

    Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or 
    also known as bottleneck layer.
    First shortcut connection per layer is 1 x 1 Conv2D.
    Second and onwards shortcut connection is identity.
    At the beginning of each stage, 
    the feature map size is halved (downsampled)
    by a convolutional layer with strides=2, 
    while the number of filter maps is
    doubled. Within each stage, the layers have 
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    the same number filters and the same filter map sizes.
    Features maps sizes:
    conv1  : 32x32,  16
    stage 0: 32x32,  64
    stage 1: 16x16, 128
    stage 2:  8x8,  256

    Arguments:
        input_shape (tensor): shape of input image tensor
        depth (int): number of core convolutional layers
        num_classes (int): number of classes (CIFAR10 has 10)

    Returns:
        model (Model): Keras model instance
    """
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n+2 (eg 110 in [b])')
    # start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)

    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU
    # on input before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True)

    # instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                # first layer and first stage
                if res_block == 0:
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                # first layer but not first stage
                if res_block == 0:
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                    # downsample
                    strides = 2

            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection
                # to match changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = add([x, y])

        num_filters_in = num_filters_out

    # add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model



Deep Neural Networks

[ 66 ]

ResNet v2's model builder is shown in the following code. For example, to build 
ResNet110 v2, we'll use n = 12 and version = 2:

n = 12

# model version
# orig paper: version = 1 (ResNet v1), 
# improved ResNet: version = 2 (ResNet v2)
version = 2

# computed depth from supplied model parameter n
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2

   
if version == 2:
    model = resnet_v2(input_shape=input_shape, depth=depth)
else:
    model = resnet_v1(input_shape=input_shape, depth=depth)

The accuracy of ResNet v2 is shown in Table 2.3.1 below:

# Layers n % Accuracy on CIFAR10 
(Original paper)

% Accuracy on CIFAR10 
(This book)

ResNet56 9 NA 93.01
ResNet110 18 93.63 93.15

Table 2.3.1: The ResNet v2 architectures validated on the CIFAR10 dataset

In the Keras applications package, certain ResNet v1 and v2 models (for example: 50, 
101, 152) have been implemented. These are alternative implementations with pre-
trained weights unclear and can be easily reused for transfer learning. The models 
used in this book provide flexibility in terms of number of layers.

We have completed the discussion on one of the most commonly used deep neural 
networks, ResNet v1 and v2. In the following section, DenseNet, another popular 
deep neural network architecture, is covered.
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4. Densely Connected Convolutional 
Network (DenseNet)

Figure 2.4.1: A 4-layer Dense block in DenseNet. 
The input to each layer is made of all the previous feature maps.

DenseNet attacks the problem of vanishing gradient using a different approach. 
Instead of using shortcut connections, all the previous feature maps will become 
the input of the next layer. The preceding figure shows an example of a Dense 
interconnection in one Dense block.

For simplicity, in this figure, we'll only show four layers. Notice that the input to 
layer l is the concatenation of all previous feature maps. If we let BN-ReLU-Conv2D 
be represented by the operation H(x), then the output of layer l is:

xl = H (x0,x1,x2,   ,xl-1)    (Equation 2.4.1)

Conv2D uses a kernel of size 3. The number of feature maps generated per layer is 
called the growth rate, k. Normally, k = 12, but k = 24 is also used in the paper Densely 
Connected Convolutional Networks by Huang et al. (2017) [5]. Therefore, if the number 
of feature maps x0 is k0 , then the total number of feature maps at the end of the 
4-layer Dense block in Figure 2.4.1 will be 4 x k + k0.

DenseNet recommends that the Dense block is preceded by BN-ReLU-Conv2D, along 
with a number of feature maps that is twice the growth rate, k0 = 2 x k. At the end of 
the Dense block, the total number of feature maps will be 4 x 12 + 2 x 12 = 72.

At the output layer, DenseNet suggests that we perform an average pooling before 
the Dense() with a softmax layer. If the data augmentation is not used, a dropout 
layer must follow the Dense block Conv2D.
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As the network gets deeper, two new problems will occur. Firstly, since every layer 
contributes k feature maps, the number of inputs at layer l is (l – 1) x k + k0. The 
feature maps can grow rapidly within deep layers, slowing down the computation. 
For example, for a 101-layer network this will be 1200 + 24 = 1224 for k = 12.

Secondly, similar to ResNet, as the network gets deeper the feature maps size 
will be reduced to increase the receptive field size of the kernel. If DenseNet uses 
concatenation in the merge operation, it must reconcile the differences in size.

To prevent the number of feature maps from increasing to the point of being 
computationally inefficient, DenseNet introduced the Bottleneck layer as shown 
in Figure 2.4.2. The idea is that after every concatenation, a 1 x 1 convolution with 
a filter size equal to 4k is now applied. This dimensionality reduction technique 
prevents the number of feature maps to be processed by Conv2D(3) from rapidly 
increasing.

Figure 2.4.2: A layer in a Dense block of DenseNet, with and without the bottleneck layer  
BN-ReLU-Conv2D(1). We'll include the kernel size as an argument of Conv2D for clarity.

The Bottleneck layer then modifies the DenseNet layer as BN-ReLU-Conv2D(1)-
BN- ReLU-Conv2D(3), instead of just BN-ReLU-Conv2D(3). We've included the 
kernel size as an argument of Conv2D for clarity. With the Bottleneck layer, every 
Conv2D(3) is processing just the 4k feature maps instead of (l – 1) x k + k0 for layer 
l. For example, for the 101-layer network, the input of the last Conv2D(3) is still 
48 feature maps for k = 12 instead of 1224 as previously computed.

To solve the problem in feature maps size mismatch, DenseNet divides a deep 
network into multiple Dense blocks that are joined together by transition layers as 
shown in Figure 2.4.3. Within each Dense block, the feature map size (that is, width 
and height) will remain constant.
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The role of the transition layer is to transition from one feature map size to a 
smaller feature map size between two Dense blocks. The reduction in size is 
usually half. This is accomplished by the average pooling layer. For example, an 
AveragePooling2D with default pool_size=2 reduces the size from (64, 64, 256) to 
(32, 32, 256). The input to the transition layer is the output of the last concatenation 
layer in the previous Dense block.

Figure 2.4.3: The transition layer in between two Dense blocks

However, before the feature maps are passed to average pooling, their number 
will be reduced by a certain compression factor, 0 < 𝜃𝜃 < 1 , using Conv2D(1).
DenseNet uses 𝜃𝜃 = 0.5  in their experiment. For example, if the output of the last 
concatenation of the previous Dense block is (64, 64, 512), then after Conv2D(1) 
the new dimensions of the feature maps will be (64, 64, 256). When compression 
and dimensionality reduction are put together, the transition layer is made of BN-
Conv2D(1)-AveragePooling2D layers. In practice, batch normalization precedes 
the convolutional layer.

We have now covered the important concepts of DenseNet. Next, we'll build and 
validate a DenseNet-BC for the CIFAR10 dataset in tf.keras.

Building a 100-layer DenseNet-BC for 
CIFAR10
We're now going to build a DenseNet-BC (Bottleneck-Compression) with 100 layers 
for the CIFAR10 dataset, using the design principles that we discussed above.
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Table 2.4.1 shows the model configuration, while Figure 2.4.4 shows the model 
architecture. The listing shows us the partial Keras implementation of DenseNet-BC 
with 100 layers. We need to take note that we use RMSprop since it converges better 
than SGD or Adam when using DenseNet.

Layers Output Size DenseNet-100 BC
Convolution 32 x 32 3 x 3    Conv2D

Dense Block (1) 32 x 32 {1 ×  1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} ×  16 

Transition Layer (1) 32 x 32
{1 ×  1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
2 ×  2 𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴2𝐷𝐷} 16 x 16

Dense Block (2) 16 x 16 {1 ×  1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} ×  16 

Transition Layer (2) 16 x 16
{1 ×  1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
2 ×  2 𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴2𝐷𝐷} 8 x 8

Dense Block (3) 8 x 8 {1 ×  1 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷
3 ×  3 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷} ×  16 

Average Pooling 1 x 1 8 x 8    AveragePooling2D

Classification Layer Flatten-Dense(10)-softmax

Table 2.4.1: DenseNet-BC with 100 layers for CIFAR10 classification
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Moving from configuration to architecture:

Figure 2.4.4: Model architecture of DenseNet-BC with 100 layers for CIFAR10 classification
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Below in Listing 2.4.1 is the partial Keras implementation of DenseNet-BC with 
100 layers as shown in Table 2.4.1.

Listing 2.4.1: densenet-cifar10-2.4.1.py

# start model definition
# densenet CNNs (composite function) are made of BN-ReLU-Conv2D
inputs = Input(shape=input_shape)
x = BatchNormalization()(inputs)
x = Activation('relu')(x)
x = Conv2D(num_filters_bef_dense_block,
           kernel_size=3,
           padding='same',
           kernel_initializer='he_normal')(x)
x = concatenate([inputs, x])

# stack of dense blocks bridged by transition layers
for i in range(num_dense_blocks):
    # a dense block is a stack of bottleneck layers
    for j in range(num_bottleneck_layers):
        y = BatchNormalization()(x)
        y = Activation('relu')(y)
        y = Conv2D(4 * growth_rate,
                   kernel_size=1,
                   padding='same',
                   kernel_initializer='he_normal')(y)
        if not data_augmentation:
            y = Dropout(0.2)(y)
        y = BatchNormalization()(y)
        y = Activation('relu')(y)
        y = Conv2D(growth_rate,
                   kernel_size=3,
                   padding='same',
                   kernel_initializer='he_normal')(y)
        if not data_augmentation:
            y = Dropout(0.2)(y)
        x = concatenate([x, y])

    # no transition layer after the last dense block
    if i == num_dense_blocks - 1:
        continue
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    # transition layer compresses num of feature maps and # reduces 
the size by 2
    num_filters_bef_dense_block += num_bottleneck_layers * growth_rate
    num_filters_bef_dense_block = int(num_filters_bef_dense_block * 
compression_factor)
    y = BatchNormalization()(x)
    y = Conv2D(num_filters_bef_dense_block,
               kernel_size=1,
               padding='same',
               kernel_initializer='he_normal')(y)
    if not data_augmentation:
        y = Dropout(0.2)(y)
    x = AveragePooling2D()(y)

# add classifier on top
# after average pooling, size of feature map is 1 x 1
x = AveragePooling2D(pool_size=8)(x)
y = Flatten()(x)
outputs = Dense(num_classes,
                kernel_initializer='he_normal',
                activation='softmax')(y)
# instantiate and compile model
# orig paper uses SGD but RMSprop works better for DenseNet
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(1e-3),
              metrics=['accuracy'])
model.summary()

Training the tf.keras implementation of DenseNet for 200 epochs achieves a 
93.74% accuracy vs. the 95.49% reported in the paper. Data augmentation is used. We 
used the same callback functions in ResNet v1/v2 for DenseNet.

For the deeper layers, the growth_rate and depth variables must be changed using 
the table on the Python code. However, it will take a substantial amount of time to 
train the network at a depth of 190 or 250 as done in the paper. To give us an idea of 
training time, each epoch runs for about an hour on a 1060Ti GPU. Similar to ResNet, 
Keras applications package has pre-trained models for DenseNet 121 and higher.

DenseNet completes our discussion on deep neural networks. Together with ResNet, 
the two networks have been indispensable as is or as feature extractor networks in 
many downstream tasks.
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5. Conclusion
In this chapter, we've presented the Functional API as an advanced method 
for building complex deep neural network models using tf.keras. We also 
demonstrated how the Functional API could be used to build the multi-input-single-
output Y-Network. This network, when compared to a single branch CNN network, 
achieves better accuracy. For the rest of the book, we'll find the Functional API 
indispensable in building more complex and advanced models. For example, in the 
next chapter, the Functional API will enable us to build a modular encoder, decoder, 
and autoencoder.

We also spent a significant amount of time exploring two important deep 
networks, ResNet and DenseNet. Both of these networks have been used not only 
in classification but also in other areas, such as segmentation, detection, tracking, 
generation, and visual  semantic understanding. In Chapter 11, Object Detection, 
and Chapter 12, Semantic Segmentation, we will use ResNet for object detection and 
segmentation. We need to remember that it's more important that we understand the 
model design decisions in ResNet and DenseNet more closely than just following 
the original implementation. In that manner, we'll be able to use the key concepts of 
ResNet and DenseNet for our purposes.
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3
Autoencoders

In the previous chapter, Chapter 2, Deep Neural Networks, we introduced the concept 
of deep neural networks. We're now going to move on to look at autoencoders, 
which are a neural network architecture that attempts to find a compressed 
representation of the given input data.

Similar to the previous chapters, the input data may be in multiple forms, including 
speech, text, image, or video. An autoencoder will attempt to find a representation 
or piece of code in order to perform useful transformations on the input data. As 
an example, when denoising autoencoders, a neural network will attempt to find a 
code that can be used to transform noisy data into clean data. Noisy data could be 
in the form of an audio recording with static noise that is then converted into clear 
sound. Autoencoders will learn the code automatically from the data alone without 
human labeling. As such, autoencoders can be classified under unsupervised 
learning algorithms.

In later chapters of this book, we will look at Generative Adversarial Networks 
(GANs) and Variational Autoencoders (VAEs), which are also representative 
forms of unsupervised learning algorithms. This is in contrast to the supervised 
learning algorithms that we discussed in the previous chapters, where human 
annotations were required.

In summary, this chapter presents:

• The principles of autoencoders
• How to implement autoencoders using tf.keras
• The practical applications of denoising and colorization autoencoders

Let's begin by getting into what an autoencoder is, and the principles of autoencoders.
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1. Principles of autoencoders
In its simplest form, an autoencoder will learn the representation or code by trying 
to copy the input to output. However, using an autoencoder is not as simple as 
copying the input to output. Otherwise, the neural network would not be able to 
uncover the hidden structure in the input distribution.

An autoencoder will encode the input distribution into a low-dimensional tensor, 
which usually takes the form of a vector. This will approximate the hidden structure 
that is commonly referred to as the latent representation, code, or vector. This 
process constitutes the encoding part. The latent vector will then be decoded by 
the decoder part to recover the original input.

As a result of the latent vector being a low-dimensional compressed representation 
of the input distribution, it should be expected that the output recovered by the 
decoder can only approximate the input. The dissimilarity between the input and 
the output can be measured by a loss function.

But why would we use autoencoders? Simply put, autoencoders have practical 
applications both in their original form or as part of more complex neural networks.

They're a key tool in understanding the advanced topics of deep learning as 
they give us a low-dimensional representation of data that is suitable for density 
estimation. Furthermore, it can be efficiently processed to perform structural 
operations on the input data. Common operations include denoising, colorization, 
feature-level arithmetic, detection, tracking, and segmentation, to name just a few.

In this section, we're going to go over the principles of autoencoders. We're going 
to look at autoencoders with the MNIST dataset, which was introduced in the 
previous chapters.

Firstly, we need to be made aware that an autoencoder has two operators, these 
being:

• Encoder: This transforms the input, x, into a low-dimensional latent vector, 
𝒛𝒛 = 𝑓𝑓(𝒙𝒙) . Since the latent vector is of low dimension, the encoder is forced 
to learn only the most important features of the input data. For example, 
in the case of MNIST digits, the important features to learn may include 
writing style, tilt angle, roundness of stroke, thickness, and so on. Essentially, 
these are the most important bits of information needed to represent the 
digits zero to nine.

• Decoder: This tries to recover the input from the latent vector, 𝑔𝑔(𝒛𝒛) = 𝒙𝒙~ .
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Although the latent vector has a low dimension, it has a sufficient size to allow 
the decoder to recover the input data.

The goal of the decoder is to make 𝒙𝒙~  as close as possible to x. Generally, both the 
encoder and decoder are non-linear functions. The dimension of z is a measure 
of the number of salient features it can represent. The dimension is usually much 
smaller than the input dimensions for efficiency and in order to constrain the latent 
code to learn only the most salient properties of the input distribution [1].

An autoencoder has the tendency to memorize the input when the dimension of 
the latent code is significantly bigger than x.

A suitable loss function, ℒ(𝒙𝒙, 𝒙𝒙~) , is a measure of how dissimilar the input, x, is from 
the output, which is the recovered input, 𝒙𝒙~ . As shown in the following equation, 
the mean squared error (MSE) is an example of such a loss function:

ℒ(𝒙𝒙, 𝒙𝒙~) = 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥

~
𝑖𝑖)
2

𝑖𝑖=𝑚𝑚

𝑖𝑖=1
     (Equation 3.1.1)

In this example, m is the output dimension (for example, in MNIST m = width 
× height × channels = 28 × 28 × 1 = 784). xi and 𝑥𝑥~𝑖𝑖  are the elements of x and 𝒙𝒙~ , 
respectively. Since the loss function is a measure of dissimilarity between the input 
and output, we're able to use alternative reconstruction loss functions such as binary 
cross entropy or the structural similarity index (SSIM).

Similar to other neural networks, an autoencoder tries to make this error or loss 
function as small as possible during training. Figure 3.1.1 shows an autoencoder. 
The encoder is a function that compresses the input, x, into a low-dimensional 
latent vector, z. This latent vector represents the important features of the input 
distribution. The decoder then tries to recover the original input from the latent 
vector in the form of 𝒙𝒙~ .

Figure 3.1.1: Block diagram of an autoencoder

To put the autoencoder into context, x can be an MNIST digit that has a dimension 
of 28 × 28 × 1 = 784. The encoder transforms the input into a low-dimensional z that 
can be a 16-dimension latent vector. The decoder will attempt to recover the input 
in the form of 𝒙𝒙~  from z. 
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Visually, every MNIST digit x appears similar to 𝒙𝒙~ . Figure 3.1.2 demonstrates this 
autoencoding process to us.

Figure 3.1.2: An autoencoder with MNIST digit input and output. The latent vector is 16-dim

We can observe that the decoded digit 7, while not exactly the same, remains close 
enough.

Since both the encoder and decoder are non-linear functions, we can use neural 
networks to implement both. For example, in the MNIST dataset, the autoencoder 
can be implemented by MLP or CNN. The autoencoder can be trained by minimizing 
the loss function through backpropagation. Similar to other neural networks, a 
requirement of backpropagation is that the loss function must be differentiable.

If we treat the input as a distribution, we can interpret the encoder as an encoder 
of distribution, p(z|x), and the decoder as the decoder of distribution, p(x|z). 
The loss function of the autoencoder is expressed as follows:

ℒ = − log𝑝𝑝(𝒙𝒙|𝒛𝒛)     (Equation 3.1.2)

The loss function simply means that we would like to maximize the chances of 
recovering the input distribution given the latent vector distribution. If the decoder 
output distribution is assumed to be Gaussian, then the loss function boils down to 
MSE since:

ℒ = − log𝑝𝑝(𝒙𝒙|𝒛𝒛) = − log∏𝒩𝒩(𝑥𝑥𝑖𝑖; �̃�𝑥𝑖𝑖, 𝜎𝜎2)
𝑚𝑚

𝑖𝑖=1
= −∑log𝒩𝒩(𝑥𝑥𝑖𝑖; �̃�𝑥𝑖𝑖, 𝜎𝜎2) ∝

𝑚𝑚

𝑖𝑖=1
∑(𝑥𝑥𝑖𝑖 − �̃�𝑥𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1
 

    
(Equation 3.1.3)

In this example, 𝒩𝒩(𝑥𝑥𝑖𝑖; �̃�𝑥𝑖𝑖, 𝜎𝜎2)  represents a Gaussian distribution with a mean of �̃�𝑥𝑖𝑖  
and a variance of 𝜎𝜎2 . A constant variance is assumed. The decoder output, �̃�𝑥𝑖𝑖 , is 
assumed to be independent. m is the output dimension.

Understanding the principles behind autoencoders will help us in the code 
implementation. In the next section, we will take a look at how to use the tf.keras 
functional API to build the encoder, decoder, and autoencoder.
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2. Building an autoencoder using Keras
We're now going to move onto something really exciting, building an autoencoder 
using the tf.keras library. For simplicity, we'll be using the MNIST dataset for the 
first set of examples. The autoencoder will then generate a latent vector from the 
input data and recover the input using the decoder. The latent vector in this first 
example is 16-dim.

Firstly, we're going to implement the autoencoder by building the encoder.

Listing 3.2.1 shows the encoder that compresses the MNIST digit into a 16-dim 
latent vector. The encoder is a stack of two Conv2D. The final stage is a Dense layer 
with 16 units to generate the latent vector.

Listing 3.2.1: autoencoder-mnist-3.2.1.py

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import plot_model
from tensorflow.keras import backend as K

import numpy as np
import matplotlib.pyplot as plt

# load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

# reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
# encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]
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# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
# stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               activation='relu',
               strides=2,
               padding='same')(x)

# shape info needed to build decoder model
# so we don't do hand computation
# the input to the decoder's first
# Conv2DTranspose will have this shape
# shape is (7, 7, 64) which is processed by
# the decoder back to (28, 28, 1)
shape = K.int_shape(x)

# generate latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

# instantiate encoder model
encoder = Model(inputs,
                latent,
                name='encoder')
encoder.summary()
plot_model(encoder,
           to_file='encoder.png',
           show_shapes=True)

# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
# use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
# from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

# stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
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                        activation='relu',
                        strides=2,
                        padding='same')(x)

# reconstruct the input
outputs = Conv2DTranspose(filters=1,
                          kernel_size=kernel_size,
                          activation='sigmoid',
                          padding='same',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file='decoder.png', show_shapes=True)

# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs,
                    decoder(encoder(inputs)),
                    name='autoencoder')
autoencoder.summary()
plot_model(autoencoder,
           to_file='autoencoder.png',
           show_shapes=True)

# Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

# train the autoencoder
autoencoder.fit(x_train,
                x_train,
                validation_data=(x_test, x_test),
                epochs=1,
                batch_size=batch_size)

# predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test)

# display the 1st 8 test input and decoded images
imgs = np.concatenate([x_test[:8], x_decoded[:8]])
imgs = imgs.reshape((4, 4, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
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plt.axis('off')
plt.title('Input: 1st 2 rows, Decoded: last 2 rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('input_and_decoded.png')
plt.show()

Figure 3.2.1 shows the architecture model diagram generated by plot_model(), 
which is the same as the text version produced by encoder.summary(). The shape 
of the output of the last Conv2D is saved to compute the dimensions of the decoder 
input layer for easy reconstruction of the MNIST image: shape = K.int_shape(x).

Figure 3.2.1: The encoder model is made up of Conv2D(32)-Conv2D(64)-Dense(16) in order  
to generate the low-dimensional latent vector

The decoder in Listing 3.2.1 decompresses the latent vector in order to recover the 
MNIST digit. The decoder input stage is a Dense layer that will accept the latent 
vector. The number of units is equal to the product of the saved Conv2D output 
dimensions from the encoder. This is done so that we can easily resize the output of 
the Dense layer for Conv2DTranspose to finally recover the original MNIST image 
dimensions.

The decoder is made of a stack of three Conv2DTranspose. In our case, we're 
going to use a Transposed CNN (sometimes called deconvolution), which is more 
commonly used in decoders. We can imagine transposed CNN (Conv2DTranspose) 
as the reversed process of CNN. 
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In a simple example, if the CNN converts an image into feature maps, the transposed 
CNN will produce an image given feature maps. Figure 3.2.2 shows the decoder 
model:

Figure 3.2.2: The decoder model is made up of Dense(16)-Conv2DTranspose(64)-Conv2DTranspose(32)-
Conv2DTranspose(1). The input is the latent vector decoded to recover the original input

By joining the encoder and decoder together, we're able to build the autoencoder. 
Figure 3.2.3 illustrates the model diagram of the autoencoder:

Figure 3.2.3: The autoencoder model is built by joining an encoder model and a decoder model together.  
There are 178 k parameters for this autoencoder
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The tensor output of the encoder is also the input to a decoder that generates the 
output of the autoencoder. In this example, we'll be using the MSE loss function 
and Adam optimizer. During training, the input is the same as the output, x_train. 
We should note that in our example, there are only a few layers that are sufficient to 
drive the validation loss to 0.01 in one epoch. For more complex datasets, we may 
need a deeper encoder and decoder, as well as more epochs of training.

After training the autoencoder for one epoch with a validation loss of 0.01, we're 
able to verify if it can encode and decode the MNIST data that it has not seen 
before. Figure 3.2.4 shows us eight samples from the test data and the corresponding 
decoded images:

Figure 3.2.4: Prediction of the autoencoder from the test data. The first two rows are the  
original input test data. The last two rows are the predicted data

Except for minor blurring in the images, we're able to easily recognize that the 
autoencoder is able to recover the input with good quality. The results will improve 
as we train for a larger number of epochs.

At this point, we may be wondering: how can we visualize the latent vector in 
space? A simple method for visualization is to force the autoencoder to learn the 
MNIST digits features using a 2-dim latent vector. From there, we're able to project 
this latent vector on a two dimensional space in order to see how the MNIST latent 
vectors are distributed. Figure 3.2.5 and Figure 3.2.6 show the distribution of MNIST 
digits as a function of latent code dimensions.
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Figure 3.2.5: A MNIST digit distribution as a function of latent code dimensions, z[0] and z[1]. 
The original photo can be found in this book's GitHub repository at, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md

In Figure 3.2.5, we can see that the latent vectors for a specific digit are clustering 
on a region in space. For example, digit 0 is in the lower left quadrant, while digit 1 
is in the upper right quadrant. Such clustering is mirrored in the figure. In fact, the 
same figure shows the result of navigating or generating new digits from the latent 
space, as shown in Figure 3.2.5.

For example, starting from the center and varying the value of a 2-dim latent 
vector toward the upper right quadrant, this shows us that the digit changes from 
9 to 1. This is expected since, from Figure 3.2.5, we're able to see that the latent code 
values for the digit 9 clusters are near the center, and digit 1 code values cluster in 
the upper right quadrant. 
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For Figure 3.2.5 and Figure 3.2.6, we've only explored the regions between -4.0 and 
+4.0 for each latent vector dimension:

Figure 3.2.6: Digits generated as the 2-dim latent vector space is navigated

As can be seen in Figure 3.2.5, the latent code distribution is not continuous. Ideally, 
it should look like a circle where there are valid values everywhere. Because of this 
discontinuity, there are regions where, if we decode the latent vector, hardly any 
recognizable digits will be produced.

Figure 3.2.5 and Figure 3.2.6 were generated after 20 epochs of training. The 
autoencoder-mnist-3.2.1.py code was modified by setting latent_dim = 2. 
The plot_ results() function plots the MNIST digit as a function of the 2-dim 
latent vector. For convenience, the program is saved as autoencoder-2dim-
mnist-3.2.2.py with the partial code shown in Listing 3.2.2. The rest of the code is 
practically similar to Listing 3.2.1 and no longer shown here.

Listing 3.2.2: autoencoder-2dim-mnist-3.2.2.py

def plot_results(models,
                 data,
                 batch_size=32,
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                 model_name="autoencoder_2dim"):
    """Plots 2-dim latent values as scatter plot of digits
        then, plot MNIST digits as function of 2-dim latent vector

    Arguments:
        models (list): encoder and decoder models
        data (list): test data and label
        batch_size (int): prediction batch size
        model_name (string): which model is using this function
    """

    encoder, decoder = models
    x_test, y_test = data
    xmin = ymin = -4
    xmax = ymax = +4
    os.makedirs(model_name, exist_ok=True)

    filename = os.path.join(model_name, "latent_2dim.png")
    # display a 2D plot of the digit classes in the latent space
    z = encoder.predict(x_test,
                        batch_size=batch_size)
    plt.figure(figsize=(12, 10))

    # axes x and y ranges
    axes = plt.gca()
    axes.set_xlim([xmin,xmax])
    axes.set_ylim([ymin,ymax])

    # subsample to reduce density of points on the plot
    z = z[0::2]
    y_test = y_test[0::2]
    plt.scatter(z[:, 0], z[:, 1], marker="")
    for i, digit in enumerate(y_test):
        axes.annotate(digit, (z[i, 0], z[i, 1]))
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.savefig(filename)
    plt.show()

    filename = os.path.join(model_name, "digits_over_latent.png")
    # display a 30x30 2D manifold of the digits
    n = 30
    digit_size = 28
    figure = np.zeros((digit_size * n, digit_size * n))
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    # linearly spaced coordinates corresponding to the 2D plot
    # of digit classes in the latent space
    grid_x = np.linspace(xmin, xmax, n)
    grid_y = np.linspace(ymin, ymax, n)[::-1]

    for i, yi in enumerate(grid_y):
        for j, xi in enumerate(grid_x):
            z = np.array([[xi, yi]])
            x_decoded = decoder.predict(z)
            digit = x_decoded[0].reshape(digit_size, digit_size)
            figure[i * digit_size: (i + 1) * digit_size,
                   j * digit_size: (j + 1) * digit_size] = digit

    plt.figure(figsize=(10, 10))
    start_range = digit_size // 2
    end_range = n * digit_size + start_range + 1
    pixel_range = np.arange(start_range, end_range, digit_size)
    sample_range_x = np.round(grid_x, 1)
    sample_range_y = np.round(grid_y, 1)
    plt.xticks(pixel_range, sample_range_x)
    plt.yticks(pixel_range, sample_range_y)
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.imshow(figure, cmap='Greys_r')
    plt.savefig(filename)
    plt.show()

This completes the implementation and examination of autoencoders. The upcoming 
chapters focus on their practical applications. We will start with denoising 
autoencoders.

3. Denoising autoencoders (DAEs)
We're now going to build an autoencoder with a practical application. Firstly, 
let's paint a picture and imagine that the MNIST digit images were corrupted by 
noise, thus making it harder for humans to read. We're able to build a denoising 
autoencoder (DAE) to remove the noise from these images. Figure 3.3.1 shows us 
three sets of MNIST digits. The top rows of each set (for example, MNIST digits 7, 2, 
1, 9, 0, 6, 3, 4, and 9) are the original images. The middle rows show the inputs to the 
DAE, which are the original images corrupted by noise. As humans, we can find that 
it is difficult to read the corrupted MNIST digits. The last rows show the outputs of 
the DAE.
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Figure 3.3.1: Original MNIST digits (top rows), corrupted original images (middle rows),  
and denoised images (last rows)

As shown in Figure 3.3.2, the denoising autoencoder has practically the same 
structure as the autoencoder for MNIST that we presented in the previous section.

Figure 3.3.2: The input to the denoising autoencoder is the corrupted image.  
The output is the clean or denoised image. The latent vector is assumed to be 16-dim

The input in Figure 3.3.2 is defined as:

x = xorig + noise    (Equation 3.3.1)

In this formula, xorig represents the original MNIST image corrupted by noise. The 
objective of the encoder is to discover how to produce the latent vector, z, which will 
enable the decoder to recover such as MSE, as shown through: xorig by minimizing the 
dissimilarity loss function:

ℒ(𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, �̃�𝒙) = 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚∑(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑥𝑥~𝑜𝑜)

2
𝑜𝑜=𝑚𝑚

𝑜𝑜=1
     (Equation 3.3.2)

In this example, m is the output dimension (for example, in MNIST, m = width × 
height × channels = 28 × 28 × 1 = 784). 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖  and 𝑥𝑥~𝑖𝑖  are the elements of xorig and 𝒙𝒙~ , 
respectively.
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To implement theDAE, we're going to need to make a few changes to the 
autoencoder presented in the previous section. Firstly, the training input data should 
be corrupted MNIST digits. The training output data is the same original clean 
MNIST digits. This is like telling the autoencoder what the corrected images should 
be or asking it to figure out how to remove noise given a corrupted image. Lastly, we 
must validate the autoencoder on the corrupted MNIST test data.

The MNIST digit 7 shown on the left of Figure 3.3.2 is an actual corrupted image 
input. The one on the right is the clean image output of a trained denoising 
autoencoder.

Listing 3.3.1: denoising-autoencoder-mnist-3.3.1.py

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

np.random.seed(1337)

# load MNIST dataset
(x_train, _), (x_test, _) = mnist.load_data()

# reshape to (28, 28, 1) and normalize input images
image_size = x_train.shape[1]
x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# generate corrupted MNIST images by adding noise with normal dist
# centered at 0.5 and std=0.5
noise = np.random.normal(loc=0.5, scale=0.5, size=x_train.shape)
x_train_noisy = x_train + noise
noise = np.random.normal(loc=0.5, scale=0.5, size=x_test.shape)
x_test_noisy = x_test + noise

# adding noise may exceed normalized pixel values>1.0 or <0.0
# clip pixel values >1.0 to 1.0 and <0.0 to 0.0
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
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# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 32
kernel_size = 3
latent_dim = 16
# encoder/decoder number of CNN layers and filters per layer
layer_filters = [32, 64]

# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs

# stack of Conv2D(32)-Conv2D(64)
for filters in layer_filters:
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               strides=2,
               activation='relu',
               padding='same')(x)

# shape info needed to build decoder model so we don't do hand 
computation
# the input to the decoder's first Conv2DTranspose will have this 
shape
# shape is (7, 7, 64) which can be processed by the decoder back to 
(28, 28, 1)
shape = K.int_shape(x)

# generate the latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()

# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
# use the shape (7, 7, 64) that was earlier saved
x = Dense(shape[1] * shape[2] * shape[3])(latent_inputs)
# from vector to suitable shape for transposed conv
x = Reshape((shape[1], shape[2], shape[3]))(x)

# stack of Conv2DTranspose(64)-Conv2DTranspose(32)
for filters in layer_filters[::-1]:
    x = Conv2DTranspose(filters=filters,
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                        kernel_size=kernel_size,
                        strides=2,
                        activation='relu',
                        padding='same')(x)

# reconstruct the denoised input
outputs = Conv2DTranspose(filters=1,
                          kernel_size=kernel_size,
                          padding='same',
                          activation='sigmoid',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)), 
name='autoencoder')
autoencoder.summary()

# Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

# train the autoencoder
autoencoder.fit(x_train_noisy,
                x_train,
                validation_data=(x_test_noisy, x_test),
                epochs=10,
                batch_size=batch_size)

# predict the autoencoder output from corrupted test images
x_decoded = autoencoder.predict(x_test_noisy)

# 3 sets of images with 9 MNIST digits
# 1st rows - original images
# 2nd rows - images corrupted by noise
# 3rd rows - denoised images
rows, cols = 3, 9
num = rows * cols
imgs = np.concatenate([x_test[:num], x_test_noisy[:num], x_
decoded[:num]])
imgs = imgs.reshape((rows * 3, cols, image_size, image_size))
imgs = np.vstack(np.split(imgs, rows, axis=1))
imgs = imgs.reshape((rows * 3, -1, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
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imgs = (imgs * 255).astype(np.uint8)
plt.figure()
plt.axis('off')
plt.title('Original images: top rows, '
          'Corrupted Input: middle rows, '
          'Denoised Input:  third rows')
plt.imshow(imgs, interpolation='none', cmap='gray')
Image.fromarray(imgs).save('corrupted_and_denoised.png')
plt.show()

Listing 3.3.1 shows the denoising autoencoder, which has been contributed to 
the official Keras GitHub repository. Using the same MNIST dataset, we're able 
to simulate corrupted images by adding random noise. The noise added is a 
Gaussian distribution with a mean of 𝜇𝜇 = 0.5  and a standard deviation of 𝜎𝜎 = 0.5 .  
Since adding random noise may push the pixel data into invalid values of less 
than 0 or greater than 1, the pixel values are clipped to the [0.1, 1.0] range.

Everything else will remain practically the same as the autoencoder from the 
previous section. We'll use the same MSE loss function and Adam optimizer. 
However, the number of epochs for training has increased to 10. This is to allow 
sufficient parameter optimization.

Figure 3.3.3 shows a certain level of robustness of the DAE as the level of noise is 
increased from 𝜎𝜎 = 0.5  to 𝜎𝜎 = 0.75  and 𝜎𝜎 = 1.0 . At 𝜎𝜎 = 0.75 , the DAE is still able 
to recover the original images. However, at 𝜎𝜎 = 1.0 , a few digits, such as 4 and 5 in 
the second and third sets, can no longer be recovered correctly.

Figure 3.3.3: Performance of the denoising autoencoder as the noise level is increased
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We have completed the discussion and implementation of denoising autoencoders. 
Although the concept was demonstrated on MNIST digits, the idea is applicable to 
other signals as well. In the next section, we will cover another practical application 
of autoencoders called the colorization autoencoder.

4. Automatic colorization autoencoder
We're now going to work on another practical application of autoencoders. In this 
case, we're going to imagine that we have a grayscale photo and that we want to 
build a tool that will automatically add color to it. We would like to replicate the 
human abilities in identifying that the sea and sky are blue, the grass field and 
trees are green, while the clouds are white, and so on.

As shown in Figure 3.4.1, if we are given a grayscale photo (left) of a rice field in 
the foreground, a volcano in the background, and sky on the top, we're able to add 
the appropriate colors (right).

Figure 3.4.1: Adding color to a grayscale photo of the Mayon Volcano. A colorization network should replicate 
human abilities by adding color to a grayscale photo. The left photo is grayscale. The right photo is color. The 
original color photo can be found in this book's GitHub repository at, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md

A simple automatic colorization algorithm seems like a suitable problem for 
autoencoders. If we can train the autoencoder with a sufficient number of grayscale 
photos as input and the corresponding colored photos as output, it could possibly 
discover the hidden structure on properly applying colors. Roughly, it is the reverse 
process of denoising. The question is, can an autoencoder add color (good noise) 
to the original grayscale image?
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Listing 3.4.1 shows the colorization autoencoder network. The colorization 
autoencoder network is a modified version of the denoising autoencoder that 
we used for the MNIST dataset. Firstly, we need a dataset of grayscale to colored 
photos. The CIFAR10 database, which we have used before, has 50,000 training 
and 10,000 testing 32 × 32 RGB photos that can be converted to grayscale. As shown 
in the following listing, we're able to use the rgb2gray() function to apply weights 
on R, G, and B components to convert from color to grayscale:

Listing 3.4.1: colorization-autoencoder-cifar10-3.4.1.py

from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import plot_model
from tensorflow.keras import backend as K

import numpy as np
import matplotlib.pyplot as plt
import os

def rgb2gray(rgb):
    """Convert from color image (RGB) to grayscale.
       Source: opencv.org
       grayscale = 0.299*red + 0.587*green + 0.114*blue
    Argument:
        rgb (tensor): rgb image
    Return:
        (tensor): grayscale image
    """
    return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

# load the CIFAR10 data
(x_train, _), (x_test, _) = cifar10.load_data()

# input image dimensions
# we assume data format "channels_last"
img_rows = x_train.shape[1]
img_cols = x_train.shape[2]
channels = x_train.shape[3]
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# create saved_images folder
imgs_dir = 'saved_images'
save_dir = os.path.join(os.getcwd(), imgs_dir)
if not os.path.isdir(save_dir):
        os.makedirs(save_dir)

# display the 1st 100 input images (color and gray)
imgs = x_test[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test color images (Ground  Truth)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/test_color.png' % imgs_dir)
plt.show()

# convert color train and test images to gray
x_train_gray = rgb2gray(x_train)
x_test_gray = rgb2gray(x_test)

# display grayscale version of test images
imgs = x_test_gray[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Test gray images (Input)')
plt.imshow(imgs, interpolation='none', cmap='gray')
plt.savefig('%s/test_gray.png' % imgs_dir)
plt.show()

# normalize output train and test color images
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# normalize input train and test grayscale images
x_train_gray = x_train_gray.astype('float32') / 255
x_test_gray = x_test_gray.astype('float32') / 255

# reshape images to row x col x channel for CNN output/validation
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 
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channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)

# reshape images to row x col x channel for CNN input
x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], img_rows, 
img_cols, 1)
x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], img_rows, img_
cols, 1)

# network parameters
input_shape = (img_rows, img_cols, 1)
batch_size = 32
kernel_size = 3
latent_dim = 256
# encoder/decoder number of CNN layers and filters per layer
layer_filters = [64, 128, 256]

# build the autoencoder model
# first build the encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
# stack of Conv2D(64)-Conv2D(128)-Conv2D(256)
for filters in layer_filters:
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               strides=2,
               activation='relu',
               padding='same')(x)

# shape info needed to build decoder model so we don't do hand 
computation
# the input to the decoder's first Conv2DTranspose will have this 
shape
# shape is (4, 4, 256) which is processed by the decoder back to (32, 
32, 3)
shape = K.int_shape(x)

# generate a latent vector
x = Flatten()(x)
latent = Dense(latent_dim, name='latent_vector')(x)

# instantiate encoder model
encoder = Model(inputs, latent, name='encoder')
encoder.summary()
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# build the decoder model
latent_inputs = Input(shape=(latent_dim,), name='decoder_input')
x = Dense(shape[1]*shape[2]*shape[3])(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

# stack of Conv2DTranspose(256)-Conv2DTranspose(128)-
Conv2DTranspose(64)
for filters in layer_filters[::-1]:
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        strides=2,
                        activation='relu',
                        padding='same')(x)

outputs = Conv2DTranspose(filters=channels,
                          kernel_size=kernel_size,
                          activation='sigmoid',
                          padding='same',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()

# autoencoder = encoder + decoder
# instantiate autoencoder model
autoencoder = Model(inputs, decoder(encoder(inputs)), 
name='autoencoder')
autoencoder.summary()

# prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'colorized_ae_model.{epoch:03d}.h5'
if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)

# reduce learning rate by sqrt(0.1) if the loss does not improve in 5 
epochs
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
                               cooldown=0,
                               patience=5,
                               verbose=1,
                               min_lr=0.5e-6)
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# save weights for future use (e.g. reload parameters w/o training)
checkpoint = ModelCheckpoint(filepath=filepath,
                             monitor='val_loss',
                             verbose=1,
                             save_best_only=True)

# Mean Square Error (MSE) loss function, Adam optimizer
autoencoder.compile(loss='mse', optimizer='adam')

# called every epoch
callbacks = [lr_reducer, checkpoint]

# train the autoencoder
autoencoder.fit(x_train_gray,
                x_train,
                validation_data=(x_test_gray, x_test),
                epochs=30,
                batch_size=batch_size,
                callbacks=callbacks)

# predict the autoencoder output from test data
x_decoded = autoencoder.predict(x_test_gray)

# display the 1st 100 colorized images
imgs = x_decoded[:100]
imgs = imgs.reshape((10, 10, img_rows, img_cols, channels))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
plt.axis('off')
plt.title('Colorized test images (Predicted)')
plt.imshow(imgs, interpolation='none')
plt.savefig('%s/colorized.png' % imgs_dir)
plt.show()

We've increased the capacity of the autoencoder by adding one more block of 
convolution and transposed convolution. We've also doubled the number of filters 
at each CNN block. The latent vector is now 256-dim in order to increase the number 
of salient properties it can represent, as discussed in the autoencoder section. Finally, 
the output filter size has increased to three, or is equal to the number of channels in 
RGB of the expected colored output.
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The colorization autoencoder is now trained with the grayscale as inputs and 
original RGB images as outputs. The training will take more epochs and uses the 
learning rate reducer to scale down the learning rate when the validation loss is 
not improving. This can be easily done by telling the callbacks argument in the 
tf.keras fit() function to call the lr_reducer() function.

Figure 3.4.2 demonstrates the colorization of grayscale images from the test dataset of 
CIFAR10.

Figure 3.4.2: Automatic grayscale to color image conversion using the autoencoder. CIFAR10 test grayscale 
input images (left) and predicted color images (right). The original color photo can be found in this Book's 
GitHub repository at, https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/

master/chapter3-autoencoders/README.md

Figure 3.4.3 compares the ground truth with the colorization autoencoder prediction:
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Figure 3.4.3: A side-by-side comparison of ground truth color images and predicted colorized images. The 
original color photos can be found in this book's GitHub repository at, https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/blob/master/chapter3-autoencoders/README.md

The autoencoder performs an acceptable colorization job. The sea or sky is predicted 
to be blue, animals have varying shades of brown, the cloud is white, and so on.

There are some noticeable incorrect predictions, such as red vehicles have become 
blue or blue vehicles have become red, and the occasional green field has been 
mistaken as blue skies, and dark or golden skies are converted into blue skies.

This is the last section on autoencoders. In the following chapters, we will revisit 
the concept of encoding and decoding in one form or another. The concept of 
representation learning is very fundamental in deep learning.



Autoencoders

[ 104 ]

5. Conclusion
In this chapter, we've been introduced to autoencoders, which are neural networks 
that compress input data into low-dimensional representations in order to efficiently 
perform structural transformations, such as denoising and colorization. We've laid 
the foundations to the more advanced topics of GANs and VAEs, which we will 
introduce in later chapters. We've demonstrated how to implement an autoencoder 
from two building block models, both encoders and decoders. We've also learned 
how the extraction of a hidden structure of input distribution is one of the common 
tasks in AI.

Once the latent code has been learned, there are many structural operations that 
can be performed on the original input distribution. In order to gain a better 
understanding of the input distribution, the hidden structure in the form of the 
latent vector can be visualized using low-level embedding, similar to what we did 
in this chapter, or through more sophisticated dimensionality reduction techniques 
such as t-SNE or PCA.

Apart from denoising and colorization, autoencoders are used in converting input 
distribution into low-dimensional latent vectors that can be further processed for 
other tasks such as segmentation, detection, tracking, reconstruction, and visual 
understanding. In Chapter 8, Variational Autoencoders (VAEs), we will discuss VAEs, 
which are structurally the same as autoencoders but differ by having interpretable 
latent code that can produce a continuous latent vector projection.

In the next chapter, we will embark on one of the most important recent 
breakthroughs in AI, the introduction of GANs. In the next chapter, we will learn 
about the core strength of GANs, which is their ability to synthesize data that looks 
real.
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4
Generative Adversarial 

Networks (GANs)
In this chapter, we'll be investigating generative adversarial networks (GANs) [1]. 
GANs belong to the family of generative models. However, unlike autoencoders, 
generative models are able to create new and meaningful outputs given arbitrary 
encodings.

In this chapter, the working principles of GANs will be discussed. We'll also review 
the implementations of several early GANs using tf.keras, while, later on in 
the chapter, we'll demonstrate the techniques needed to achieve stable training. 
The scope of this chapter covers two popular examples of GAN implementations, 
Deep Convolutional GAN (DCGAN) [2] and Conditional GAN (CGAN) [3].

In summary, the goals of this chapter are:

• To introduce the principles of GAN
• To present one of the early working implementations of GAN, called 

DCGAN
• An improved DCGAN called CGAN, which uses a condition
• To implement DCGAN and CGAN in tf.keras

Let's begin with an overview of GANs.
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1. An Overview of GANs
Before we move into the more advanced concepts of GANs, let's start by going 
over GANs and introducing the underlying concepts behind them. GANs are very 
powerful; this simple statement is proven by the fact that they can generate new 
human faces that are not of real people by performing latent space interpolations.

The advanced features of GANs can be seen in these YouTube videos:

• Progressive GAN [4]: https://youtu.be/G06dEcZ-QTg
• StyleGAN v1 [5]: https://youtu.be/kSLJriaOumA
• StyleGAN v2 [6]: https://youtu.be/c-NJtV9Jvp0

The videos that show how GANs can be utilized to produce realistic faces 
demonstrate how powerful they can be. This topic is much more advanced than 
anything we've looked at before in this book. For example, the above videos 
demonstrate things that can't be accomplished easily by autoencoders, which we 
covered in Chapter 3, Autoencoders.

GANs are able to learn how to model the input distribution by training two 
competing (and cooperating) networks referred to as generator and discriminator 
(sometimes known as critic). The role of the generator is to keep on figuring out 
how to generate fake data or signals (this includes audio and images) that can fool 
the discriminator. Meanwhile, the discriminator is trained to distinguish between 
fake and real signals. As the training progresses, the discriminator will no longer be 
able to see the difference between the synthetically generated data and the real data. 
From there, the discriminator can be discarded, and the generator can then be used 
to create new realistic data that have never been observed before.

The underlying concept of GANs is straightforward. However, one thing we'll 
find is that the most challenging question is how do we achieve stable training 
of the generator-discriminator network? There must be a healthy competition 
between the generator and discriminator in order for both networks to be able to 
learn simultaneously. Since the loss function is computed from the output of the 
discriminator, its parameters update quickly. When the discriminator converges 
faster, the generator no longer receives sufficient gradient updates for its parameters 
and fails to converge. Other than being hard to train, GANs can also suffer from 
either a partial or total modal collapse, a situation wherein the generator is 
producing almost similar outputs for different latent encodings.

https://youtu.be/G06dEcZ-QTg
https://youtu.be/kSLJriaOumA
https://youtu.be/c-NJtV9Jvp0
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Principles of GANs
As shown in Figure 4.1.1, a GAN is analogous to a counterfeiter (generator)–police 
(discriminator) scenario. At the academy, the police are taught how to determine 
whether a dollar bill is either genuine or fake. Samples of real dollar bills from the 
bank and fake money from the counterfeiter are used to train the police. However, 
from time to time, the counterfeiter will attempt to pretend that he printed real dollar 
bills. Initially, the police will not be fooled and will tell the counterfeiter why the 
money is fake. Taking into consideration this feedback, the counterfeiter hones his 
skills again and attempts to produce new fake dollar bills. As expected, the police 
will be able to both spot the money as fake and justify why the dollar bills are fake:

Figure 4.1.1: The generator and discriminator of GANs are analogous to the counterfeiter and the police.  
The goal of the counterfeiter is to fool the police into believing that the dollar bill is real
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This process continues indefinitely, but it will come to a point where the 
counterfeiter has mastered the creation of fake money to the extent that the fakes 
are indistinguishable from real money – even to the most highly practiced of police. 
The counterfeiter can then infinitely print dollar bills without getting caught by the 
police as they are no longer identifiable as counterfeit.

As shown in Figure 4.1.2, a GAN is made up of two networks, a generator and 
a discriminator:

Figure 4.1.2: A GAN is made up of two networks, a generator and a discriminator.  
The discriminator is trained to distinguish between real and fake signals or data.  

The generator's job is to generate fake signals or data that can eventually fool the discriminator

The input to the generator is noise, and the output is synthesized data. Meanwhile, 
the discriminator's input will either be real or synthesized data. Genuine data comes 
from the true sampled data, while the fake data comes from the generator. All of 
the valid data is labeled 1.0 (that is, a 100 % probability of being real), while all the 
synthesized data is labeled 0.0 (that is, a 0 % probability of being real). Since the 
labeling process is automated, GANs are still considered part of the unsupervised 
learning approach in deep learning.

The objective of the discriminator is to learn from this supplied dataset on how 
to distinguish real data from fake data. During this part of GAN training, only 
the discriminator parameters will be updated. Like a typical binary classifier, the 
discriminator is trained to predict on a range of 0.0 to 1.0 in confidence values on 
how close the given input data is to the real data. However, this is only half of 
the story.

At regular intervals, the generator will pretend that its output is genuine data and 
will ask the GAN to label it as 1.0. When the fake data is then presented to the 
discriminator, naturally it will be classified as fake with a label close to 0.0. 
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The optimizer computes the generator parameter updates based on the presented 
label (that is, 1.0). It also takes its own prediction into account when training on 
this new data. In other words, the discriminator has some doubts regarding its 
prediction, and so, the GAN takes that into consideration. This time, the GAN will 
let the gradients backpropagate from the last layer of the discriminator down to the 
first layer of the generator. However, in most practices, during this phase of training, 
the discriminator parameters are temporarily frozen. The generator will use the 
gradients to update its parameters and improve its ability to synthesize fake data.

Overall, the whole process is akin to two networks competing with one another 
while still cooperating at the same time. When the GAN training converges, the end 
result is a generator that can synthesize data that appears genuine. The discriminator 
thinks this synthesized data is real or with a label near 1.0, which means the 
discriminator can then be discarded. The generator part will be useful in producing 
meaningful outputs from arbitrary noise inputs.

The process is outlined in Figure 4.1.3 below:

Figure 4.1.3: Training the discriminator is similar to training a binary classifier network using binary  
cross-entropy loss. The fake data is supplied by the generator, while the real data is from true samples

As shown in the preceding figure, the discriminator can be trained by minimizing 
the loss function in the following equation:

ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛)))     (Equation 4.1.1)

The equation is just the standard binary cross-entropy cost function. The loss is the 
negative sum of the expectation of correctly identifying real data, 𝒟𝒟(𝒙𝒙) , and the 
expectation of 1.0 minus correctly identifying synthetic data, 1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛)) . The log 
does not change the location of the local minima. 
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Two mini-batches of data are supplied to the discriminator during training:

1. x, real data from the sampled data (in other words, 𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) with a label 1.0
2. 𝒙𝒙′ = 𝒢𝒢(𝒛𝒛) , fake data from the generator with a label 0.0

In order to minimize the loss function, the discriminator parameters, 𝜽𝜽(𝐷𝐷) , will be 
updated through backpropagation by correctly identifying the genuine data, 𝒟𝒟(𝒙𝒙) ,  
and synthetic data, 1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛)) . Correctly identifying real data is equivalent to 
𝒟𝒟(𝒙𝒙) → 1.0 , while correctly classifying fake data is the same as 𝒟𝒟(𝒢𝒢(𝒛𝒛)) → 0.0  
or (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛))) → 1.0 . In this equation, z is the arbitrary encoding or noise 
vector that is used by the generator to synthesize new signals. Both contribute 
to minimizing the loss function.

To train the generator, GAN considers the total of the discriminator and generator 
losses as a zero-sum game. The generator loss function is simply the negative of the 
discriminator loss function:

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷))     (Equation 4.1.2)

This can then be rewritten more aptly as a value function:

𝒱𝒱(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷))     (Equation 4.1.3)

From the perspective of the generator, Equation 4.1.3 should be minimized. From 
the point of view of the discriminator, the value function should be maximized. 
Therefore, the generator training criterion can be written as a minimax problem:

𝜽𝜽(𝐺𝐺)∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝜽𝜽(𝐺𝐺)

max
𝜽𝜽(𝐷𝐷)

𝒱𝒱(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷))     (Equation 4.1.4)

Occasionally, we'll try to fool the discriminator by pretending that the synthetic 
data is real with a label 1.0. By maximizing with respect to 𝜽𝜽(𝐷𝐷) , the optimizer sends 
gradient updates to the discriminator parameters to consider this synthetic data as 
real. At the same time, by minimizing with respect to 𝜽𝜽(𝐺𝐺) , the optimizer will train 
the generator's parameters on how to trick the discriminator. However, in practice, 
the discriminator is confident in its prediction in classifying the synthetic data as 
fake and will not update the GAN parameters. Furthermore, the gradient updates 
are small and have diminished significantly as they propagate to the generator 
layers. As a result, the generator fails to converge.



Chapter 4

[ 111 ]

Figure 4.1.4: Training the generator is like training a network using a binary cross-entropy loss function.  
The fake data from the generator is presented as genuine

The solution is to reformulate the loss function of the generator in the 
following form:

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛))     (Equation 4.1.5)

The loss function simply maximizes the chance of the discriminator believing that 
the synthetic data is real by training the generator. The new formulation is no longer 
zero-sum and is purely heuristics-driven. Figure 4.1.4 shows the generator during 
training. In this figure, the generator parameters are only updated when the whole 
adversarial network is trained. This is because the gradients are passed down from 
the discriminator to the generator. However, in practice, the discriminator weights 
are only temporarily frozen during adversarial training.

In deep learning, both the generator and discriminator can be implemented using 
a suitable neural network architecture. If the data or signal is an image, both the 
generator and discriminator networks will use a CNN. For single-dimensional 
sequences such as audio, both networks are usually recurrent (RNN, LSTM, or GRU).

In this section, we learned that the principles behind GANs are straightforward. 
We also learned how GANs can be implemented by familiar network layers. 
What differentiates GANs from other networks is they are notoriously difficult to 
train. Something as simple as a minor change in the layers can drive the network 
to training instability. In the following section, we'll examine one of the early 
successful implementations of GANs using deep CNNs. It is called DCGAN [3].
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2. Implementing DCGAN in Keras
Figure 4.2.1 shows DCGAN that is used to generate fake MNIST images:

Figure 4.2.1: A DCGAN model

DCGAN implements the following design principles:

• Use strides > 1, and a convolution instead of MaxPooling2D or UpSampling2D. 
With strides > 1, the CNN learns how to resize the feature maps.

• Avoid using Dense layers. Use CNN in all layers. The Dense layer is utilized 
only as the first layer of the generator to accept the z-vector. The output of 
the Dense layer is resized and becomes the input of the succeeding CNN 
layers.

• Use Batch Normalization (BN) to stabilize learning by normalizing the input 
to each layer to have zero mean and unit variance. There is no BN in the 
generator output layer and discriminator input layer. In the implementation 
example to be presented here, no batch normalization is used in the 
discriminator.
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• Rectified Linear Unit (ReLU) is used in all layers of the generator except in 
the output layer, where the tanh activation is utilized. In the implementation 
example to be presented here, sigmoid is used instead of tanh in the output 
of the generator since it generally results in more stable training for MNIST 
digits.

• Use Leaky ReLU in all layers of the discriminator. Unlike ReLU, instead 
of zeroing out all outputs when the input is less than zero, Leaky ReLU 
generates a small gradient equal to alpha x input. In the following example, 
alpha = 0.2.

The generator learns to generate fake images from 100-dim input vectors ([-1.0, 1.0] 
range 100-dim random noise with uniform distribution). The discriminator classifies 
real from fake images, but inadvertently coaches the generator in terms of how to 
generate real images when the adversarial network is trained. The kernel size used 
in our DCGAN implementation is 5. This is to allow it to increase the receptive field 
size and expressive power of the convolution.

The generator accepts the 100-dim z-vector generated by a uniform distribution with 
a range of -1.0 to 1.0. The first layer of the generator is a 7 x 7 x 128 = 6,272-unit Dense 
layer. The number of units is computed based on the intended ultimate dimensions 
of the output image (28 x 28 x 1, 28 being a multiple of 7) and the number of filters 
of the first Conv2DTranspose, which is equal to 128.

We can imagine transposed CNNs (Conv2DTranspose) as the reversed process 
of CNN. In a simple example, if a CNN converts an image to feature maps, a 
transposed CNN will produce an image given feature maps. Hence, transposed 
CNNs were used in the decoder in the previous chapter and on generators in this 
chapter.

After undergoing two Conv2DTranspose with strides = 2, the feature maps will 
have a size of 28 x 28 x number of filters. Each Conv2DTranspose is preceded by batch 
normalization and ReLU. The final layer has sigmoid activation, which generates the 
28 x 28 x 1 fake MNIST images. Each pixel is normalized to [0.0, 1.0] corresponding 
to [0, 255] grayscale levels. Listing 4.2.1 below shows the implementation of the 
generator network in tf.keras. A function is defined to build the generator model. 
Due to the length of the entire code, we will limit the listing to the particular lines 
being discussed.

The complete code is available on GitHub: https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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Listing 4.2.1: dcgan-mnist-4.2.1.py

def build_generator(inputs, image_size):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    Arguments:
        inputs (Layer): Input layer of the generator 
            the z-vector)
        image_size (tensor): Target size of one side
            (assuming square image)

    Returns:
        generator (Model): Generator Model
    """

    image_resize = image_size // 4
    # network parameters 
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    x = Dense(image_resize * image_resize * layer_filters[0])(inputs)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    x = Activation('sigmoid')(x)
    generator = Model(inputs, x, name='generator')
    return generator
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The discriminator is similar to many CNN-based classifiers. The input is a 28 x 28 
x 1 MNIST image that is classified as either real (1.0) or fake (0.0). There are four 
CNN layers. Except for the last convolution, each Conv2D uses strides = 2 to 
downsample the feature maps by two. Each Conv2D is then preceded by a Leaky 
ReLU layer. The final filter size is 256, while the initial filter size is 32 and doubles 
every convolution layer. The final filter size of 128 also works. However, we'll find 
that the generated images look better with 256. The final output layer is flattened, 
and a single unit Dense layer generates the prediction between 0.0 and 1.0 after 
scaling by the sigmoid activation layer. The output is modeled as a Bernoulli 
distribution. Hence, the binary cross-entropy loss function is used.

After building the generator and discriminator models, the adversarial model is 
made by concatenating the generator and discriminator networks. Both discriminator 
and adversarial networks use the RMSprop optimizer. The learning rate for the 
discriminator is 2e-4, while for the adversarial network, it is 1e-4. RMSprop decay 
rates of 6e-8 for the discriminator, and 3e-8 for the adversarial network, are applied.

Setting the learning rate of the adversarial equal to half of the discriminator will 
result in more stable training. You'll recall from Figure 4.1.3 and Figure 4.1.4 that the 
GAN training has two parts: discriminator training and generator training, which is 
adversarial training with discriminator weights frozen.

Listing 4.2.2 shows the implementation of the discriminator in tf.keras. A function 
is defined to build the discriminator model.

Listing 4.2.2: dcgan-mnist-4.2.1.py

def build_discriminator(inputs):
    """Build a Discriminator Model

    Stack of LeakyReLU-Conv2D to discriminate real from fake.
    The network does not converge with BN so it is not used here
    unlike in [1] or original paper.

    Arguments:
        inputs (Layer): Input layer of the discriminator (the image)

    Returns:
        discriminator (Model): Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs
    for filters in layer_filters:
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        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    x = Dense(1)(x)
    x = Activation('sigmoid')(x)
    discriminator = Model(inputs, x, name='discriminator')
    return discriminator

In Listing 4.2.3, we'll illustrate how to build GAN models. Firstly, the discriminator 
model is built and, following on from that, the generator model is instantiated. The 
adversarial model is just the generator and the discriminator put together. Across 
many GANs, the batch size of 64 appears to be the most common. The network 
parameters are shown in Listing 4.2.3.

Listing 4.2.3: dcgan-mnist-4.2.1.py

Function to build DCGAN models and call the training routine:

def build_and_train_models():
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "dcgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
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    input_shape = (image_size, image_size, 1)

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    discriminator = build_discriminator(inputs)
    # [1] or original paper uses Adam, 
    # but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    discriminator.compile(loss='binary_crossentropy',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = build_generator(inputs, image_size)
    generator.summary()

    # build adversarial model
    optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5)
    # freeze the weights of discriminator during adversarial training
    discriminator.trainable = False
    # adversarial = generator + discriminator
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    adversarial.compile(loss='binary_crossentropy',
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    params = (batch_size, latent_size, train_steps, model_name)
    train(models, x_train, params)

As can be seen in Listing 4.2.1 and Listing 4.2.2, the DCGAN models are 
straightforward. What makes them difficult to build is the fact that small changes in 
the network design can easily break the training convergence. For example, if batch 
normalization is used in the discriminator, or if strides = 2 in the generator is 
transferred to the latter CNN layers, DCGAN will fail to converge.
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Listing 4.2.4 shows the function dedicated to training the discriminator and 
adversarial networks. Due to custom training, the usual fit() function is not going 
to be used. Instead, train_on_batch() is called up to run a single gradient update 
for the given batch of data. The generator is then trained via an adversarial network. 
The training first randomly picks a batch of real images from the dataset. This is 
labeled as real (1.0). Then, a batch of fake images will be generated by the generator. 
This is labeled as fake (0.0). The two batches are concatenated and are used to train 
the discriminator.

After this is complete, a new batch of fake images will be generated by the generator 
and labeled as real (1.0). This batch will be used to train the adversarial network. The 
two networks are trained alternately for about 40,000 steps. At regular intervals, the 
generated MNIST digits based on a certain noise vector are saved on the filesystem. 
At the last training step, the network has converged. The generator model is also 
saved on a file so we can easily reuse the trained model for future MNIST digit 
generation. However, only the generator model is saved since that is the useful part 
of this DCGAN in the generation of new MNIST digits. For example, we can generate 
new and random MNIST digits by executing:

python3 dcgan-mnist-4.2.1.py --generator=dcgan_mnist.h5

Listing 4.2.4: dcgan-mnist-4.2.1.py

Function to train the discriminator and adversarial networks:

def train(models, x_train, params):
    """Train the Discriminator and Adversarial Networks

    Alternately train Discriminator and Adversarial networks by batch.
    Discriminator is trained first with properly real and fake images.
    Adversarial is trained next with fake images pretending to be real
    Generate sample images per save_interval.

    Arguments:
        models (list): Generator, Discriminator, Adversarial models
        x_train (tensor): Train images
        params (list) : Networks parameters

    """
    # the GAN component models
    generator, discriminator, adversarial = models
    # network parameters
    batch_size, latent_size, train_steps, model_name = params
    # the generator image is saved every 500 steps
    save_interval = 500
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    # noise vector to see how the generator output evolves during 
training
    noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])
    # number of elements in train dataset
    train_size = x_train.shape[0]
    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # randomly pick real images from dataset
        rand_indexes = np.random.randint(0, train_size, size=batch_
size)
        real_images = x_train[rand_indexes]
        # generate fake images from noise using generator 
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # generate fake images
        fake_images = generator.predict(noise)
        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0.0
        # train discriminator network, log the loss and accuracy
        loss, acc = discriminator.train_on_batch(x, y)
        log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0
        # since the discriminator weights 
        # are frozen in adversarial network
        # only the generator is trained
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # label fake images as real or 1.0
        y = np.ones([batch_size, 1])
        # train the adversarial network 
        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
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        # the fake images go to the discriminator input of the 
adversarial
        # for classification
        # log the loss and accuracy
        loss, acc = adversarial.train_on_batch(noise, y)
        log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
        print(log)
        if (i + 1) % save_interval == 0:
            # plot generator images on a periodic basis
            plot_images(generator,
                        noise_input=noise_input,
                        show=False,
                        step=(i + 1),
                        model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for 
    # future MNIST digit generation
    generator.save(model_name + ".h5")

Figure 4.2.2 shows the evolution of fake images from the generator as a function 
of training steps. At 5,000 steps, the generator is already producing recognizable 
images. It's very much like having an agent that knows how to draw digits. It's 
worth noting that some digits change from one recognizable form (for example, 
8 in the second column of the last row) to another (for example, 0). When the 
training converges, the discriminator loss approaches 0.5, while the adversarial loss 
approaches 1.0 as follows:

39997: [discriminator loss: 0.423329, acc: 0.796875] [adversarial loss:

0.819355, acc: 0.484375]

39998: [discriminator loss: 0.471747, acc: 0.773438] [adversarial loss:

1.570030, acc: 0.203125]

39999: [discriminator loss: 0.532917, acc: 0.742188] [adversarial loss:

0.824350, acc: 0.453125]

We can see the outcome below:



Chapter 4

[ 121 ]

Figure 4.2.2: The fake images generated by the DCGAN generator at different training steps

In this section, the fake images generated by the DCGAN are random.

There is no control over which specific digits will be produced by the generator. 
There is no mechanism for how to request a particular digit from the generator. This 
problem can be addressed by a variation of GAN called CGAN [4], as we will discuss 
in the next section.

3. Conditional GAN
Using the same GAN as in the previous section, a condition is imposed on both the 
generator and discriminator inputs. The condition is in the form of a one-hot vector 
version of the digit. This is associated with the image to be produced (generator) or 
classified as real or fake (discriminator). The CGAN model is shown in Figure 4.3.1.
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CGAN is similar to DCGAN except for the additional one-hot vector input. For the 
generator, the one-hot label is concatenated with the latent vector before the Dense 
layer. For the discriminator, a new Dense layer is added. The new layer is used to 
process the one-hot vector and reshape it so that it is suitable for concatenation to 
the other input of the succeeding CNN layer.

Figure 4.3.1: The CGAN model is similar to DCGAN except for the one-hot vector,  
which is used to condition the generator and discriminator outputs
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The generator learns to generate fake images from a 100-dim input vector and 
a specified digit. The discriminator classifies real from fake images based on real 
and fake images and their corresponding labels.

The basis of a CGAN is still the same as the original GAN principle except that the 
discriminator and generator inputs are conditioned on one-hot labels, y.

By incorporating this condition in Equation 4.1.1 and Equation 4.1.5, the loss functions 
for the discriminator and generator are shown in Equation 4.3.1 and Equation 4.3.2, 
respectively:

ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚′)))     (Equation 4.3.1)

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒛𝒛 log𝒟𝒟 (𝒢𝒢(𝒛𝒛|𝒚𝒚′′))     (Equation 4.3.2)

Given Figure 4.3.2, it may be more appropriate to write the loss functions as:

ℒ(𝐷𝐷)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log(1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚′)|𝒚𝒚′))     (Equation 4.3.3)

ℒ(𝐺𝐺)(𝜽𝜽(𝐺𝐺), 𝜽𝜽(𝐷𝐷)) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚′)|𝒚𝒚′)     (Equation 4.3.4)

The new loss function of the discriminator aims to minimize the error of predicting 
real images coming from the dataset and fake images coming from the generator 
given their one-hot labels. Figure 4.3.2 shows how to train the discriminator.

Figure 4.3.2: Training the CGAN discriminator is similar to training the GAN discriminator.  
The only difference is that both the generated fake and the dataset's real images are conditioned  

with their corresponding one-hot labels
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The new loss function of the generator minimizes the correct prediction of the 
discriminator on fake images conditioned on the specified one-hot labels. The 
generator learns how to generate the specific MNIST digit given its one-hot vector, 
which can fool the discriminator. Figure 4.3.3 shows how to train the generator.

Figure 4.3.3: Training the CGAN generator through the adversarial network is similar to training the GAN 
generator. The only difference is that the generated fake images are conditioned with one-hot labels

Listing 4.3.1 highlights the minor changes needed in the discriminator model. The 
code processes the one-hot vector using a Dense layer and concatenates it with the 
input image. The Model instance is modified for the image and one-hot vector inputs.

Listing 4.3.1: cgan-mnist-4.3.1.py

Highlighted are the changes made in DCGAN:

def build_discriminator(inputs, labels, image_size):
    """Build a Discriminator Model

    Inputs are concatenated after Dense layer.
    Stack of LeakyReLU-Conv2D to discriminate real from fake.
    The network does not converge with BN so it is not used here
    unlike in DCGAN paper.

    Arguments:
        inputs (Layer): Input layer of the discriminator (the image)

        labels (Layer): Input layer for one-hot vector to 
condition

            the inputs

        image_size: Target size of one side (assuming square image)
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    Returns:
        discriminator (Model): Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs

    y = Dense(image_size * image_size)(labels)

    y = Reshape((image_size, image_size, 1))(y)

    x = concatenate([x, y])

    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    x = Dense(1)(x)
    x = Activation('sigmoid')(x)

    # input is conditioned by labels

    discriminator = Model([inputs, labels], x, 
name='discriminator')

    return discriminator

The following Listing 4.3.2 highlights the code changes to incorporate the 
conditioning one-hot labels in the generator builder function. The Model instance is 
modified for the z-vector and one-hot vector inputs.

Listing 4.3.2: cgan-mnist-4.3.1.py

Highlighted are the changes made in DCGAN:

def build_generator(inputs, labels, image_size):
    """Build a Generator Model
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    Inputs are concatenated before Dense layer.
    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in orig DCGAN.
    Sigmoid converges easily.

    Arguments:
        inputs (Layer): Input layer of the generator (the z-vector)

        labels (Layer): Input layer for one-hot vector to 
condition the inputs

        image_size: Target size of one side (assuming square image)

    Returns:
        generator (Model): Generator Model
    """
    image_resize = image_size // 4
    # network parameters
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    x = concatenate([inputs, labels], axis=1)

    x = Dense(image_resize * image_resize * layer_filters[0])(x)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    x = Activation('sigmoid')(x)

    # input is conditioned by labels

    generator = Model([inputs, labels], x, name='generator')

    return generator
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Listing 4.3.3 highlights the changes made in the train() function to accommodate 
the conditioning one-hot vector for the discriminator and the generator. The CGAN 
discriminator is firstly trained with one batch of real and fake data conditioned 
on their respective one-hot labels. Then, the generator parameters are updated 
by training the adversarial network given one-hot label conditioned fake data 
pretending to be real. Similar to DCGAN, the discriminator weights are frozen 
during adversarial training.

Listing 4.3.3: cgan-mnist-4.3.1.py

Highlighted are the changes made in DCGAN:

def train(models, data, params):
    """Train the Discriminator and Adversarial Networks

    Alternately train Discriminator and Adversarial networks by batch.
    Discriminator is trained first with properly labelled real and 
fake images.
    Adversarial is trained next with fake images pretending to be 
real.
    Discriminator inputs are conditioned by train labels for real 
images,
    and random labels for fake images.
    Adversarial inputs are conditioned by random labels.
    Generate sample images per save_interval.

    Arguments:
        models (list): Generator, Discriminator, Adversarial models
        data (list): x_train, y_train data
        params (list): Network parameters

    """
    # the GAN models
    generator, discriminator, adversarial = models
    # images and labels
    x_train, y_train = data
    # network parameters
    batch_size, latent_size, train_steps, num_labels, model_name = 
params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output evolves during 
training
    noise_input = np.random.uniform(-1.0, 1.0, size=[16, latent_size])

    # one-hot label the noise will be conditioned to
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    noise_class = np.eye(num_labels)[np.arange(0, 16) % num_
labels]

    # number of elements in train dataset
    train_size = x_train.shape[0]

    print(model_name,

          "Labels for generated images: ",

          np.argmax(noise_class, axis=1))

    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # randomly pick real images from dataset
        rand_indexes = np.random.randint(0, train_size, size=batch_
size)
        real_images = x_train[rand_indexes]

        # corresponding one-hot labels of real images

        real_labels = y_train[rand_indexes]

        # generate fake images from noise using generator
        noise = np.random.uniform(-1.0,
                                  1.0,
                                 size=[batch_size, latent_size])

        # assign random one-hot labels

        fake_labels = np.eye(num_labels)[np.random.choice(num_
labels,batch_size)]

        # generate fake images conditioned on fake labels

        fake_images = generator.predict([noise, fake_labels])

        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))

        # real + fake one-hot labels = 1 batch of train one-hot 
labels

        labels = np.concatenate((real_labels, fake_labels))

        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0.0
        # train discriminator network, log the loss and accuracy

        loss, acc = discriminator.train_on_batch([x, labels], y)

        log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)
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        # train the adversarial network for 1 batch

        # 1 batch of fake images conditioned on fake 1-hot labels 

        # w/ label=1.0

        # since the discriminator weights are frozen in 
        # adversarial network only the generator is trained
        # generate noise using uniform distribution        
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])

        # assign random one-hot labels

        fake_labels = np.eye(num_labels)[np.random.choice(num_
labels,batch_size)]

  

        # label fake images as real or 1.0
        y = np.ones([batch_size, 1])
        # train the adversarial network 
        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input of the 
adversarial
        # for classification
        # log the loss and accuracy

        loss, acc = adversarial.train_on_batch([noise, fake_
labels], y)

        log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
        print(log)
        if (i + 1) % save_interval == 0:
            # plot generator images on a periodic basis
            plot_images(generator,
                        noise_input=noise_input,
                        noise_class=noise_class,
                        show=False,
                        step=(i + 1),
                        model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for 
    # future MNIST digit generation
    generator.save(model_name + ".h5")
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Figure 4.3.4 shows the evolution of MNIST digits generated when the generator is 
conditioned to produce digits with the following labels:

[0 1 2 3

4 5 6 7

8 9 0 1

2 3 4 5]

We can see the results below:

Figure 4.3.4: The fake images generated by CGAN at different training steps  
when conditioned with labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

You're encouraged to run the trained generator model to see new synthesized 
MNIST digit images:

python3 cgan-mnist-4.3.1.py --generator=cgan_mnist.h5
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Alternatively, a specific digit (for example, 8) to be generated can also be requested:

python3 cgan-mnist-4.3.1.py --generator=cgan_mnist.h5 --digit=8

With CGAN, it's like having an agent that we can ask to draw digits similar to how 
humans write digits. The key advantage of CGAN over DCGAN is that we can 
specify which digit we want the agent to draw.

4. Conclusion
This chapter discussed the general principles behind GANs so as to give you a 
foundation for the more advanced topics we'll now move on to, including improved 
GANs, disentangled representation GANs, and cross-domain GANs. We started this 
chapter by understanding how GANs are made up of two networks, called generator 
and discriminator. The role of the discriminator is to discriminate between real and 
fake signals. The aim of the generator is to fool the discriminator. The generator 
is normally combined with the discriminator to form an adversarial network. It is 
through training the adversarial network that the generator learns how to produce 
fake data that can trick the discriminator.

We also learned how GANs are easy to build but notoriously difficult to train. 
Two example implementations in tf.keras were presented. DCGAN demonstrated 
that it is possible to train GANs to generate fake images using deep CNNs. The fake 
images were MNIST digits. However, the DCGAN generator had no control over 
which specific digit it should draw. CGAN addressed this problem by conditioning 
the generator to draw a specific digit. The condition was in the form of a one-hot 
label. CGAN is useful if we want to build an agent that can generate data of a specific 
class.

In the next chapter, improvements on the DCGAN and CGAN will be introduced. 
In particular, the focus will be on how to stabilize the training of DCGAN and how 
to improve the perceptive quality of CGAN. This will be done by introducing new 
loss functions and slightly different model architectures.
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5
Improved GANs

Since the introduction of Generative Adversarial Networks (GANs) in 2014[1], 
their popularity has rapidly increased. GANs have proven to be a useful generative 
model that can synthesize new data that looks real. Many of the research papers 
in deep learning that followed proposed measures to address the difficulties and 
limitations of the original GAN.

As we discussed in previous chapters, GANs can be notoriously difficult to train, 
and are prone to mode collapse. Mode collapse is a situation where the generator 
is producing outputs that look the same even though the loss functions are already 
optimized. In the context of MNIST digits, with mode collapse, the generator may 
only be producing digits 4 and 9 since they look similar. The Wasserstein GAN 
(WGAN)[2] addressed these problems by arguing that stable training and mode 
collapse can be avoided by simply replacing the GAN loss function based on 
Wasserstein 1, also known as the Earth Mover's Distance (EMD).

However, the issue of stability is not the only problem with GANs. There is also 
the increasing need to improve the perceptive quality of the generated images. 
The Least Squares GAN (LSGAN)[3] proposed addressing both these problems 
simultaneously. The basic premise is that sigmoid cross-entropy loss leads to 
a vanishing gradient during training. This results in poor image quality. Least 
squares loss does not induce vanishing gradients. The resulting generated images 
are of higher perceptive quality when compared to vanilla GAN-generated images.

In the previous chapter, CGAN introduced a method for conditioning the output 
of the generator. For example, if we wanted to get digit 8, we would include the 
conditioning label in the input to the generator. Inspired by CGAN, the Auxiliary 
Classifier GAN (ACGAN)[4] proposed a modified conditional algorithm that 
results in better perceptive quality and diversity of the outputs.
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In summary, the goal of this chapter is to present:

• The theoretical formulation of WGAN
• An understanding of the principles of LSGAN
• An understanding of the principles of ACGAN
• The tf.keras implementation of improved GANs – WGAN, LSGAN, and 

ACGAN

Let's start off by discussing WGAN.

1. Wasserstein GAN
As we've mentioned before, GANs are notoriously hard to train. The opposing 
objectives of the two networks, the discriminator and the generator, can easily cause 
training instability. The discriminator attempts to correctly classify the fake data 
from the real data. Meanwhile, the generator tries its best to trick the discriminator. 
If the discriminator learns faster than the generator, the generator parameters will 
fail to optimize. On the other hand, if the discriminator learns more slowly, then 
the gradients may vanish before reaching the generator. In the worst case, if the 
discriminator is unable to converge, the generator is not going to be able to get 
any useful feedback.

WGAN argued that a GAN's inherent instability is due to its loss function, which 
is based on the Jensen-Shannon (JS) distance. In a GAN, the objective of the 
generator is to learn how to transform from one source distribution (for example, 
noise) to an estimated target distribution (for example, MNIST digits). Using the 
original formulation of a GAN, the loss function is actually minimizing the distance 
between the target distribution and its estimate. The problem is, for some pairs 
of distributions, there is no smooth path to minimize this JS distance. Hence, the 
training will fail to converge.

In the following section, we will investigate three distance functions and analyze 
what could be a good substitute for the JS distance function that is more suitable 
for GAN optimization.

Distance functions
The stability in training a GAN can be understood by examining its loss functions. To 
better understand GAN loss functions, we're going to review the common distance 
or divergence functions between two probability distributions. 
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Our concern is the distance between pdata for true data distribution, and pg for 
generator data distribution. The goal of GANs is to make 𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Table 5.1.1 
shows the divergence functions.

In most maximum likelihood tasks, we'll use Kullback-Leibler (KL) divergence, 
or DKL , in the loss function as a measure of how far our neural network model 
prediction is from the true distribution function. As shown in Equation 5.1.1, DKL is 
not symmetric since 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) ≠𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) .

JS, or DJS, is a divergence that is based on DKL. However, unlike DKL, DJS is 
symmetrical and is finite. In this section, we'll demonstrate that optimizing GAN loss 
functions is equivalent to optimizing DJS:

Divergence Expression
Kullback-
Leibler (KL)
Equation 5.1.1

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑝𝑝𝑔𝑔(𝑥𝑥)

 

≠ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔 log
𝑝𝑝𝑔𝑔(𝑥𝑥)

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
 

Jensen-
Shannon (JS)
Equation 5.1.2

𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) =
1
2𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)

2
+1
2𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔 log

𝑝𝑝𝑔𝑔(𝑥𝑥)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)

2
= 𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 

Earth Mover's 
Distance 
(EMD) or 
Wasserstein 1
Equation 5.1.3

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) =
𝑖𝑖𝑖𝑖𝑖𝑖

𝛾𝛾 ∈ ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔)
𝔼𝔼(𝑥𝑥,𝑦𝑦)~γ[‖𝑥𝑥 − 𝑦𝑦‖] 

where ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔)  is the set of all joint distributions 𝛾𝛾(𝑥𝑥, 𝑦𝑦)  

whose marginals are pdata and pg.

Table 5.1.1: The divergence functions between two probability distribution functions, pdata and pg

The idea behind EMD is that it is a measure of how much mass 𝛾𝛾(𝑥𝑥, 𝑦𝑦)  should 
be transported by 𝑑𝑑 = ‖𝑥𝑥 − 𝑦𝑦‖  for the probability distribution pdata in order to 
match the probability distribution pg. 𝛾𝛾(𝑥𝑥, 𝑦𝑦)  is a joint distribution in the space of 

all possible joint distributions ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) . 𝛾𝛾(𝑥𝑥, 𝑦𝑦)  is also known as a transport 
plan, to reflect the strategy for transporting masses to match the two probability 
distributions. There are many possible transport plans given the two probability 
distributions. Roughly speaking, inf indicates a transport plan with the minimum 
cost.
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For example, Figure 5.1.1 shows us two simple discrete distributions x and y:

Figure 5.1.1: The EMD is the weighted amount of mass from x to be transported in order to match the target 
distribution, y

x has masses mi for i = 1, 2, 3, and 4 at locations xi for i = 1, 2, 3, and 4. Meanwhile, y 
has masses mi for i = 1 and 2 at locations yi for i = 1 and 2. To match the distribution y 
the arrows show the minimum transport plan to move each mass xi by di. The EMD 
is computed as:

𝐸𝐸𝐸𝐸𝐸𝐸 =∑𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖
4

𝑖𝑖=1
= 0.2(0.4) + 0.3(0.5) + 0.1(0.3) + 0.4(0.7) = 0.54     (Equation 5.1.4)

In Figure 5.1.1, the EMD can be interpreted as the least amount of work needed 
to move the pile of dirt x to fill the holes y. While in this example, the inf can also 
be deduced from the figure, in most cases, especially in continuous distributions, 
it is intractable to exhaust all possible transport plans. We will come back to this 
problem later on in this chapter. In the meantime, we'll show how the GAN loss 
functions are, in fact, minimizing the JS divergence.

Distance function in GANs
We're now going to compute the optimal discriminator given any generator from 
the loss function in the previous chapter. We'll recall the following equation from 
the previous chapter:
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ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛)))     (Equation 4.1.1)

Instead of sampling from the noise distribution, the preceding equation can also be 
expressed as sampling from the generator distribution:

ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒙𝒙~𝑝𝑝𝑔𝑔 log(1 − 𝒟𝒟(𝒙𝒙))     (Equation 5.1.5)

To find the minimum ℒ(𝐷𝐷) :

ℒ(𝐷𝐷) = −∫ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑥𝑥

log𝒟𝒟(𝒙𝒙)𝑑𝑑𝑥𝑥 −∫ 𝑝𝑝𝑔𝑔(𝑥𝑥)log(1 −𝒟𝒟(𝒙𝒙))𝑑𝑑𝑥𝑥
𝑥𝑥

     (Equation 5.1.6)

ℒ(𝐷𝐷) = −∫ (𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) log𝒟𝒟(𝒙𝒙) +𝑝𝑝𝑔𝑔(𝑥𝑥)log(1 − 𝒟𝒟(𝒙𝒙)))𝑑𝑑𝑥𝑥
𝑥𝑥

     (Equation 5.1.7)

The term inside the integral is in the form 𝑦𝑦 → 𝑎𝑎 log𝑦𝑦 + 𝑏𝑏 log(1 − 𝑦𝑦) , which has 

a known maximum value at 
𝑎𝑎

𝑎𝑎 + 𝑏𝑏  for 𝑦𝑦 ∈ [0, 1]  for any 𝑎𝑎, 𝑏𝑏 ∈ ℝ2  not including 
{0, 0} . Since the integral does not change the location of the maximum value 
(or the minimum value of ℒ(𝐷𝐷) ) for this expression, the optimal discriminator is:

𝒟𝒟∗(𝑥𝑥) = 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

     (Equation 5.1.8)

Consequently, the loss function given the optimal discriminator is:

ℒ(𝐷𝐷∗) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔
− 𝔼𝔼𝒙𝒙~𝑝𝑝𝑔𝑔 log(1 −

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

)     (Equation 5.1.9)

ℒ(𝐷𝐷∗) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔
− 𝔼𝔼𝒙𝒙~𝑝𝑝𝑔𝑔 log(

𝑝𝑝𝑔𝑔
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

)     (Equation 5.1.10)

ℒ(𝐷𝐷∗) = 2log2−𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ‖
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

2 )−𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝𝑔𝑔 ‖
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑔𝑔

2 )     (Equation 5.1.11)

ℒ(𝐷𝐷∗) = 2log2−2𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔)     (Equation 5.1.12)

We can observe from Equation 5.1.12 that the loss function of the optimal 
discriminator is a constant minus twice the JS divergence between the true 
distribution, 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , and any generator distribution, pg. Minimizing ℒ(𝐷𝐷∗)  implies 
maximizing 𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔)  or the discriminator must correctly classify fake from 
real data.
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Meanwhile, we can safely argue that the optimal generator is when the generator 
distribution is equal to the true data distribution:

𝒢𝒢∗(𝑥𝑥)  →  𝑝𝑝𝑔𝑔 = 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑      (Equation 5.1.13)

This makes sense since the objective of the generator is to fool the discriminator 
by learning the true data distribution. Effectively, we can arrive at the optimal 
generator by minimizing DJS or by making 𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Given an optimal generator, 

the optimal discriminator is 𝒟𝒟∗(𝑥𝑥) = 1
2  with ℒ(𝐷𝐷∗) = 2log2 = 0.60 .

The problem is that when the two distributions have no overlap, there's no smooth 
function that will help to close the gap between them. Training GANs will not 
converge by gradient descent. For example, let's suppose:

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =(𝑥𝑥, 𝑦𝑦)  where 𝑥𝑥 = 0, 𝑦𝑦~𝑈𝑈(0, 1)     (Equation 5.1.14)

𝑝𝑝𝑔𝑔 =(𝑥𝑥, 𝑦𝑦)  where 𝑥𝑥 = 𝜃𝜃, 𝑦𝑦~𝑈𝑈(0, 1)     (Equation 5.1.15)

These two distributions are shown in Figure 5.1.2:

Figure 5.1.2: An example of two distributions with no overlap. θ = 0.5 for pg
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𝑈𝑈(0, 1)  is the uniform distribution. The divergence for each distance function is as 
follows:

• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) = 𝔼𝔼𝑥𝑥=0,𝑦𝑦~𝑈𝑈(0,1) log
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

=∑1 log10 = +∞ 

• 𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝𝑔𝑔‖𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝔼𝔼𝑥𝑥=𝜃𝜃,𝑦𝑦~𝑈𝑈(0,1) log
𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
=∑1 log10 = +∞ 

• 

𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖𝑝𝑝𝑔𝑔) =
1
2𝔼𝔼𝑥𝑥=0,𝑦𝑦~𝑈𝑈(0,1) log

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

2
+1
2𝔼𝔼𝑥𝑥=𝜃𝜃,𝑦𝑦~𝑈𝑈(0,1) log

𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑝𝑝𝑔𝑔(𝑥𝑥, 𝑦𝑦)

2
= 1
2∑1 log 11

2
+ 1
2∑1 log 11

2
= log2 

• 𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = |𝜃𝜃| 

Since DJS is a constant, the GAN will not have a sufficient gradient to drive 
𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . We'll also find that DKL, or reverse DKL , is not helpful either. However, 
with W(pdata,pg), we can have a smooth function in order to attain 𝑝𝑝𝑔𝑔 → 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  by 
gradient descent. The EMD or Wasserstein 1 seems to be a more logical loss function 
in order to optimize GANs since DJS fails in situations when two distributions have 
minimal to no overlap.

To aid understanding further, an excellent discussion on distance functions can be 
found at: https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-
WGAN.html.

In the next section, we will focus on using the EMD or the Wasserstein 1 distance 
function to develop an alternative loss function that will encourage stable training 
of GANs.

Use of Wasserstein loss
Before using EMD or Wasserstein 1, there is one more problem to overcome. It 

is intractable to exhaust the space of ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔)  to find 
𝑖𝑖𝑖𝑖𝑖𝑖

𝛾𝛾 ∈ ∏(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔)
 
. The 

proposed solution is to use its Kantorovich-Rubinstein dual:

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = 1
𝐾𝐾 sup

‖𝑓𝑓‖𝐿𝐿≤𝐾𝐾
𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑓𝑓(𝑥𝑥)] − 𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔[𝑓𝑓(𝑥𝑥)]       (Equation 5.1.16)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html.
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html.
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Equivalently, EMD, 
sup

‖𝑓𝑓‖𝐿𝐿≤1
 
, is the supremum (roughly, maximum value) over all 

K-Lipschitz functions: 𝑓𝑓: 𝒳𝒳 → ℝ . K-Lipschitz functions satisfy the constraint:

|𝑓𝑓(𝑥𝑥1) − 𝑓𝑓(𝑥𝑥2)| ≤ 𝐾𝐾|𝑥𝑥1 − 𝑥𝑥2|     (Equation 5.1.17)

for all 𝑥𝑥1, 𝑥𝑥2 ∈ ℝ . K-Lipschitz functions have bounded derivatives and are almost 
always continuously differentiable (for example, 𝑓𝑓(𝑥𝑥) = |𝑥𝑥|  has bounded derivatives 
and is continuous but not differentiable at x = 0).

Equation 5.1.16 can be solved by finding a family of K-Lipschitz functions {𝑓𝑓𝑤𝑤}𝑤𝑤∈𝒲𝒲 :

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = max
𝑤𝑤∈𝒲𝒲

𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑓𝑓𝑤𝑤(𝑥𝑥)] − 𝔼𝔼𝑥𝑥~𝑝𝑝𝑔𝑔[𝑓𝑓𝑤𝑤(𝑥𝑥)]     (Equation 5.1.18)

In the context of GANs, Equation 5.1.18 can be rewritten by sampling from z-noise 
distribution and replacing fw with the discriminator function, Dw:

𝑊𝑊(𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑔𝑔) = max
𝑤𝑤∈𝒲𝒲

𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝒟𝒟𝑤𝑤(𝒙𝒙)] − 𝔼𝔼𝒛𝒛[𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))]     (Equation 5.1.19)

where we use bold letters to highlight the generality to multi-dimensional samples. 
The last problem is how to find the family of functions, 𝑤𝑤 ∈ 𝒲𝒲 . The proposed 
solution is at every gradient update; the weights of the discriminator w are clipped 
between lower and upper bounds (for example, -0.01 and 0.01):

𝑤𝑤 ⟵ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−0.01,0.01)     (Equation 5.1.20)

The small values of w constrain the discriminator to a compact parameter space, 
thus ensuring Lipschitz continuity.

We can use Equation 5.1.19 as the basis of our new GAN loss functions. EMD or 
Wasserstein 1 is the loss function that the generator aims to minimize and the cost 
function that the discriminator tries to maximize (or minimize -W(pdata,pg)):

ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒟𝒟𝑤𝑤(𝒙𝒙) + 𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))     (Equation 5.1.21)

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))     (Equation 5.1.22)

In the generator loss function, the first term disappears since it is not directly 
optimizing with respect to the real data.
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Table 5.1.2 shows the difference between the loss functions of a GAN and a WGAN. 
For conciseness, we simplified the notation for ℒ(𝐷𝐷)  and ℒ(𝐺𝐺) :

Network Loss Functions Equation
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛))) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛)) 

4.1.1

4.1.5

WGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒟𝒟𝑤𝑤(𝒙𝒙) + 𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) 

𝑤𝑤 ⟵ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−0.01,0.01) 

5.1.21

5.1.22

5.1.20

Table 5.1.2: A comparison between the loss functions of a GAN and a WGAN

These loss functions are used in training a WGAN, as shown in Algorithm 5.1.1.

Algorithm 5.1.1 WGAN. The values of the parameters are 𝛼𝛼 = 0.00005 , 𝑐𝑐 = 0.01 , 
𝑚𝑚 = 64 , and 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 5 .

Require: 𝛼𝛼 , the learning rate. c, the clipping parameter. m, the batch size. 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , the 
number of the critic (discriminator) iterations per generator iteration.

Require: 𝑤𝑤0 , initial critic (discriminator) parameters. 𝜃𝜃0 , initial generator parameters:

1. while 𝜃𝜃  has not converged do
2.     for 𝑡𝑡 = 1,… , 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  do

3.         Sample a batch {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1
𝑚𝑚 ~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  from real data

4.         Sample a batch {𝑧𝑧(𝑖𝑖)}𝑖𝑖=1
𝑚𝑚 ~𝑝𝑝(𝑧𝑧)  from uniform noise distribution

5.          𝑔𝑔𝑤𝑤 ← 𝛻𝛻𝑤𝑤 [−
1
𝑚𝑚∑ 𝒟𝒟𝑤𝑤(𝑥𝑥(𝑖𝑖)) +

𝑚𝑚

𝑖𝑖=1

1
𝑚𝑚∑ 𝒟𝒟𝑤𝑤 (𝒢𝒢𝜃𝜃(𝑧𝑧(𝑖𝑖)))

𝑚𝑚

𝑖𝑖=1
] , compute 

discriminator gradients
6.         𝑤𝑤 ← 𝑤𝑤 − 𝛼𝛼 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑤𝑤, 𝑔𝑔𝑤𝑤) , update discriminator parameters
7.         𝑤𝑤 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−𝑐𝑐, 𝑐𝑐) , clip discriminator weights
8.     end for
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9.     Sample a batch {𝑧𝑧(𝑖𝑖)}𝑖𝑖=1
𝑚𝑚 ~𝑝𝑝(𝑧𝑧)  from uniform noise distribution

10.     𝑔𝑔𝜃𝜃 ← −𝛻𝛻𝜃𝜃
1
𝑚𝑚∑ 𝒟𝒟𝑤𝑤 (𝒢𝒢𝜃𝜃(𝑧𝑧(𝑖𝑖)))

𝑚𝑚

𝑖𝑖=1
 , compute generator gradients

11.     𝜃𝜃 ← 𝜃𝜃 − 𝛼𝛼 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜃𝜃, 𝒢𝒢𝜃𝜃) , update generator parameters
12. end while

Figure 5.1.3 illustrates that a WGAN model is practically the same as a DCGAN 
except for the fake/true data labels and loss functions:

Figure 5.1.3: Top: Training the WGAN discriminator requires fake data from the generator and real data from 
the true distribution. Bottom: Training the WGAN generator requires fake data from the generator pretending 

to be real
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Similar to GANs, WGAN alternately trains the discriminator and generator 
(through adversarial). However, in WGAN, the discriminator (also called the critic) 
trains ncritic iterations (lines 2 to 8) before training the generator for one iteration 
(lines 9 to 11). This is in contrast to GANs with an equal number of training iterations 
for both the discriminator and generator. In other words, in GANs, ncritic = 1.

Training the discriminator means learning the parameters (weights and biases) 
of the discriminator. This requires sampling a batch from the real data (line 3) and 
a batch from the fake data (line 4) and computing the gradient of discriminator 
parameters (line 5) after feeding the sampled data to the discriminator network. 
The discriminator parameters are optimized using RMSProp (line 6). Both lines 5 
and 6 are the optimization of Equation 5.1.21. 

Lastly, the Lipschitz constraint in the EM distance optimization is imposed by 
clipping the discriminator parameters (line 7). Line 7 is the implementation of 
Equation 5.1.20. After ncritic iterations of discriminator training, the discriminator 
parameters are frozen. The generator training starts by sampling a batch of 
fake data (line 9). The sampled data is labeled as real (1.0), endeavoring to fool 
the discriminator network. The generator gradients are computed in line 10 
and optimized using the RMSProp in line 11. Lines 10 and 11 perform gradient 
updates to optimize Equation 5.1.22.

After training the generator, the discriminator parameters are unfrozen, and another 
ncritic discriminator training iteration starts. We should note that there is no need to 
freeze the generator parameters during discriminator training as the generator is 
only involved in the fabrication of data. Similar to GANs, the discriminator can be 
trained as a separate network. However, training the generator always requires the 
participation of the discriminator through the adversarial network since the loss is 
computed from the output of the generator network.

Unlike GANs, in a WGAN, real data is labeled 1.0, while fake data is labeled -1.0 
as a workaround in computing the gradient in line 5. Lines 5-6 and 10-11 perform 
gradient updates to optimize Equations 5.1.21 and 5.1.22, respectively. Each term in 
lines 5 and 10 is modeled as:

ℒ = −𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
1
𝑚𝑚∑𝑦𝑦𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝

𝑚𝑚

𝑖𝑖=1
     (Equation 5.1.23)

Where ylabel = 1.0 for the real data and ylabel = -1.0 for the fake data. We removed the 
superscript (i) for simplicity of notation. For the discriminator, WGAN increases 
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒟𝒟𝑤𝑤(𝒙𝒙)  to minimize the loss function when training using the real data.
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When training using fake data, WGAN decreases 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛))  to minimize 
the loss function. For the generator, WGAN increases 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) ) as to 
minimize the loss function when the fake data is labeled as real during training. 
Note that ylabel has no direct contribution in the loss function other than its sign. 
In tf.keras, Equation 5.1.23 is implemented as:

def wasserstein_loss(y_label, y_pred):
    return -K.mean(y_label * y_pred)

The most important part of this section is the new loss function for the stable training 
of GANs. It is based on the EMD or Wasserstein 1. Algorithm 5.1.1 formalizes the 
complete training algorithm of WGAN, including the loss function. In the next 
section, the implementation of the training algorithm in tf.keras is presented.

WGAN implementation using Keras
To implement WGAN in tf.keras, we can reuse the DCGAN implementation of 
GANs, something we introduced in the previous chapter. The DCGAN builder and 
utility functions are implemented in gan.py in the lib folder as a module.

The functions include:

• generator(): A generator model builder
• discriminator(): A discriminator model builder
• train(): A DCGAN trainer
• plot_images(): A generic generator outputs plotter
• test_generator(): A generic generator test utility

As shown in Listing 5.1.1, we can build a discriminator by simply calling:

discriminator = gan.discriminator(inputs, activation='linear')

WGAN uses linear output activation. For the generator, we execute:

generator = gan.generator(inputs, image_size)

The overall network model in tf.keras is similar to the one seen in Figure 4.2.1 for 
DCGAN.

Listing 5.1.1 highlights the use of the RMSprop optimizer and Wasserstein loss 
function. The hyperparameters in Algorithm 5.1.1 are used during training.
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Listing 5.1.1: wgan-mnist-5.1.2.py

def build_and_train_models():
    """Load the dataset, build WGAN discriminator,
    generator, and adversarial models.
    Call the WGAN train routine.
    """
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "wgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    # hyper parameters from WGAN paper [2]
    n_critic = 5
    clip_value = 0.01
    batch_size = 64
    lr = 5e-5
    train_steps = 40000
    input_shape = (image_size, image_size, 1)

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    # WGAN uses linear activation in paper [2]
    discriminator = gan.discriminator(inputs, activation='linear')
    optimizer = RMSprop(lr=lr)
    # WGAN discriminator uses wassertein loss
    discriminator.compile(loss=wasserstein_loss,
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

The complete code is available on GitHub: https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = gan.generator(inputs, image_size)
    generator.summary()

    # build adversarial model = generator + discriminator
    # freeze the weights of discriminator during adversarial training
    discriminator.trainable = False
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    adversarial.compile(loss=wasserstein_loss,
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    params = (batch_size,
              latent_size,
              n_critic,
              clip_value,
              train_steps,
              model_name)
    train(models, x_train, params)

Listing 5.1.2 is the training function that closely follows Algorithm 5.1.1. However, 
there is a minor tweak in the training of the discriminator. Instead of training the 
weights in a single combined batch of both real and fake data, we'll train with one 
batch of real data first and then a batch of fake data. This tweak will prevent the 
gradient from vanishing because of the opposite sign in the label of real and fake 
data and the small magnitude of weights due to clipping.

Listing 5.1.2: wgan-mnist-5.1.2.py

Training algorithm for WGAN:

def train(models, x_train, params):
    """Train the Discriminator and Adversarial Networks
    Alternately train Discriminator and Adversarial
    networks by batch.
    Discriminator is trained first with properly labelled
    real and fake images for n_critic times.
    Discriminator weights are clipped as a requirement 
    of Lipschitz constraint.
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    Generator is trained next (via Adversarial) with 
    fake images pretending to be real.
    Generate sample images per save_interval
    Arguments:
        models (list): Generator, Discriminator,
            Adversarial models
        x_train (tensor): Train images
        params (list) : Networks parameters
    """
    # the GAN models
    generator, discriminator, adversarial = models
    # network parameters
    (batch_size, latent_size, n_critic,
            clip_value, train_steps, model_name) = params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the 
    # generator output evolves during training
    noise_input = np.random.uniform(-1.0,
                                    1.0,
                                    size=[16, latent_size])
    # number of elements in train dataset
    train_size = x_train.shape[0]
    # labels for real data
    real_labels = np.ones((batch_size, 1))
    for i in range(train_steps):
        # train discriminator n_critic times
        loss = 0
        acc = 0
        for _ in range(n_critic):
            # train the discriminator for 1 batch
            # 1 batch of real (label=1.0) and 
            # fake images (label=-1.0)
            # randomly pick real images from dataset
            rand_indexes = np.random.randint(0,
                                             train_size,
                                             size=batch_size)
            real_images = x_train[rand_indexes]
            # generate fake images from noise using generator
            # generate noise using uniform distribution
            noise = np.random.uniform(-1.0,
                                      1.0,
                                      size=[batch_size, latent_size])
            fake_images = generator.predict(noise)

            # train the discriminator network
            # real data label=1, fake data label=-1
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            # instead of 1 combined batch of real and fake images,
            # train with 1 batch of real data first, then 1 batch
            # of fake images.
            # this tweak prevents the gradient 
            # from vanishing due to opposite
            # signs of real and fake data labels (i.e. +1 and -1) and 
            # small magnitude of weights due to clipping.
            real_loss, real_acc = \
                discriminator.train_on_batch(real_images,
                                             real_labels)
            fake_loss, fake_acc = \
                discriminator.train_on_batch(fake_images,
                                             -real_labels)
            # accumulate average loss and accuracy
            loss += 0.5 * (real_loss + fake_loss)
            acc += 0.5 * (real_acc + fake_acc)

            # clip discriminator weights to satisfy Lipschitz 
constraint
            for layer in discriminator.layers:
                weights = layer.get_weights()
                weights = [np.clip(weight,
                                   -clip_value,
                                   clip_value) for weight in weights]
                layer.set_weights(weights)

        # average loss and accuracy per n_critic training iterations
        loss /= n_critic
        acc /= n_critic
        log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0
        # since the discriminator weights are frozen in 
        # adversarial network only the generator is trained
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # train the adversarial network
        # note that unlike in discriminator training,
        # we do not save the fake images in a variable
        # the fake images go to the discriminator 
        # input of the adversarial for classification
        # fake images are labelled as real
        # log the loss and accuracy
        loss, acc = adversarial.train_on_batch(noise, real_labels)
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        log = "%s [adversarial loss: %f, acc: %f]" % (log, loss, acc)
        print(log)
        if (i + 1) % save_interval == 0:
            # plot generator images on a periodic basis
            gan.plot_images(generator,
                            noise_input=noise_input,
                            show=False,
                            step=(i + 1),
                            model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded 
    # for future MNIST digit generation
    generator.save(model_name + ".h5")

Figure 5.1.4 shows the evolution of the WGAN outputs on the MNIST dataset:

Figure 5.1.4: The sample outputs of WGAN versus training steps. WGAN does not suffer mode collapse in any 
of the outputs during training and testing
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The WGAN is stable even under network configuration changes. For example, 
DCGAN is known to be unstable when batch normalization is inserted before the 
ReLU in the discriminator network. The same configuration is stable in WGAN.

The following Figure 5.1.5 shows us the outputs of both DCGAN and WGAN with 
batch normalization on the discriminator network:

Figure 5.1.5: A comparison of the output of the DCGAN (left) and WGAN (right) when batch normalization is 
inserted before the ReLU activation in the discriminator network

Similar to the GAN training in the previous chapter, the trained model is saved on 
a file after 40,000 training steps. Using the trained generator model, new synthesized 
MNIST digit images are generated by running the following command:

python3 wgan-mnist-5.1.2.py --generator=wgan_mnist.h5

As we have discussed, the original GAN is difficult to train. The problem arises 
when the GAN optimizes its loss function; it's actually optimizing the JS divergence, 
DJS. It is difficult to optimize DJS when there is little to no overlap between two 
distribution functions.

WGAN proposed to address the problem by using the EMD or Wasserstein 1 loss 
function, which has a smooth differentiable function even when there is little or 
no overlap between the two distributions. However, WGAN is not concerned with 
the generated image quality. Apart from stability issues, there are still areas of 
improvement in terms of perceptive quality in the generated images of the original 
GAN. LSGAN theorizes that the twin problems can be solved simultaneously. 
We'll take a look at LSGAN in the following section.
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2. Least-squares GAN (LSGAN)
LSGAN proposes the least squares loss. Figure 5.2.1 demonstrates why the use of 
a sigmoid cross-entropy loss in GANs results in poorly generated data quality: 

Figure 5.2.1: Both real and fake sample distributions divided by their respective decision boundaries: sigmoid 
and least squares

Ideally, the fake sample distribution should be as close as possible to the true 
samples' distribution. However, for GANs, once the fake samples are already on 
the correct side of the decision boundary, the gradients vanish.

This prevents the generator from having enough motivation to improve the 
quality of the generated fake data. Fake samples far from the decision boundary 
will no longer attempt to move closer to the true samples' distribution. Using the 
least squares loss function, the gradients do not vanish as long as the fake sample 
distribution is far from the real samples' distribution. The generator will strive to 
improve its estimate of real density distribution even if the fake samples are already 
on the correct side of the decision boundary.

Table 5.2.1 shows the comparison of the loss functions between GAN, WGAN, and 
LSGAN:

Network Loss Functions Equation
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛))) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛)) 

4.1.1

4.1.5
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WGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝒟𝒟𝑤𝑤(𝒙𝒙) + 𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛𝒟𝒟𝑤𝑤(𝒢𝒢(𝒛𝒛)) 
𝑤𝑤 ⟵ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,−0.01,0.01) 

5.1.21

5.1.22

5.1.20

LSGAN ℒ(𝐷𝐷) = 𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒟𝒟(𝒙𝒙) − 1)2 + 𝔼𝔼𝒛𝒛𝒟𝒟(𝒢𝒢(𝒛𝒛))2 

ℒ(𝐺𝐺) = 𝔼𝔼𝒛𝒛(𝒟𝒟(𝒢𝒢(𝒛𝒛)) − 1)2 

5.2.1

5.2.2

Table 5.2.1: A comparison between the loss functions of GAN, WGAN, and LSGAN

Minimizing Equation 5.2.1 or the discriminator loss function implies that the MSE 
between real data classification and the true label 1.0 should be close to zero. In 
addition, the MSE between the fake data classification and the true label 0.0 should 
be close to zero.

Similar to other GANs, the LSGAN discriminator is trained to classify real from 
fake data samples. Minimizing Equation 5.2.2 means fooling the discriminator to 
think that the generated fake sample data is real with the help of label 1.0.

Implementing LSGAN using the DCGAN code in the previous chapter as the basis 
only requires a few changes. As shown in Listing 5.2.1, the discriminator sigmoid 
activation is removed. The discriminator is built by calling:

discriminator = gan.discriminator(inputs, activation=None)

The generator is similar to the original DCGAN:

generator = gan.generator(inputs, image_size)

Both the discriminator and adversarial loss functions are replaced by mse. All the 
network parameters are the same as in DCGAN. The network model of LSGAN 
in tf.keras is similar to Figure 4.2.1 except that there is linear or no output 
activation. The training process is similar to that seen in DCGAN and is provided 
by the utility function:

gan.train(models, x_train, params)

Listing 5.2.1: lsgan-mnist-5.2.1.py 

def build_and_train_models():
    """Load the dataset, build LSGAN discriminator,
    generator, and adversarial models.
    Call the LSGAN train routine.
    """
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()
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    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train,
                         [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "lsgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    input_shape = (image_size, image_size, 1)
    batch_size = 64
    lr = 2e-4
    decay = 6e-8
    train_steps = 40000

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    discriminator = gan.discriminator(inputs, activation=None)
    # [1] uses Adam, but discriminator easily 
    # converges with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # LSGAN uses MSE loss [2]
    discriminator.compile(loss='mse',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = gan.generator(inputs, image_size)
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # freeze the weights of discriminator 
    # during adversarial training
    discriminator.trainable = False
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    # LSGAN uses MSE loss [2]
    adversarial.compile(loss='mse',
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
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    models = (generator, discriminator, adversarial)
    params = (batch_size, latent_size, train_steps, model_name)
    gan.train(models, x_train, params)

Figure 5.2.2 shows generated samples after training LSGAN using the MNIST dataset 
for 40,000 training steps:

Figure 5.2.2: Sample outputs of LSGAN versus training steps
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The output images have better perceptual quality compared to Figure 4.2.1 in 
DCGAN seen in the previous chapter.

Using the trained generator model, new synthesized MNIST digit images are 
generated by running the following command:

python3 lsgan-mnist-5.2.1.py --generator=lsgan_mnist.h5

In this section, we discussed another improvement in the loss function. With 
the use of MSE or L2, we addressed the twin problems of training the stability 
and perceptive quality of the GANs. In the next section, another improvement 
is proposed, this time in relation to CGAN, which was discussed in the previous 
chapter.

3. Auxiliary Classifier GAN (ACGAN)
ACGAN is similar in principle to the Conditional GAN (CGAN) that we discussed 
in the previous chapter. We're going to compare both CGAN and ACGAN. For both 
CGAN and ACGAN, the generator inputs are noise and its label. The output is a fake 
image belonging to the input class label. For CGAN, the inputs to the discriminator 
are an image (fake or real) and its label. The output is the probability that the image 
is real. For ACGAN, the input to the discriminator is an image, whilst the output is 
the probability that the image is real and its class is a label. 
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Figure 5.3.1 highlights the difference between CGAN and ACGAN during generator 
training:

Figure 5.3.1: CGAN versus ACGAN generator training.  
The main difference is the input and output of the discriminator

Essentially, in CGAN we feed the network with side information (label). In ACGAN, 
we try to reconstruct the side information using an auxiliary class decoder network. 
ACGAN theory argues that forcing the network to do additional tasks is known 
to improve the performance of the original task. In this case, the additional task is 
image classification. The original task is the generation of fake images.
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Table 5.3.1 shows ACGAN loss functions as compared to CGAN loss functions:

Network Loss Functions Number
CGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚))) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚)) 

4.3.1

4.3.2

ACGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log (1 − 𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚))) − 𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒫𝒫(𝑐𝑐|𝒙𝒙) − 𝔼𝔼𝒛𝒛 log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚)) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚)) − 𝔼𝔼𝒛𝒛log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚)) 

5.3.1

5.3.2

Table 5.3.1: A comparison between the loss functions of CGAN and ACGAN

ACGAN loss functions are the same as CGAN except for the additional classifier 
loss functions. Apart from the original task of identifying real from fake images  
(−𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙|𝒚𝒚) − 𝔼𝔼𝒛𝒛 log (1 −𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚))) ), Equation 5.3.1 of the discriminator 
has the additional task of correctly classifying real and fake images  
(−𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒫𝒫(𝑐𝑐|𝒙𝒙) − 𝔼𝔼𝒛𝒛 log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚)) ). Equation 5.3.2 of the generator means 
that apart from trying to fool the discriminator with fake images (−𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛|𝒚𝒚)) ), 
it is asking the discriminator to correctly classify those fake images  
(−𝔼𝔼𝒛𝒛 log𝒫𝒫(𝑐𝑐|𝒢𝒢(𝒛𝒛|𝒚𝒚)) ).

Starting with the CGAN code, only the discriminator and the training function 
are modified to implement an ACGAN. The discriminator and generator 
builder functions are also provided by gan.py. To see the changes made on the 
discriminator, Listing 5.3.1 shows the builder function, where the auxiliary decoder 
network that performs image classification and the dual outputs are highlighted. 

Listing 5.3.1: gan.py

def discriminator(inputs,
                  activation='sigmoid',
                  num_labels=None,
                  num_codes=None):
    """Build a Discriminator Model

    Stack of LeakyReLU-Conv2D to discriminate real from fake
    The network does not converge with BN so it is not used here
    unlike in [1]
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    Arguments:
        inputs (Layer): Input layer of the discriminator (the image)
        activation (string): Name of output activation layer
        num_labels (int): Dimension of one-hot labels for ACGAN & 
InfoGAN
        num_codes (int): num_codes-dim Q network as output 
                    if StackedGAN or 2 Q networks if InfoGAN
                    

    Returns:
        Model: Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs
    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    # default output is probability that the image is real
    outputs = Dense(1)(x)
    if activation is not None:
        print(activation)
        outputs = Activation(activation)(outputs)

    if num_labels:
        # ACGAN and InfoGAN have 2nd output
        # 2nd output is 10-dim one-hot vector of label
        layer = Dense(layer_filters[-2])(x)
        labels = Dense(num_labels)(layer)
        labels = Activation('softmax', name='label')(labels)
        if num_codes is None:
            outputs = [outputs, labels]
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        else:
            # InfoGAN have 3rd and 4th outputs
            # 3rd output is 1-dim continous Q of 1st c given x
            code1 = Dense(1)(layer)
            code1 = Activation('sigmoid', name='code1')(code1)

            # 4th output is 1-dim continuous Q of 2nd c given x
            code2 = Dense(1)(layer)
            code2 = Activation('sigmoid', name='code2')(code2)

            outputs = [outputs, labels, code1, code2]
    elif num_codes is not None:
        # StackedGAN Q0 output
        # z0_recon is reconstruction of z0 normal distribution
        z0_recon =  Dense(num_codes)(x)
        z0_recon = Activation('tanh', name='z0')(z0_recon)
        outputs = [outputs, z0_recon]

    return Model(inputs, outputs, name='discriminator')

The discriminator is then built by calling:

discriminator = gan.discriminator(inputs, num_labels=num_labels)

The generator is the same as the one in WGAN and LSGAN. To recall, the 
generator builder is shown in the following Listing 5.3.2. We should note that both 
Listings 5.3.1 and 5.3.2 are the same builder functions used by WGAN and LSGAN 
in the previous sections. Highlighted are the parts applicable to LSGAN.

Listing 5.3.2: gan.py

def generator(inputs,
              image_size,
              activation='sigmoid',
              labels=None,
              codes=None):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    Arguments:
        inputs (Layer): Input layer of the generator (the z-vector)
        image_size (int): Target size of one side 
            (assuming square image)



Improved GANs

[ 160 ]

        activation (string): Name of output activation layer
        labels (tensor): Input labels
        codes (list): 2-dim disentangled codes for InfoGAN

    Returns:
        Model: Generator Model
    """
    image_resize = image_size // 4
    # network parameters
    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    if labels is not None:
        if codes is None:
            # ACGAN labels
            # concatenate z noise vector and one-hot labels
            inputs = [inputs, labels]
        else:
            # infoGAN codes
            # concatenate z noise vector, 
            # one-hot labels and codes 1 & 2
            inputs = [inputs, labels] + codes
        x = concatenate(inputs, axis=1)
    elif codes is not None:
        # generator 0 of StackedGAN
        inputs = [inputs, codes]
        x = concatenate(inputs, axis=1)
    else:
        # default input is just 100-dim noise (z-code)
        x = inputs

    x = Dense(image_resize * image_resize * layer_filters[0])(x)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
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                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    if activation is not None:
        x = Activation(activation)(x)

    # generator output is the synthesized image x
    return Model(inputs, x, name='generator')

In ACGAN, the generator is instantiated as:

generator = gan.generator(inputs, image_size, labels=labels)

Figure 5.3.2 shows the network model of ACGAN in tf.keras:

Figure 5.3.2: The tf.keras model of ACGAN

As shown in Listing 5.3.3, the discriminator and adversarial models are modified 
to accommodate the changes in the discriminator network. We now have two loss 
functions. The first is the original binary cross-entropy to train the discriminator in 
estimating the probability of the input image being real. 
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The second is the image classifier predicting the class label. The output is a one-hot 
vector of 10 dimensions.

Listing 5.3.3: acgan-mnist-5.3.1.py

Highlighted are the changes implemented in the discriminator and adversarial 
networks:

def build_and_train_models():
    """Load the dataset, build ACGAN discriminator,
    generator, and adversarial models.
    Call the ACGAN train routine.
    """
    # load MNIST dataset
    (x_train, y_train), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train,
                         [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    # train labels
    num_labels = len(np.unique(y_train))
    y_train = to_categorical(y_train)

    model_name = "acgan_mnist"
    # network parameters
    latent_size = 100
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )

    # build discriminator Model
    inputs = Input(shape=input_shape,
                   name='discriminator_input')
    # call discriminator builder 
    # with 2 outputs, pred source and labels
    discriminator = gan.discriminator(inputs,
                                      num_labels=num_labels)
    # [1] uses Adam, but discriminator 
    # easily converges with RMSprop
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    optimizer = RMSprop(lr=lr, decay=decay)
    # 2 loss fuctions: 1) probability image is real
    # 2) class label of the image
    loss = ['binary_crossentropy', 'categorical_crossentropy']
    discriminator.compile(loss=loss,
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    labels = Input(shape=label_shape, name='labels')
    # call generator builder with input labels
    generator = gan.generator(inputs,
                              image_size,
                              labels=labels)
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # freeze the weights of discriminator 
    # during adversarial training
    discriminator.trainable = False
    adversarial = Model([inputs, labels],
                        discriminator(generator([inputs, labels])),
                        name=model_name)
    # same 2 loss fuctions: 1) probability image is real
    # 2) class label of the image
    adversarial.compile(loss=loss,
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    data = (x_train, y_train)
    params = (batch_size, latent_size, \
             train_steps, num_labels, model_name)
    train(models, data, params)

In Listing 5.3.4, we highlight the changes implemented in the training routine. The 
main difference compared to CGAN code is that the output label must be supplied 
during discriminator and adversarial training.
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Listing 5.3.4: acgan-mnist-5.3.1.py

def train(models, data, params):
    """Train the discriminator and adversarial Networks
    Alternately train discriminator and adversarial 
    networks by batch.
    Discriminator is trained first with real and fake 
    images and corresponding one-hot labels.
    Adversarial is trained next with fake images pretending 
    to be real and corresponding one-hot labels.
    Generate sample images per save_interval.
    # Arguments
        models (list): Generator, Discriminator,
            Adversarial models
        data (list): x_train, y_train data
        params (list): Network parameters
    """
    # the GAN models
    generator, discriminator, adversarial = models
    # images and their one-hot labels
    x_train, y_train = data
    # network parameters
    batch_size, latent_size, train_steps, num_labels, model_name \
            = params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator 
    # output evolves during training
    noise_input = np.random.uniform(-1.0,
                                    1.0,
                                    size=[16, latent_size])
    # class labels are 0, 1, 2, 3, 4, 5, 
    # 6, 7, 8, 9, 0, 1, 2, 3, 4, 5
    # the generator must produce these MNIST digits
    noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    # number of elements in train dataset
    train_size = x_train.shape[0]
    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_label, axis=1))

    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
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        # randomly pick real images and 
        # corresponding labels from dataset 
        rand_indexes = np.random.randint(0,
                                         train_size,
                                         size=batch_size)
        real_images = x_train[rand_indexes]
        real_labels = y_train[rand_indexes]
        # generate fake images from noise using generator
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # randomly pick one-hot labels
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]
        # generate fake images
        fake_images = generator.predict([noise, fake_labels])
        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        # real + fake labels = 1 batch of train data labels
        labels = np.concatenate((real_labels, fake_labels))

        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0
        # train discriminator network, log the loss and accuracy
        # ['loss', 'activation_1_loss', 
        # 'label_loss', 'activation_1_acc', 'label_acc']
        metrics  = discriminator.train_on_batch(x, [y, labels])
        fmt = "%d: [disc loss: %f, srcloss: %f,"
        fmt += "lblloss: %f, srcacc: %f, lblacc: %f]"
        log = fmt % (i, metrics[0], metrics[1], \
                metrics[2], metrics[3], metrics[4])

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0 and
        # corresponding one-hot label or class 
        # since the discriminator weights are frozen 
        # in adversarial network only the generator is trained
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
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                                  size=[batch_size, latent_size])
        # randomly pick one-hot labels
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]
        # label fake images as real
        y = np.ones([batch_size, 1])
        # train the adversarial network 
        # note that unlike in discriminator training, 
        # we do not save the fake images in a variable
        # the fake images go to the discriminator input 
        # of the adversarial for classification
        # log the loss and accuracy
        metrics  = adversarial.train_on_batch([noise, fake_labels],
                                              [y, fake_labels])
        fmt = "%s [advr loss: %f, srcloss: %f,"
        fmt += "lblloss: %f, srcacc: %f, lblacc: %f]"
        log = fmt % (log, metrics[0], metrics[1],\
                metrics[2], metrics[3], metrics[4])
        print(log)
        if (i + 1) % save_interval == 0:
            # plot generator images on a periodic basis
            gan.plot_images(generator,
                        noise_input=noise_input,
                        noise_label=noise_label,
                        show=False,
                        step=(i + 1),
                        model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded 
    # for future MNIST digit generation
    generator.save(model_name + ".h5")

It transpires that with the additional task, the performance improvement in ACGAN 
is significant compared to all GANs that we have discussed previously. ACGAN 
training is stable, as shown in Figure 5.3.3 sample outputs of ACGAN for the 
following labels:

[0    1    2    3

 4    5    6    7

 8    9    0    1

 2    3    4    5]
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Unlike in CGAN, the appearance of the sample outputs does not vary widely during 
training. The MNIST digit image perceptive quality is also better.

Figure 5.3.3: The sample outputs generated by the ACGAN as a function  
of training steps for labels [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]

Using the trained generator model, new synthesized MNIST digit images are 
generated by running:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5

Alternatively, the generation of a specific digit (for example, 3) to be generated can 
also be requested:

python3 acgan-mnist-5.3.1.py --generator=acgan_mnist.h5 --digit=3
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Figure 5.3.4 shows a side-by-side comparison of every MNIST digit produced by 
both CGAN and ACGAN. Digits 2-6 are of better quality in ACGAN than in CGAN:

Figure 5.3.4: A side-by-side comparison of outputs of CGAN and ACGAN conditioned with digits 0 to 9

Similar to WGAN and LSGAN, ACGAN provided an improvement in an existing 
GAN, CGAN, by fine-tuning its loss function. In the chapters to come, we will 
discover new loss functions that will enable GANs to perform new useful tasks.
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4. Conclusion
In this chapter, we've presented various improvements to the original GAN 
algorithm, first introduced in the previous chapter. WGAN proposed an algorithm 
to improve the stability of training by using the EMD or Wasserstein 1 loss. LSGAN 
argued that the original cross-entropy function of GANs is prone to vanishing 
gradients, unlike least squares loss. LSGAN proposed an algorithm to achieve stable 
training and quality outputs. ACGAN convincingly improved the quality of the 
conditional generation of MNIST digits by requiring the discriminator to perform a 
classification task on top of determining whether the input image was fake or real.

In the next chapter, we'll study how to control the attributes of generator outputs. 
Whilst CGAN and ACGAN are able to indicate the desired digits to produce, we 
have not analyzed GANs that can specify the attributes of outputs. For example, 
we may want to control the writing style of the MNIST digits, such as roundness, 
tilt angle, and thickness. Therefore, the goal will be to introduce GANs with 
disentangled representations to control the specific attributes of the generator 
outputs.
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6
Disentangled  

Representation GANs
As we've explored, GANs can generate meaningful outputs by learning the data 
distribution. However, there was no control over the attributes of the generated 
outputs. Some variations of GANs, like conditional GAN (CGAN) and auxiliary 
classifier GAN (ACGAN), as discussed in the previous two chapters, are able to 
train a generator that is conditioned to synthesize specific outputs. For example, 
both CGAN and ACGAN can induce the generator to produce a specific MNIST 
digit. This is achieved by using both a 100-dim noise code and the corresponding 
one-hot label as inputs. However, other than the one-hot label, we have no other 
ways to control the properties of generated outputs.

In this chapter, we will be covering the variations of GANs that enable us to 
modify the generator outputs. In the context of the MNIST dataset, apart from 
which number to produce, we may find that we want to control the writing style. 
This could involve the tilt or the width of the desired digit. In other words, GANs 
can also learn disentangled latent codes or representations that we can use to vary 
the attributes of the generator outputs. A disentangled code or representation is 
a tensor that can change a specific feature or attribute of the output data while not 
affecting the other attributes.

For a review of CGAN and ACGAN, please refer to Chapter 4, 
Generative Adversarial Networks (GANs), and Chapter 5, Improved 
GANs.
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In the first section of this chapter, we will be discussing InfoGAN: Interpretable 
Representation Learning by Information Maximizing Generative Adversarial Nets [1], 
an extension to GANs. InfoGAN learns the disentangled representations in an 
unsupervised manner by maximizing the mutual information between the input 
codes and the output observation. On the MNIST dataset, InfoGAN disentangles 
the writing styles from the digits dataset.

In the following part of the chapter, we'll also be discussing the Stacked Generative 
Adversarial Networks or StackedGAN [2], another extension to GANs.

StackedGAN uses a pretrained encoder or classifier in order to aid in disentangling 
the latent codes. StackedGAN can be viewed as a stack of models, with each being 
made of an encoder and a GAN. Each GAN is trained in an adversarial manner by 
using the input and output data of the corresponding encoder.

In summary, the goal of this chapter is to present:

• The concepts of disentangled representations
• The principles of both InfoGAN and StackedGAN
• Implementation of both InfoGAN and StackedGAN using tf.keras

Let's begin by discussing disentangled representations.

1. Disentangled representations
The original GAN was able to generate meaningful outputs, but the downside 
was that its attributes couldn't be controlled. For example, if we trained a GAN 
to learn a distribution of celebrity faces, the generator would produce new images 
of celebrity-looking people. However, there is no way to influence the generator 
regarding the specific attributes of the face that we want. For example, we're 
unable to ask the generator for a face of a female celebrity with long black hair, 
a fair complexion, brown eyes, and who is smiling. The fundamental reason for 
this is because the 100-dim noise code that we use entangles all of the salient 
attributes of the generator outputs. We can recall that in tf.keras, the 100-dim 
code was generated by the random sampling of uniform noise distribution:

        # generate fake images from noise using generator 
        # generate noise using uniform distribution
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        # generate fake images
        fake_images = generator.predict(noise)
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If we are able to modify the original GAN such that the representation is separated 
into entangled and disentangled interpretable latent code vectors, we would be able 
to tell the generator what to synthesize.

Figure 6.1.1 shows us a GAN with an entangled code and its variation with a mixture 
of entangled and disentangled representations. In the context of the hypothetical 
celebrity face generation, with the disentangled codes, we are able to indicate the 
gender, hairstyle, facial expression, skin complexion, and eye color of the face we 
wish to generate. The n–dim entangled code is still needed to represent all the other 
facial attributes that we have not disentangled, such as the face shape, facial hair, 
eye-glasses, as just three examples. The concatenation of entangled and disentangled 
code vectors serves as the new input to the generator. The total dimension of the 
concatenated code may not be necessarily 100:

Figure 6.1.1: The GAN with the entangled code and its variation with both entangled and disentangled codes. 
This example is shown in the context of celebrity face generation

Looking at the preceding figure, it appears that GANs with disentangled 
representations can also be optimized in the same way as a vanilla GAN can be. 
This is because the generator output can be represented as:

𝒢𝒢(𝑧𝑧, 𝑐𝑐) = 𝒢𝒢(𝒛𝒛)     (Equation 6.1.1)

The code z = (z, c) comprises two elements:

• Incompressible entangled noise code similar to GANs z or noise vector.
• Latent codes, c1,c2,…,cL, which represent the interpretable disentangled codes 

of the data distribution. Collectively, all latent codes are represented by c.

For simplicity, all the latent codes are assumed to be independent:

𝑝𝑝(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐿𝐿) =∏𝑝𝑝(𝑐𝑐𝑖𝑖)
𝐿𝐿

𝑖𝑖=1
     (Equation 6.1.2)

The generator function 𝒙𝒙 = 𝒢𝒢(𝑧𝑧, 𝑐𝑐) = 𝒢𝒢(𝒛𝒛)  is provided with both the incompressible 
noise code and the latent codes. From the point of view of the generator, optimizing 
z = (z, c) is the same as optimizing z. 
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The generator network will simply ignore the constraint imposed by the 
disentangled codes when coming up with a solution.

The generator learns the distribution 𝑝𝑝𝑔𝑔(𝒙𝒙|𝑐𝑐) = 𝑝𝑝𝑔𝑔(𝒙𝒙) . This will practically defeat 
the objective of disentangled representations.

The key idea of InfoGAN is to force the GAN not to ignore the latent code c. This 
is done by maximizing the mutual information between c and 𝒢𝒢(𝑧𝑧, 𝑐𝑐) . In the next 
section, we will formulate the loss function of InfoGAN.

InfoGAN
To enforce the disentanglement of codes, InfoGAN proposed a regularizer to the 
original loss function that maximizes the mutual information between the latent 
codes c and 𝒢𝒢(𝑧𝑧, 𝑐𝑐) :

𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) = 𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝒛𝒛))     (Equation 6.1.3)

The regularizer forces the generator to consider the latent codes when it formulates 
a function that synthesizes the fake images. In the field of information theory, the 
mutual information between latent codes c and 𝒢𝒢(𝑧𝑧, 𝑐𝑐)  is defined as:

𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) = 𝐻𝐻(𝑐𝑐) − 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐))     (Equation 6.1.4)

Where H(c) is the entropy of latent code, c, and 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐))  is the conditional 
entropy of c after observing the output of the generator, 𝒢𝒢(𝑧𝑧, 𝑐𝑐) . Entropy is a 
measure of uncertainty of a random variable or an event. For example, information 
such as the sun rises in the east has a low entropy, whereas winning the jackpot in 
the lottery has a high entropy. A more detailed discussion on mutual information 
can be found in Chapter 13, Unsupervised Learning Using Mutual Information.

In Equation 6.1.4, maximizing the mutual information means minimizing 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐))  
or decreasing the uncertainty in the latent code upon observing the generated 
output. This makes sense since, for example, in the MNIST dataset, the generator 
becomes more confident in synthesizing the digit 8 if the GAN sees that it observed 
the digit 8.
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However, it is hard to estimate 𝐻𝐻(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐))  since it requires knowledge of the 
posterior 𝑃𝑃(𝑐𝑐|𝒢𝒢(𝑧𝑧, 𝑐𝑐)) = 𝑃𝑃(𝑐𝑐|𝑥𝑥) , which is something that we don't have access to. 
For simplicity, we will use the regular letter x to represent the data distribution.

The workaround is to estimate the lower bound of mutual information by 
estimating the posterior with an auxiliary distribution 𝑄𝑄(𝑐𝑐|𝑥𝑥) . InfoGAN estimates 
the lower bound of mutual information as:

𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) ≥ 𝐿𝐿𝐼𝐼(𝒢𝒢, 𝑄𝑄) = 𝐸𝐸𝑐𝑐~𝑃𝑃(𝑐𝑐),𝑥𝑥~𝒢𝒢(𝑧𝑧,𝑐𝑐)[log𝑄𝑄(𝑐𝑐|𝑥𝑥)] + 𝐻𝐻(𝑐𝑐)     (Equation 6.1.5)

In InfoGAN, H(c) is assumed to be a constant. Therefore, maximizing the mutual 
information is a matter of maximizing the expectation. The generator must be 
confident that it has generated an output with the specific attributes. We should 
note that the maximum value of this expectation is zero. Therefore, the maximum 
of the lower bound of the mutual information is H(c). In InfoGAN, 𝑄𝑄(𝑐𝑐|𝑥𝑥)  for 
discrete latent codes can be represented by softmax nonlinearity. The expectation 
is the negative categorical_crossentropy loss in tf.keras.

For continuous codes of a single dimension, the expectation is a double integral 
over c and x. This is due to the expectation that samples from both disentangled 
code distribution and generator distribution. One way of estimating the expectation 
is by assuming the samples as a good measure of continuous data. Therefore, the 
loss is estimated as 𝑐𝑐 log𝑄𝑄(𝑐𝑐|𝑥𝑥) . In Chapter 13, Unsupervised Learning Using Mutual 
Information, we will present a more precise estimation of mutual information.

To complete the network of an InfoGAN, we should have an implementation of 
𝑄𝑄(𝑐𝑐|𝑥𝑥) . For simplicity, the network Q is an auxiliary network attached to the second 
to last layer of the discriminator. Therefore, this has a minimal impact on the 
training of the original GAN. 
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Figure 6.1.2 shows the InfoGAN network diagram:

Figure 6.1.2 Network diagram showing discriminator and generator training in InfoGAN
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Table 6.1.1 shows the loss functions of InfoGAN as compared to GAN:

Network Loss Functions Number
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛))) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛)) 

4.1.1

4.1.5

InfoGAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝑧𝑧,𝑐𝑐 log (1 − 𝒟𝒟(𝒢𝒢(𝑧𝑧, 𝑐𝑐))) − 𝜆𝜆𝜆𝜆(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) 

ℒ(𝐺𝐺) = −𝔼𝔼𝑧𝑧,𝑐𝑐 log𝒟𝒟(𝒢𝒢(𝑧𝑧, 𝑐𝑐)) − 𝜆𝜆𝜆𝜆(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) 

For continuous codes, InfoGAN recommends a value of 𝜆𝜆 < 1 . In our 
example, we set 𝜆𝜆 = 0.5 . For discrete codes, InfoGAN recommends 
𝜆𝜆 = 1 .

6.1.1

6.1.2

Table 6.1.1: A comparison between the loss functions of GAN and InfoGAN

The loss functions of InfoGAN differ from GANs by an additional term, 
−𝜆𝜆𝜆𝜆(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) , where 𝜆𝜆  is a small positive constant. Minimizing the loss function of 
an InfoGAN translates to minimizing the loss of the original GAN and maximizing 
the mutual information 𝐼𝐼(𝑐𝑐; 𝒢𝒢(𝑧𝑧, 𝑐𝑐)) .

If applied to the MNIST dataset, InfoGAN can learn the disentangled discrete and 
continuous codes in order to modify the generator output attributes. For example, 
like CGAN and ACGAN, the discrete code in the form of a 10-dim one-hot label will 
be used to specify the digit to generate. However, we can add two continuous codes, 
one for controlling the angle of writing style and another for adjusting the stroke 
width. Figure 6.1.3 shows the codes for the MNIST digit in InfoGAN. We retain the 
entangled code with a smaller dimensionality to represent all other attributes:

Figure 6.1.3: The codes for both GAN and InfoGAN in the context of the MNIST dataset

Having discussed some of the concepts behind InfoGAN, let's take a look at 
InfoGAN implementation in tf.keras.
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Implementation of InfoGAN in Keras
To implement an InfoGAN on the MNIST dataset, there are some changes that 
need to be made in the base code of the ACGAN. As highlighted in Listing 6.1.1, the 
generator concatenates both entangled (z noise code) and disentangled codes (one-
hot label and continuous codes) to serve as input:

inputs = [inputs, labels] + codes

The builder functions for the generator and discriminator are also implemented 
in gan.py in the lib folder.

Listing 6.1.1: infogan-mnist-6.1.1.py

Highlighted are the lines that are specific to InfoGAN:

def generator(inputs,
              image_size,
              activation='sigmoid',
              labels=None,
              codes=None):
    """Build a Generator Model

    Stack of BN-ReLU-Conv2DTranpose to generate fake images.
    Output activation is sigmoid instead of tanh in [1].
    Sigmoid converges easily.

    Arguments:
        inputs (Layer): Input layer of the generator (the z-vector)
        image_size (int): Target size of one side 
            (assuming square image)
        activation (string): Name of output activation layer
        labels (tensor): Input labels
        codes (list): 2-dim disentangled codes for InfoGAN

    Returns:
        Model: Generator Model
    """
    image_resize = image_size // 4
    # network parameters

The complete code is available on GitHub: https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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    kernel_size = 5
    layer_filters = [128, 64, 32, 1]

    if labels is not None:
        if codes is None:
            # ACGAN labels
            # concatenate z noise vector and one-hot labels
            inputs = [inputs, labels]
        else:
            # infoGAN codes
            # concatenate z noise vector, 
            # one-hot labels and codes 1 & 2
            inputs = [inputs, labels] + codes
        x = concatenate(inputs, axis=1)
    elif codes is not None:
        # generator 0 of StackedGAN
        inputs = [inputs, codes]
        x = concatenate(inputs, axis=1)
    else:
        # default input is just 100-dim noise (z-code)
        x = inputs

    x = Dense(image_resize * image_resize * layer_filters[0])(x)
    x = Reshape((image_resize, image_resize, layer_filters[0]))(x)

    for filters in layer_filters:
        # first two convolution layers use strides = 2
        # the last two use strides = 1
        if filters > layer_filters[-2]:
            strides = 2
        else:
            strides = 1
        x = BatchNormalization()(x)
        x = Activation('relu')(x)
        x = Conv2DTranspose(filters=filters,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding='same')(x)

    if activation is not None:
        x = Activation(activation)(x)

    # generator output is the synthesized image x
    return Model(inputs, x, name='generator')
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Listing 6.1.2 shows the discriminator and Q network with the original default GAN 
output. The three auxiliary outputs corresponding to discrete code (for one-hot label) 
softmax prediction and the continuous code probabilities given the input MNIST 
digit image are highlighted.

Listing 6.1.2: infogan-mnist-6.1.1.py

Highlighted are the lines that are specific to InfoGAN:

def discriminator(inputs,
                  activation='sigmoid',
                  num_labels=None,
                  num_codes=None):
    """Build a Discriminator Model

    Stack of LeakyReLU-Conv2D to discriminate real from fake
    The network does not converge with BN so it is not used here
    unlike in [1]

    Arguments:
        inputs (Layer): Input layer of the discriminator (the image)
        activation (string): Name of output activation layer
        num_labels (int): Dimension of one-hot labels for ACGAN & 
InfoGAN
        num_codes (int): num_codes-dim Q network as output 
                    if StackedGAN or 2 Q networks if InfoGAN
                    

    Returns:
        Model: Discriminator Model
    """
    kernel_size = 5
    layer_filters = [32, 64, 128, 256]

    x = inputs
    for filters in layer_filters:
        # first 3 convolution layers use strides = 2
        # last one uses strides = 1
        if filters == layer_filters[-1]:
            strides = 1
        else:
            strides = 2
        x = LeakyReLU(alpha=0.2)(x)
        x = Conv2D(filters=filters,
                   kernel_size=kernel_size,
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                   strides=strides,
                   padding='same')(x)

    x = Flatten()(x)
    # default output is probability that the image is real
    outputs = Dense(1)(x)
    if activation is not None:
        print(activation)
        outputs = Activation(activation)(outputs)

    if num_labels:
        # ACGAN and InfoGAN have 2nd output
        # 2nd output is 10-dim one-hot vector of label
        layer = Dense(layer_filters[-2])(x)
        labels = Dense(num_labels)(layer)
        labels = Activation('softmax', name='label')(labels)
        if num_codes is None:
            outputs = [outputs, labels]
        else:
            # InfoGAN have 3rd and 4th outputs
            # 3rd output is 1-dim continous Q of 1st c given x
            code1 = Dense(1)(layer)
            code1 = Activation('sigmoid', name='code1')(code1)

            # 4th output is 1-dim continuous Q of 2nd c given x
            code2 = Dense(1)(layer)
            code2 = Activation('sigmoid', name='code2')(code2)

            outputs = [outputs, labels, code1, code2]
    elif num_codes is not None:
        # StackedGAN Q0 output
        # z0_recon is reconstruction of z0 normal distribution
        z0_recon =  Dense(num_codes)(x)
        z0_recon = Activation('tanh', name='z0')(z0_recon)
        outputs = [outputs, z0_recon]

    return Model(inputs, outputs, name='discriminator')
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Figure 6.1.4 shows the InfoGAN model in tf.keras:

Figure 6.1.4: The InfoGAN Keras model

Building the discriminator and adversarial models also requires a number of 
changes. The changes are on the loss functions used. The original discriminator 
loss function, binary_crossentropy, the categorical_crossentropy for discrete 
code, and the mi_loss function for each continuous code comprise the overall loss 
function. Each loss function is given a weight of 1.0, except for the mi_loss function, 
which is given 0.5, corresponding to 𝜆𝜆 = 0.5  for the continuous code.
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Listing 6.1.3 highlights the changes made. However, we should note that by using the 
builder function, the discriminator is instantiated as:

    # call discriminator builder with 4 outputs:
    # source, label, and 2 codes
    discriminator = gan.discriminator(inputs,
                                      num_labels=num_labels,
                                      num_codes=2)

The generator is created by:

    # call generator with inputs, 
    # labels and codes as total inputs to generator
    generator = gan.generator(inputs,
                              image_size,
                              labels=labels,
                              codes=[code1, code2])

Listing 6.1.3: infogan-mnist-6.1.1.py

Mutual information loss function as well as building and training the InfoGAN 
discriminator and adversarial networks is demonstrated in the following code:

def mi_loss(c, q_of_c_given_x):
    """ Mutual information, Equation 5 in [2],
        assuming H(c) is constant
    """
    # mi_loss = -c * log(Q(c|x))
    return K.mean(-K.sum(K.log(q_of_c_given_x + K.epsilon()) * c,
                               axis=1))

def build_and_train_models(latent_size=100):
    """Load the dataset, build InfoGAN discriminator,
    generator, and adversarial models.
    Call the InfoGAN train routine.
    """

    # load MNIST dataset
    (x_train, y_train), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    # train labels
    num_labels = len(np.unique(y_train))
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    y_train = to_categorical(y_train)

    model_name = "infogan_mnist"
    # network parameters
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )
    code_shape = (1, )

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    # call discriminator builder with 4 outputs: 
    # source, label, and 2 codes
    discriminator = gan.discriminator(inputs,
                                      num_labels=num_labels,
                                      num_codes=2)
    # [1] uses Adam, but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # loss functions: 1) probability image is real
    # (binary crossentropy)
    # 2) categorical cross entropy image label,
    # 3) and 4) mutual information loss
    loss = ['binary_crossentropy',
            'categorical_crossentropy',
            mi_loss,
            mi_loss]
    # lamda or mi_loss weight is 0.5
    loss_weights = [1.0, 1.0, 0.5, 0.5]
    discriminator.compile(loss=loss,
                          loss_weights=loss_weights,
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    labels = Input(shape=label_shape, name='labels')
    code1 = Input(shape=code_shape, name="code1")
    code2 = Input(shape=code_shape, name="code2")
    # call generator with inputs, 
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    # labels and codes as total inputs to generator
    generator = gan.generator(inputs,
                              image_size,
                              labels=labels,
                              codes=[code1, code2])
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    discriminator.trainable = False
    # total inputs = noise code, labels, and codes
    inputs = [inputs, labels, code1, code2]
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    # same loss as discriminator
    adversarial.compile(loss=loss,
                        loss_weights=loss_weights,
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    data = (x_train, y_train)
    params = (batch_size,
              latent_size,
              train_steps,
              num_labels,
              model_name)
    train(models, data, params)

As far as the training is concerned, we can see that the InfoGAN is similar to 
ACGAN, except that we need to supply c for the continuous code. c is drawn from 
normal distribution with a standard deviation of 0.5 and a mean of 0.0. We'll use 
randomly sampled labels for the fake data and dataset class labels for the real data 
to represent discrete latent code.

Listing 6.1.4 highlights the changes made to the training function. Similar to all 
previous GANs, the discriminator and generator (through adversarial training) are 
alternately trained. During adversarial training, the discriminator weights are frozen. 



Disentangled Representation GANs

[ 186 ]

Sample generator output images are saved every 500 interval steps by using the gan.
py plot_images() function.

Listing 6.1.4: infogan-mnist-6.1.1.py

def train(models, data, params):
    """Train the Discriminator and Adversarial networks

    Alternately train discriminator and adversarial networks by batch.
    Discriminator is trained first with real and fake images,
    corresponding one-hot labels and continuous codes.
    Adversarial is trained next with fake images pretending 
    to be real, corresponding one-hot labels and continous codes.
    Generate sample images per save_interval.

    # Arguments
        models (Models): Generator, Discriminator, Adversarial models
        data (tuple): x_train, y_train data
        params (tuple): Network parameters
    """
    # the GAN models
    generator, discriminator, adversarial = models
    # images and their one-hot labels
    x_train, y_train = data
    # network parameters
    batch_size, latent_size, train_steps, num_labels, model_name = \
            params
    # the generator image is saved every 500 steps
    save_interval = 500
    # noise vector to see how the generator output 
    # evolves during training
    noise_input = np.random.uniform(-1.0,
                                    1.0,
                                    size=[16, latent_size])
    # random class labels and codes
    noise_label = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    noise_code1 = np.random.normal(scale=0.5, size=[16, 1])
    noise_code2 = np.random.normal(scale=0.5, size=[16, 1])
    # number of elements in train dataset
    train_size = x_train.shape[0]
    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_label, axis=1))

    for i in range(train_steps):
        # train the discriminator for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
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        # randomly pick real images and 
        # corresponding labels from dataset 
        rand_indexes = np.random.randint(0,
                                         train_size,
                                         size=batch_size)
        real_images = x_train[rand_indexes]
        real_labels = y_train[rand_indexes]
        # random codes for real images
        real_code1 = np.random.normal(scale=0.5,
                                      size=[batch_size, 1])
        real_code2 = np.random.normal(scale=0.5,
                                      size=[batch_size, 1])
        # generate fake images, labels and codes
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]
        fake_code1 = np.random.normal(scale=0.5,
                                      size=[batch_size, 1])
        fake_code2 = np.random.normal(scale=0.5,
                                      size=[batch_size, 1])
        inputs = [noise, fake_labels, fake_code1, fake_code2]
        fake_images = generator.predict(inputs)

        # real + fake images = 1 batch of train data
        x = np.concatenate((real_images, fake_images))
        labels = np.concatenate((real_labels, fake_labels))
        codes1 = np.concatenate((real_code1, fake_code1))
        codes2 = np.concatenate((real_code2, fake_code2))

        # label real and fake images
        # real images label is 1.0
        y = np.ones([2 * batch_size, 1])
        # fake images label is 0.0
        y[batch_size:, :] = 0

        # train discriminator network, 
        # log the loss and label accuracy
        outputs = [y, labels, codes1, codes2]
        # metrics = ['loss', 'activation_1_loss', 'label_loss',
        # 'code1_loss', 'code2_loss', 'activation_1_acc',
        # 'label_acc', 'code1_acc', 'code2_acc']
        # from discriminator.metrics_names
        metrics = discriminator.train_on_batch(x, outputs)
        fmt = "%d: [discriminator loss: %f, label_acc: %f]"
        log = fmt % (i, metrics[0], metrics[6])



Disentangled Representation GANs

[ 188 ]

        # train the adversarial network for 1 batch
        # 1 batch of fake images with label=1.0 and
        # corresponding one-hot label or class + random codes
        # since the discriminator weights are frozen 
        # in adversarial network only the generator is trained
        # generate fake images, labels and codes
        noise = np.random.uniform(-1.0,
                                  1.0,
                                  size=[batch_size, latent_size])
        fake_labels = np.eye(num_labels)[np.random.choice(num_labels,
                                                          batch_size)]
        fake_code1 = np.random.normal(scale=0.5,
                                      size=[batch_size, 1])
        fake_code2 = np.random.normal(scale=0.5,
                                      size=[batch_size, 1])
        # label fake images as real
        y = np.ones([batch_size, 1])

        # train the adversarial network 
        # note that unlike in discriminator training,
        # we do not save the fake images in a variable
        # the fake images go to the discriminator
        # input of the adversarial for classification
        # log the loss and label accuracy
        inputs = [noise, fake_labels, fake_code1, fake_code2]
        outputs = [y, fake_labels, fake_code1, fake_code2]
        metrics  = adversarial.train_on_batch(inputs, outputs)
        fmt = "%s [adversarial loss: %f, label_acc: %f]"
        log = fmt % (log, metrics[0], metrics[6])

        print(log)
        if (i + 1) % save_interval == 0:
            # plot generator images on a periodic basis
            gan.plot_images(generator,
                            noise_input=noise_input,
                            noise_label=noise_label,
                            noise_codes=[noise_code1, noise_code2],
                            show=False,
                            step=(i + 1),
                            model_name=model_name)

    # save the model after training the generator
    # the trained generator can be reloaded for
    # future MNIST digit generation
    generator.save(model_name + ".h5")
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Given the tf.keras implementation of InfoGAN, the next section presents the 
generator MNIST outputs with disentangled attributes.

Generator outputs of InfoGAN
Similar to all previous GANs that have been presented to us, we've trained our 
InfoGAN for 40,000 steps. After the training is completed, we're able to run the 
InfoGAN generator to generate new outputs using the model saved on the infogan_
mnist.h5 file. The following validations are conducted:

1. Generate digits 0 to 9 by varying the discrete labels from 0 to 9. Both 
continuous codes are set to zero. The results are shown in Figure 6.1.5. We 
can see that the InfoGAN discrete code can control the digits produced by 
the generator:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=0 --code1=0 --code2=0

to

python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=9 --code1=0 --code2=0

In Figure 6.1.5 we can see the images generated by the InfoGAN:

Figure 6.1.5: The images generated by the InfoGAN as the discrete code is varied from 0 to 9. Both continuous 
codes are set to zero
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2. Examine the effect of the first continuous code to understand which attribute 
has been affected. We vary the first continuous code from -2.0 to 2.0 for digits 
0 to 9. The second continuous code is set to 0.0. Figure 6.1.6 shows that the 
first continuous code controls the thickness of the digit:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=0 --code1=0 --code2=0 --p1

Figure 6.1.6: The images generated by InfoGAN as the first continuous code is varied from -2.0 to 2.0 for digits 0 
to 9. The second continuous code is set to zero. The first continuous code controls the thickness of the digit

3. Similar to the previous step, but instead focusing more on the second 
continuous code. Figure 6.1.7 shows that the second continuous code controls 
the rotation angle (tilt) of the writing style:
python3 infogan-mnist-6.1.1.py --generator=infogan_mnist.h5

--digit=0 --code1=0 --code2=0 --p2
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Figure 6.1.7: The images generated by InfoGAN as the second continuous code is varied from -2.0 to 2.0 for 
digits 0 to 9. The first continuous code is set to zero. The second continuous code controls the rotation angle 

(tilt) of the writing style

From these validation results, we can see that apart from the ability to generate 
MNIST-looking digits, InfoGAN expands the ability of conditional GANs such as 
CGAN and ACGAN. The network automatically learned two arbitrary codes that 
can control the specific attributes of the generator output. It would be interesting 
to see what additional attributes could be controlled if we increased the number of 
continuous codes beyond 2. This could be accomplished by augmenting the list of 
codes in the highlighted lines of Listing 6.1.1 to Listing 6.1.4.

The results in this section demonstrated that the attributes of the generator 
outputs can be disentangled by maximizing the mutual information between the 
code and the data distribution. In the following section, a different approach on 
disentanglement is presented. The idea of StackedGAN is to inject the code at the 
feature level.
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2. StackedGAN
In the same spirit as InfoGAN, StackedGAN proposes a method for disentangling 
latent representations for conditioning generator outputs. However, StackedGAN 
uses a different approach to the problem. Instead of learning how to condition the 
noise to produce the desired output, StackedGAN breaks down a GAN into a stack 
of GANs. Each GAN is trained independently in the usual discriminator-adversarial 
manner with its own latent code.

Figure 6.2.1 shows us how StackedGAN works in the context of hypothetical 
celebrity face generation, assuming that the Encoder network has been trained 
to classify celebrity faces:

Figure 6.2.1: The basic idea of StackedGAN in the context of celebrity face generation. Assuming that there is 
a hypothetical deep encoder network that can perform classification on celebrity faces, a StackedGAN simply 

inverts the process of the encoder
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The Encoder network is composed of a stack of simple encoders, Encoderi where i = 0 
… n - 1 corresponding to n features. Each encoder extracts certain facial features. For 
example, Encoder0 may be the encoder for hairstyle features, Features1. All the simple 
encoders contribute to making the overall Encoder perform correct predictions.

The idea behind StackedGAN is that if we would like to build a GAN that generates 
fake celebrity faces, we should simply invert the Encoder. StackedGAN consists 
of a stack of simpler GANs, GANi where i = 0 … n - 1 corresponding to n features. 
Each GANi learns to invert the process of its corresponding encoder, Encoderi. For 
example, GAN0 generates fake celebrity faces from fake hairstyle features, which is 
the inverse of the Encoder0 process.

Each GANi uses a latent code, zi, that conditions its generator output. For example, 
the latent code, z0, can alter the hairstyle from curly to wavy. The stack of GANs 
can also act as one to synthesize fake celebrity faces, completing the inverse process 
of the whole Encoder. The latent code of each GANi, zi, can be used to alter specific 
attributes of fake celebrity faces.

With the key idea of how the StackedGAN works, let's proceed to the next section 
and see how it is implemented in tf.keras.

Implementation of StackedGAN in Keras
The detailed network model of a StackedGAN can be seen in Figure 6.2.2. For 
conciseness, only two encoder-GANs per stack are shown. The figure may initially 
appear complex, but it is just a repetition of an encoder-GAN, meaning that if we 
understood how to train one encoder-GAN, the remainder utilize the same concept. 
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In this section, we assume that the StackedGAN is designed for MNIST digit 
generation.

Figure 6.2.2: A StackedGAN comprises a stack of an encoder and a GAN. The encoder is pretrained to perform 
classification. Generator1, G1, learns to synthesize f1f features conditioned on the fake label, yf, and latent code, z1f. 

Generator0, G0, produces fake images using both the fake features, f1f and latent code, z0f
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StackedGAN starts with an Encoder. It could be a trained classifier that predicts 
the correct labels. The intermediate features vector, f1r, is made available for 
GAN training. For MNIST, we can use a CNN-based classifier similar to what we 
discussed in Chapter 1, Introducing Advanced Deep Learning with Keras.

Figure 6.2.3 shows the Encoder and its network model implementation in tf.keras:

Figure 6.2.3: The encoder in StackedGAN is a simple CNN-based classifier

Listing 6.2.1 shows the tf.keras code for the preceding figure. It is similar to the 
CNN-based classifier in Chapter 1, Introducing Advanced Deep Learning with Keras, 
except that we use a Dense layer to extract the 256-dim feature. There are two 
output models, Encoder0 and Encoder1. Both will be used to train the StackedGAN.

Listing 6.2.1: stackedgan-mnist-6.2.1.py

def build_encoder(inputs, num_labels=10, feature1_dim=256):
    """ Build the Classifier (Encoder) Model sub networks

    Two sub networks: 
    1) Encoder0: Image to feature1 (intermediate latent feature)
    2) Encoder1: feature1 to labels

    # Arguments
        inputs (Layers): x - images, feature1 - 
            feature1 layer output
        num_labels (int): number of class labels
        feature1_dim (int): feature1 dimensionality
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    # Returns
        enc0, enc1 (Models): Description below 
    """
    kernel_size = 3
    filters = 64

    x, feature1 = inputs
    # Encoder0 or enc0
    y = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
               activation='relu')(x)
    y = MaxPooling2D()(y)
    y = Conv2D(filters=filters,
               kernel_size=kernel_size,
               padding='same',
               activation='relu')(y)
    y = MaxPooling2D()(y)
    y = Flatten()(y)
    feature1_output = Dense(feature1_dim, activation='relu')(y)
    # Encoder0 or enc0: image (x or feature0) to feature1 
    enc0 = Model(inputs=x, outputs=feature1_output, name="encoder0")

    # Encoder1 or enc1
    y = Dense(num_labels)(feature1)
    labels = Activation('softmax')(y)
    # Encoder1 or enc1: feature1 to class labels (feature2)
    enc1 = Model(inputs=feature1, outputs=labels, name="encoder1")

    # return both enc0 and enc1
    return enc0, enc1

The Encoder0 output, f1r, is the 256-dim feature vector that we want Generator1 to learn 
to synthesize. It is available as an auxiliary output of Encoder0, E0. The overall Encoder 
is trained to classify MNIST digits, xr. The correct labels, yr, are predicted by Encoder1, 
E1. In the process, the intermediate set of features, f1r, is learned and made available 
for Generator0 training. Subscript r is used to emphasize and distinguish real data 
from fake data when the GAN is trained against this encoder.
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Given that the Encoder inputs (xr) intermediate features (f1r) and labels (yr), each 
GAN is trained in the usual discriminator–adversarial manner. The loss functions 
are given by Equation 6.2.1 to Equation 6.2.5 in Table 6.2.1. Equation 6.2.1 and Equation 
6.2.2 are the usual loss functions of the generic GAN. StackedGAN has two 
additional loss functions, Conditional and Entropy.

Network Loss Functions Number
GAN ℒ(𝐷𝐷) = −𝔼𝔼𝒙𝒙~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝒟𝒟(𝒙𝒙) − 𝔼𝔼𝒛𝒛 log(1 −𝒟𝒟(𝒢𝒢(𝒛𝒛))) 

ℒ(𝐺𝐺) = −𝔼𝔼𝒛𝒛 log𝒟𝒟(𝒢𝒢(𝒛𝒛)) 

4.1.1

4.1.5

StackedGAN ℒ𝑖𝑖
(𝐷𝐷) = −𝔼𝔼𝑓𝑓𝑖𝑖~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log 𝒟𝒟(𝑓𝑓𝑖𝑖) − 𝔼𝔼𝑓𝑓𝑖𝑖+1~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑧𝑧𝑖𝑖 log (1 − 𝒟𝒟(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖))) 

ℒ𝑖𝑖
(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 = −𝔼𝔼𝑓𝑓𝑖𝑖+1~𝑝𝑝𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎, 𝑧𝑧𝑖𝑖 log 𝒟𝒟(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖)) 

ℒ𝑖𝑖
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ‖𝐸𝐸𝑖𝑖(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖)), 𝑓𝑓𝑖𝑖‖2 

ℒ𝑖𝑖
(𝐺𝐺)𝑒𝑒𝑒𝑒𝑒𝑒 = ‖𝒬𝒬𝑖𝑖(𝒢𝒢(𝑓𝑓𝑖𝑖+1, 𝑧𝑧𝑖𝑖)), 𝑧𝑧𝑖𝑖‖2 

ℒ𝑖𝑖
(𝐺𝐺) = 𝜆𝜆1ℒ𝑖𝑖

(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜆𝜆2ℒ𝑖𝑖
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎 + 𝜆𝜆3ℒ𝑖𝑖

(𝐺𝐺)𝑒𝑒𝑐𝑐𝑒𝑒 

where 𝜆𝜆1, 𝜆𝜆2, 𝑎𝑎𝑎𝑎𝑎𝑎𝜆𝜆3  are weights and i = Encoder and GAN 
id

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Table 6.2.1: A comparison between the loss functions of GAN and StackedGAN. ~pdata means sampling from 
the corresponding encoder data (input, feature, or output)

The conditional loss function, ℒ𝑖𝑖
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   in Equation 6.2.3, ensures that the generator 

does not ignore the input, fi+1, when synthesizing the output, fi, from the input 
noise code, zi. The encoder, Encoderi, must be able to recover the generator input 
by inverting the process of the generator, Generatori. The difference between the 
generator input and the recovered input using the encoder is measured by L2 or 
Euclidean distance (mean squared error (MSE)).
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Figure 6.2.4 shows the network elements involved in the computation of ℒ0
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  :

Figure 6.2.4: A simpler version of Figure 6.2.3 showing only the network elements involved in the computation 

of ℒ0
(𝐺𝐺)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

The conditional loss function, however, introduces a new problem. The generator 
ignores the input noise code, zi and simply relies on fi+1. Entropy loss function, 
ℒ𝑖𝑖
(𝐺𝐺)𝑒𝑒𝑒𝑒𝑒𝑒   in Equation 6.2.4, ensures that the generator does not ignore the noise code, 

zi. The Q network recovers the noise code from the output of the generator. The 
difference between the recovered noise and the input noise is also measured by L2 
or Euclidean distance (MSE).

Figure 6.2.5 shows the network elements involved in the computation of ℒ0
(𝐺𝐺)𝑒𝑒𝑒𝑒𝑡𝑡  :
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Figure 6.2.5: A simpler version of Figure 6.2.3 only showing us the network elements involved in the 
computation of ℒ0

(𝐺𝐺)𝑒𝑒𝑒𝑒𝑒𝑒  

The last loss function is similar to the usual GAN loss. It comprises discriminator 
loss, ℒ𝑖𝑖

(𝐷𝐷) , and generator (through adversarial) loss, ℒ𝑖𝑖
(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 . Figure 6.2.6 shows the 

elements involved in the GAN loss.

Figure 6.2.6: A simpler version of Figure 6.2.3 showing only the network elements involved in the computation 

of ℒ𝑖𝑖
(𝐷𝐷)  and ℒ0

(𝐺𝐺)𝑎𝑎𝑎𝑎𝑎𝑎 
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In Equation 6.2.5, the weighted sum of the three generator loss functions is the final 
generator loss function. In the Keras code that we will present, all the weights are 
set to 1.0, except for the entropy loss, which is set to 10.0. In Equation 6.2.1 to Equation 
6.2.5, i refers to the encoder and GAN group ID or level. In the original paper, the 
network is first trained independently and then jointly. During independent training, 
the encoder is trained first. During joint training, both real and fake data are used.

The implementation of the StackedGAN generator and discriminator in tf.keras 
requires few changes to provide auxiliary points to access the intermediate features. 
Figure 6.2.7 shows the generator tf.keras model.:

Figure 6.2.7: A StackedGAN generator model in Keras
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Listing 6.2.2 illustrates the function that builds two generators (gen0 and gen1) 
corresponding to Generator0 and Generator1. The gen1 generator is made of three 
Dense layers with labels and the noise code z1f as inputs. The third layer generates 
the fake f1f feature. The gen0 generator is similar to other GAN generators that we've 
presented and can be instantiated using the generator builder in gan.py:

# gen0: feature1 + z0 to feature0 (image)
gen0 = gan.generator(feature1, image_size, codes=z0)

The gen0 input is f1 features and the noise code z0. The output is the generated fake 
image, xf:

Listing 6.2.2: stackedgan-mnist-6.2.1.py

def build_generator(latent_codes, image_size, feature1_dim=256):
    """Build Generator Model sub networks

    Two sub networks: 1) Class and noise to feature1 
        (intermediate feature)
        2) feature1 to image

    # Arguments
        latent_codes (Layers): dicrete code (labels),
            noise and feature1 features
        image_size (int): Target size of one side
            (assuming square image)
        feature1_dim (int): feature1 dimensionality

    # Returns
        gen0, gen1 (Models): Description below
    """

    # Latent codes and network parameters
    labels, z0, z1, feature1 = latent_codes
    # image_resize = image_size // 4
    # kernel_size = 5
    # layer_filters = [128, 64, 32, 1]

    # gen1 inputs
    inputs = [labels, z1]      # 10 + 50 = 62-dim
    x = concatenate(inputs, axis=1)
    x = Dense(512, activation='relu')(x)
    x = BatchNormalization()(x)
    x = Dense(512, activation='relu')(x)
    x = BatchNormalization()(x)
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    fake_feature1 = Dense(feature1_dim, activation='relu')(x)
    # gen1: classes and noise (feature2 + z1) to feature1
    gen1 = Model(inputs, fake_feature1, name='gen1')

    # gen0: feature1 + z0 to feature0 (image)
    gen0 = gan.generator(feature1, image_size, codes=z0)

    return gen0, gen1

Figure 6.2.8 shows the discriminator tf.keras model:

Figure 6.2.8: A StackedGAN discriminator model in Keras

We provide the functions to build Discriminator0 and Discriminator1 (dis0 and dis1). 
The dis0 discriminator is similar to a GAN discriminator, except for the feature 
vector input and the auxiliary network Q0 that recovers z0. The builder function in 
gan.py is used to create dis0:

dis0 = gan.discriminator(inputs, num_codes=z_dim)

The dis1 discriminator is made of a three-layer MLP, as shown in Listing 6.2.3. The 
last layer discriminates between the real and fake f1. Q1 network shares the first two 
layers of dis1. Its third layer recovers z1.
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Listing 6.2.3: stackedgan-mnist-6.2.1.py

def build_discriminator(inputs, z_dim=50):
    """Build Discriminator 1 Model

    Classifies feature1 (features) as real/fake image and recovers
    the input noise or latent code (by minimizing entropy loss)

    # Arguments
        inputs (Layer): feature1
        z_dim (int): noise dimensionality

    # Returns
        dis1 (Model): feature1 as real/fake and recovered latent code
    """

    # input is 256-dim feature1
    x = Dense(256, activation='relu')(inputs)
    x = Dense(256, activation='relu')(x)

    # first output is probability that feature1 is real
    f1_source = Dense(1)(x)
    f1_source = Activation('sigmoid',
                           name='feature1_source')(f1_source)

    # z1 reonstruction (Q1 network)
    z1_recon = Dense(z_dim)(x)
    z1_recon = Activation('tanh', name='z1')(z1_recon)

    discriminator_outputs = [f1_source, z1_recon]
    dis1 = Model(inputs, discriminator_outputs, name='dis1')
    return dis1

With all builder functions available, StackedGAN is assembled in Listing 6.2.4. 
Before training StackedGAN, the encoder is pretrained. Note that we already 
incorporated the three generator loss functions (adversarial, conditional, and 
entropy) in the adversarial model training. The Q network shares some common 
layers with the discriminator model. Therefore, its loss function is also incorporated 
in the discriminator model training.

Listing 6.2.4: stackedgan-mnist-6.2.1.py

def build_and_train_models():
    """Load the dataset, build StackedGAN discriminator,
    generator, and adversarial models.
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    Call the StackedGAN train routine.
    """

    # load MNIST dataset
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    # reshape and normalize images
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    x_test = np.reshape(x_test, [-1, image_size, image_size, 1])
    x_test = x_test.astype('float32') / 255

    # number of labels
    num_labels = len(np.unique(y_train))
    # to one-hot vector
    y_train = to_categorical(y_train)
    y_test = to_categorical(y_test)

    model_name = "stackedgan_mnist"
    # network parameters
    batch_size = 64
    train_steps = 10000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )
    z_dim = 50
    z_shape = (z_dim, )
    feature1_dim = 256
    feature1_shape = (feature1_dim, )

    # build discriminator 0 and Q network 0 models
    inputs = Input(shape=input_shape, name='discriminator0_input')
    dis0 = gan.discriminator(inputs, num_codes=z_dim)
    # [1] uses Adam, but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # loss fuctions: 1) probability image is real (adversarial0 loss)
    # 2) MSE z0 recon loss (Q0 network loss or entropy0 loss)
    loss = ['binary_crossentropy', 'mse']
    loss_weights = [1.0, 10.0]
    dis0.compile(loss=loss,
                 loss_weights=loss_weights,
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                 optimizer=optimizer,
                 metrics=['accuracy'])
    dis0.summary() # image discriminator, z0 estimator 

    # build discriminator 1 and Q network 1 models
    input_shape = (feature1_dim, )
    inputs = Input(shape=input_shape, name='discriminator1_input')
    dis1 = build_discriminator(inputs, z_dim=z_dim )
    # loss fuctions: 1) probability feature1 is real 
    # (adversarial1 loss)
    # 2) MSE z1 recon loss (Q1 network loss or entropy1 loss)
    loss = ['binary_crossentropy', 'mse']
    loss_weights = [1.0, 1.0]
    dis1.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    dis1.summary() # feature1 discriminator, z1 estimator

    # build generator models
    feature1 = Input(shape=feature1_shape, name='feature1_input')
    labels = Input(shape=label_shape, name='labels')
    z1 = Input(shape=z_shape, name="z1_input")
    z0 = Input(shape=z_shape, name="z0_input")
    latent_codes = (labels, z0, z1, feature1)
    gen0, gen1 = build_generator(latent_codes, image_size)
    gen0.summary() # image generator
    gen1.summary() # feature1 generator

    # build encoder models
    input_shape = (image_size, image_size, 1)
    inputs = Input(shape=input_shape, name='encoder_input')
    enc0, enc1 = build_encoder((inputs, feature1), num_labels)
    enc0.summary() # image to feature1 encoder
    enc1.summary() # feature1 to labels encoder (classifier)
    encoder = Model(inputs, enc1(enc0(inputs)))
    encoder.summary() # image to labels encoder (classifier)

    data = (x_train, y_train), (x_test, y_test)
    train_encoder(encoder, data, model_name=model_name)

    # build adversarial0 model =
    # generator0 + discriminator0 + encoder0
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
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    # encoder0 weights frozen
    enc0.trainable = False
    # discriminator0 weights frozen
    dis0.trainable = False
    gen0_inputs = [feature1, z0]
    gen0_outputs = gen0(gen0_inputs)
    adv0_outputs = dis0(gen0_outputs) + [enc0(gen0_outputs)]
    # feature1 + z0 to prob feature1 is 
    # real + z0 recon + feature0/image recon
    adv0 = Model(gen0_inputs, adv0_outputs, name="adv0")
    # loss functions: 1) prob feature1 is real (adversarial0 loss)
    # 2) Q network 0 loss (entropy0 loss)
    # 3) conditional0 loss
    loss = ['binary_crossentropy', 'mse', 'mse']
    loss_weights = [1.0, 10.0, 1.0]
    adv0.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    adv0.summary()

    # build adversarial1 model = 
    # generator1 + discriminator1 + encoder1
    # encoder1 weights frozen
    enc1.trainable = False
    # discriminator1 weights frozen
    dis1.trainable = False
    gen1_inputs = [labels, z1]
    gen1_outputs = gen1(gen1_inputs)
    adv1_outputs = dis1(gen1_outputs) + [enc1(gen1_outputs)]
    # labels + z1 to prob labels are real + z1 recon + feature1 recon
    adv1 = Model(gen1_inputs, adv1_outputs, name="adv1")
    # loss functions: 1) prob labels are real (adversarial1 loss)
    # 2) Q network 1 loss (entropy1 loss)
    # 3) conditional1 loss (classifier error)
    loss_weights = [1.0, 1.0, 1.0]
    loss = ['binary_crossentropy',
            'mse',
            'categorical_crossentropy']
    adv1.compile(loss=loss,
                 loss_weights=loss_weights,
                 optimizer=optimizer,
                 metrics=['accuracy'])
    adv1.summary()
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    # train discriminator and adversarial networks
    models = (enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1)
    params = (batch_size, train_steps, num_labels, z_dim, model_name)
    train(models, data, params)

Finally, the training function bears a resemblance to a typical GAN training, except 
that we only train one GAN at a time (that is, GAN1 and then GAN0). The code is 
shown in Listing 6.2.5. It's worth noting that the training sequence is:

1. Discriminator1 and Q1 networks by minimizing the discriminator and entropy 
losses

2. Discriminator0 and Q0 networks by minimizing the discriminator and entropy 
losses

3. Adversarial1 network by minimizing the adversarial, entropy, and conditional 
losses

4. Adversarial0 network by minimizing the adversarial, entropy, and conditional 
losses

Listing 6.2.5: stackedgan-mnist-6.2.1.py

def train(models, data, params):
    """Train the discriminator and adversarial Networks

    Alternately train discriminator and adversarial networks by batch.
    Discriminator is trained first with real and fake images,
    corresponding one-hot labels and latent codes.
    Adversarial is trained next with fake images pretending
    to be real, corresponding one-hot labels and latent codes.
    Generate sample images per save_interval.

    # Arguments
        models (Models): Encoder, Generator, Discriminator,
            Adversarial models
        data (tuple): x_train, y_train data
        params (tuple): Network parameters

    """
    # the StackedGAN and Encoder models
    enc0, enc1, gen0, gen1, dis0, dis1, adv0, adv1 = models
    # network parameters
    batch_size, train_steps, num_labels, z_dim, model_name = params
    # train dataset
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    (x_train, y_train), (_, _) = data
    # the generator image is saved every 500 steps
    save_interval = 500

    # label and noise codes for generator testing
    z0 = np.random.normal(scale=0.5, size=[16, z_dim])
    z1 = np.random.normal(scale=0.5, size=[16, z_dim])
    noise_class = np.eye(num_labels)[np.arange(0, 16) % num_labels]
    noise_params = [noise_class, z0, z1]
    # number of elements in train dataset
    train_size = x_train.shape[0]
    print(model_name,
          "Labels for generated images: ",
          np.argmax(noise_class, axis=1))

    for i in range(train_steps):
        # train the discriminator1 for 1 batch
        # 1 batch of real (label=1.0) and fake feature1 (label=0.0)
        # randomly pick real images from dataset
        rand_indexes = np.random.randint(0,
                                         train_size,
                                         size=batch_size)
        real_images = x_train[rand_indexes]
        # real feature1 from encoder0 output
        real_feature1 = enc0.predict(real_images)
        # generate random 50-dim z1 latent code
        real_z1 = np.random.normal(scale=0.5,
                                   size=[batch_size, z_dim])
        # real labels from dataset
        real_labels = y_train[rand_indexes]

        # generate fake feature1 using generator1 from
        # real labels and 50-dim z1 latent code
        fake_z1 = np.random.normal(scale=0.5,
                                   size=[batch_size, z_dim])
        fake_feature1 = gen1.predict([real_labels, fake_z1])

        # real + fake data
        feature1 = np.concatenate((real_feature1, fake_feature1))
        z1 = np.concatenate((fake_z1, fake_z1))

        # label 1st half as real and 2nd half as fake
        y = np.ones([2 * batch_size, 1])
        y[batch_size:, :] = 0
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        # train discriminator1 to classify feature1 as
        # real/fake and recover
        # latent code (z1). real = from encoder1,
        # fake = from genenerator1
        # joint training using discriminator part of
        # advserial1 loss and entropy1 loss
        metrics = dis1.train_on_batch(feature1, [y, z1])
        # log the overall loss only
        log = "%d: [dis1_loss: %f]" % (i, metrics[0])

        # train the discriminator0 for 1 batch
        # 1 batch of real (label=1.0) and fake images (label=0.0)
        # generate random 50-dim z0 latent code
        fake_z0 = np.random.normal(scale=0.5, size=[batch_size, z_
dim])
        # generate fake images from real feature1 and fake z0
        fake_images = gen0.predict([real_feature1, fake_z0])

        # real + fake data
        x = np.concatenate((real_images, fake_images))
        z0 = np.concatenate((fake_z0, fake_z0))

        # train discriminator0 to classify image 
        # as real/fake and recover latent code (z0)
        # joint training using discriminator part of advserial0 loss
        # and entropy0 loss
        metrics = dis0.train_on_batch(x, [y, z0])
        # log the overall loss only (use dis0.metrics_names)
        log = "%s [dis0_loss: %f]" % (log, metrics[0])

        # adversarial training 
        # generate fake z1, labels
        fake_z1 = np.random.normal(scale=0.5,
                                   size=[batch_size, z_dim])
        # input to generator1 is sampling fr real labels and
        # 50-dim z1 latent code
        gen1_inputs = [real_labels, fake_z1]

        # label fake feature1 as real
        y = np.ones([batch_size, 1])

        # train generator1 (thru adversarial) by fooling i
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        # the discriminator
        # and approximating encoder1 feature1 generator
        # joint training: adversarial1, entropy1, conditional1
        metrics = adv1.train_on_batch(gen1_inputs,
                                      [y, fake_z1, real_labels])
        fmt = "%s [adv1_loss: %f, enc1_acc: %f]"
        # log the overall loss and classification accuracy
        log = fmt % (log, metrics[0], metrics[6])

        # input to generator0 is real feature1 and
        # 50-dim z0 latent code
        fake_z0 = np.random.normal(scale=0.5,
                                   size=[batch_size, z_dim])
        gen0_inputs = [real_feature1, fake_z0]

        # train generator0 (thru adversarial) by fooling
        # the discriminator and approximating encoder1 imag 
        # source generator joint training:
        # adversarial0, entropy0, conditional0
        metrics = adv0.train_on_batch(gen0_inputs,
                                      [y, fake_z0, real_feature1])
        # log the overall loss only
        log = "%s [adv0_loss: %f]" % (log, metrics[0])

        print(log)
        if (i + 1) % save_interval == 0:
            generators = (gen0, gen1)
            plot_images(generators,
                        noise_params=noise_params,
                        show=False,
                        step=(i + 1),
                        model_name=model_name)

    # save the modelis after training generator0 & 1
    # the trained generator can be reloaded for
    # future MNIST digit generation
    gen1.save(model_name + "-gen1.h5")
    gen0.save(model_name + "-gen0.h5")
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The code implementation of StackedGAN in tf.keras is now complete. After 
training, the generator outputs can be evaluated to examine whether certain 
attributes of synthesized MNIST digits can be controlled in a similar manner 
to what we did in InfoGAN.

Generator outputs of StackedGAN
After training the StackedGAN for 10,000 steps, the Generator0 and Generator1 models 
are saved on files. Stacked together, Generator0 and Generator1 can synthesize fake 
images conditioned on label and noise codes, z0 and z1.

The StackedGAN generator can be qualitatively validated by:

1. Varying the discrete labels from 0 to 9 with both noise codes, z0 and z1 
sampled from a normal distribution with a mean of 0.5 and a standard 
deviation of 1.0. The results are shown in Figure 6.2.9. We're able to see 
that the StackedGAN discrete code can control the digits produced by the 
generator:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --digit=0

              to

python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --digit=9
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Figure 6.2.9: Images generated by StackedGAN as the discrete code is varied from 0 to 9. Both z0 and z1 have 
been sampled from a normal distribution with a mean of 0 and a standard deviation of 0.5

2. Varying the first noise code, z0, as a constant vector from -4.0 to 4.0 for digits 
0 to 9 is shown as follows. The second noise code, z1, is set to a zero vector. 
Figure 6.2.10 shows that the first noise code controls the thickness of the digit. 
For example, for digit 8:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 --p0

--digit=8
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Figure 6.2.10: Images generated by using a StackedGAN as the first noise code, z0, varies from a constant vector 
-4.0 to 4.0 for digits 0 to 9. z0 appears to control the thickness of each digit

3. Varying the second noise code, z1, as a constant vector from -1.0 to 1.0 for 
digits 0 to 9 is shown as follows. The first noise code, z0, is set to a zero vector. 
Figure 6.2.11 shows that the second noise code controls the rotation (tilt) and, 
to a certain extent, the thickness of the digit. For example, for digit 8:
python3 stackedgan-mnist-6.2.1.py

--generator0=stackedgan_mnist-gen0.h5

--generator1=stackedgan_mnist-gen1.h5 --z0=0 --z1=0 --p1

--digit=8
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Figure 6.2.11: The images generated by StackedGAN as the second noise code, z1, varies from a constant vector 
-1.0 to 1.0 for digits 0 to 9. z1 appears to control the rotation (tilt) and the thickness of stroke of each digit

Figure 6.2.9 to Figure 6.2.11 demonstrate that the StackedGAN has provided 
additional control in terms of the attributes of the generator outputs. The control 
and attributes are (label, which digit), (z

0
, digit thickness), and (z

1
, digit tilt). From 

this example, there are other possible experiments that we can control, such as:

• Increasing the number of elements in the stack from the current number of 2
• Decreasing the dimension of codes z0 and z1, like in InfoGAN

Figure 6.2.12 shows the differences between the latent codes of InfoGAN and 
StackedGAN:

Figure 6.2.12: Latent representations for different GANs
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The basic idea of disentangling codes is to put a constraint on the loss functions 
such that only specific attributes are affected by a code. Structure-wise, InfoGAN is 
easier to implement when compared to StackedGAN. InfoGAN is also faster to train.

4. Conclusion
In this chapter, we've discussed how to disentangle the latent representations of 
GANs. Earlier on in the chapter, we discussed how InfoGAN maximizes the mutual 
information in order to force the generator to learn disentangled latent vectors. In 
the MNIST dataset example, the InfoGAN uses three representations and a noise 
code as inputs. The noise represents the rest of the attributes in the form of an 
entangled representation. StackedGAN approaches the problem in a different way. 
It uses a stack of encoder-GANs to learn how to synthesize fake features and images. 
The encoder is first trained to provide a dataset of features. Then, the encoder-GANs 
are trained jointly to learn how to use the noise code to control attributes of the 
generator output.

In the next chapter, we will embark on a new type of GAN that is able to generate 
new data in another domain. For example, given an image of a horse, the GAN 
can perform an automatic transformation to an image of a zebra. The interesting 
feature of this type of GAN is that it can be trained without supervision and does 
not require paired sample data.
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7
Cross-Domain GANs

In computer vision, computer graphics, and image processing, a number of tasks 
involve translating an image from one form to another. The colorization of grayscale 
images, converting satellite images to maps, changing the artwork style of one artist 
to another, making night-time images into daytime, and summer photos to winter, 
are just a few examples. These tasks are referred to as cross-domain transfer and 
will be the focus of this chapter. An image in the source domain is transferred to 
a target domain, resulting in a new translated image.

A cross-domain transfer has a number of practical applications in the real world. 
As an example, in autonomous driving research, collecting road-scene driving data 
is both time-consuming and expensive. In order to cover as many scene variations 
as possible in that example, the roads would be traversed during different weather 
conditions, seasons, and times, giving us a large and varied amount of data. With 
the use of a cross-domain transfer, it's possible to generate new synthetic scenes that 
look real by translating existing images. For example, we may just need to collect 
road scenes in the summer from one area and gather road scenes in the winter from 
another place. Then, we can transform the summer images to winter and the winter 
images to summer. In this case, it reduces the number of tasks having to be done 
by half.

The generation of realistic synthesized images is an area that GANs excel at. 
Therefore, cross-domain translation is one of the applications of GANs. In this 
chapter, we're going to focus on a popular cross-domain GAN algorithm called 
CycleGAN [2]. Unlike other cross-domain transfer algorithms, such as a pix2pix [3], 
CycleGAN does not require aligned training images to work. In aligned images, 
the training data should be a pair of images made up of the source image and its 
corresponding target image; for example, a satellite image and the corresponding 
map derived from this image. 



Cross-Domain GANs

[ 218 ]

CycleGAN only requires the satellite data images and maps. The maps may be from 
other satellite data and not necessarily previously generated from the training data.

In this chapter, we will explore the following:

• The principles of CycleGAN, including its implementation in tf.keras
• Example applications of CycleGAN, including the colorization of grayscale 

images using the CIFAR10 dataset and style transfer as applied to MNIST 
digits and Street View House Numbers (SVHN) [1] datasets

Let's begin by talking about the principles behind CycleGAN.

1. Principles of CycleGAN
Translating an image from one domain to another is a common task in computer 
vision, computer graphics, and image processing. Figure 7.1.1 shows edge detection, 
which is a common image translation task:

Figure 7.1.1: Example of an aligned image pair: left, original image, and right, transformed image  
using a Canny edge detector. The original photo was taken by the author.

In this example, we can consider the real photo (left) as an image in the source 
domain and the edge-detected photo (right) as a sample in the target domain. There 
are many other cross-domain translation procedures that have practical applications, 
such as:

• Satellite image to map
• Face image to emoji, caricature, or anime
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• Body image to an avatar
• Colorization of grayscale photos
• Medical scan to a real photo
• Real photo to an artist's painting

There are many more examples of this in different fields. In computer vision and 
image processing, for example, we can perform the translation by inventing an 
algorithm that extracts features from the source image to translate it into the target 
image. The Canny edge operator is an example of such an algorithm. However, 
in many cases, the translation is very complex to hand-engineer, such that it is 
almost impossible to find a suitable algorithm. Both the source and target domain 
distributions are high-dimensional and complex.

A workaround on the image translation problem is to use deep learning techniques. 
If we have a sufficiently large dataset from both the source and target domains, we 
can train a neural network to model the translation. Since the images in the target 
domain must be automatically generated given a source image, they must look like 
real samples from the target domain. GANs are a suitable network for such cross-
domain tasks. The pix2pix [3] algorithm is an example of a cross-domain algorithm.

The pix2pix algorithm bears a resemblance to Conditional GAN (CGAN) [4] that 
we discussed in Chapter 4, Generative Adversarial Networks (GANs). We can recall that 
in CGAN, on top of the noise input, z, a condition such as of a one-hot vector 
constrains the generator's output. For example, in the MNIST digit, if we want the 
generator to output the digit 8, the condition is the one-hot vector [0, 0, 0, 0, 0, 0, 0, 
0, 1, 0]. In pix2pix, the condition is the image to be translated. The generator's output 
is the translated image. The pix2pix algorithm is trained by optimizing the CGAN 
loss. To minimize blurring in the generated images,  
the L1 loss is also included.

The main disadvantage of neural networks similar to pix2pix is that the training 
input and output images must be aligned. Figure 7.1.1 is an example of an aligned 
image pair. The sample target image is generated from the source. In most occasions, 
aligned image pairs are not available or expensive to generate from the source 
images, or we have no idea on how to generate the target image from the given 
source image. What we have is sample data from the source and target domains. 
Figure 7.1.2 is an example of data from the source domain (real photo) and the target 
domain (Van Gogh's art style) on the same sunflower subject. The source and target 
images are not necessarily aligned.
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Unlike pix2pix, CycleGAN learns image translation as long as there is a sufficient 
amount of, and variation between, source and target data. No alignment is needed. 
CycleGAN learns the source and target distributions and how to translate from 
source to target distribution from given sample data. No supervision is needed. 
In the context of Figure 7.1.2, we just need thousands of photos of real sunflowers 
and thousands of photos of Van Gogh's paintings of sunflowers. After training the 
CycleGAN, we're able to translate a photo of sunflowers to a Van Gogh painting:

Figure 7.1.2: Example of an image pair that is not aligned: on the left, a photo of real sunflowers along 
University Avenue, University of the Philippines, and on the right, Sunflowers by Vincent Van Gogh  

at the National Gallery, London, UK. Original photos were taken by the author.

The next question is: how do we build a model that can learn from unpaired data? 
In the next section, we will build a CycleGAN that uses forward and backward cycle 
GANs and a cycle consistency check to eliminate the need for paired input data.
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The CycleGAN model
Figure 7.1.3 shows the network model of the CycleGAN:

Figure 7.1.3: The CycleGAN model comprises four networks: Generator G,  
Generator F, Discriminator Dy, and Discriminator Dx
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Let's discuss Figure 7.1.3 part by part. Let's first focus on the upper network, which 
is the Forward Cycle GAN. As shown in Figure 7.1.4 below, the objective of the 
Forward Cycle CycleGAN is to learn the function:

𝑦𝑦′ = 𝐺𝐺(𝑥𝑥)     (Equation 7.1.1)

Figure 7.1.4: The CycleGAN Generator G of fake y

Equation 7.1.1 is simply the generator, G, of fake target data, 𝑦𝑦′ . It converts data from 
the source domain, x, to the target domain, y.

To train the generator, we must build a GAN. This is the Forward Cycle GAN as 
shown in Figure 7.1.5. This figure shows that it is like a typical GAN in Chapter 4, 
Generative Adversarial Networks (GANs), made of a generator G and a discriminator 
𝒟𝒟𝑦𝑦  that can be trained in the same adversarial manner. Learning is unsupervised 
by capitalizing only on the available real images, x, in the source domain and real 
images, y, in the target domain.

Figure 7.1.5: The CycleGAN Forward Cycle GAN
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Unlike regular GANs, CycleGAN imposes the cycle-consistency constraint as shown 
in Figure 7.1.6. The forward cycle-consistency network ensures that the real source 
data can be reconstructed from the fake target data:

𝑥𝑥′ = 𝐹𝐹(𝐺𝐺(𝑥𝑥))     (Equation 7.1.2)

Figure 7.1.6: The CycleGAN cycle consistency check

This is done by minimizing the forward cycle-consistency L1 loss:

    ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑐𝑐𝑐𝑐𝑐𝑐 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) [‖𝐹𝐹(𝐺𝐺(𝑥𝑥)) − 𝑥𝑥‖1]     (Equation 7.1.3)

The cycle-consistency loss uses L1, or mean absolute error (MAE), since it generally 
results in less blurry image reconstruction compared to L2, or mean squared error 
(MSE).

The cycle consistency check implies that although we have transformed source data 
x to domain y, the original features of x should remain intact in y and be recoverable. 
The network F is just another generator that we will borrow from the backward cycle 
GAN, as discussed next.

CycleGAN is symmetric. As shown in Figure 7.1.7, the Backward Cycle GAN is 
identical to the Forward Cycle GAN, but with the roles of source data x and target 
data y reversed. The source data is now y and the target data is now x. The roles of 
generators G and F are also reversed. F is now the generator, while G recovers the 
input. In the Forward Cycle GAN, the generator F was the network used to recover 
the source data, while G was the generator. 
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The objective of the Backward Cycle GAN generator is to synthesize:

    𝑥𝑥′ = 𝐹𝐹(𝑦𝑦)     (Equation 7.1.2)

Figure 7.1.7: The CycleGAN Backward Cycle GAN

This is done by training the Backward Cycle GAN in an adversarial manner. The 
objective is for the generator F to learn how to fool the discriminator, 𝒟𝒟𝑥𝑥 .

Furthermore, there is also an analogous backward cycle consistency imposed to 
recover the original source, y:

    𝑦𝑦′ = 𝐺𝐺(𝐹𝐹(𝑦𝑦))     (Equation 7.1.4)

This is done by minimizing the backward cycle-consistency L1 loss:

    ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑏𝑏𝑐𝑐𝑏𝑏 = 𝔼𝔼𝑐𝑐~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐) [‖𝐺𝐺(𝐹𝐹(𝑦𝑦)) − 𝑦𝑦‖1]     (Equation 7.1.5)

In summary, the ultimate objective of CycleGAN is for the generator G to learn how 
to synthesize fake target data, 𝑦𝑦′ , that can fool the discriminator, 𝒟𝒟𝑦𝑦 , in the forward 
cycle. Since the network is symmetric, CycleGAN also wants the generator F to learn 
how to synthesize fake source data, 𝑥𝑥′ , that can fool the discriminator, 𝒟𝒟𝑥𝑥 , in the 
backward cycle. With this in mind, we can now put together all the loss functions.

Let's start with the GAN part. Inspired by the better perceptual quality of Least 
Squares GAN (LSGAN) [5], as described in Chapter 5, Improved GANs, CycleGAN 
also uses MSE for the discriminator and generator losses. Recall that the difference 
between LSGAN and the original GAN entails use of the MSE loss instead of a 
binary cross-entropy loss. 
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CycleGAN expresses the generator-discriminator loss functions as:

    ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)(𝒟𝒟𝑦𝑦(𝑦𝑦) − 1)2 + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)𝒟𝒟𝑦𝑦(𝐺𝐺(𝑥𝑥))2     (Equation 7.1.6)

    ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)(𝒟𝒟𝑦𝑦(𝐺𝐺(𝑥𝑥)) − 1)2     (Equation 7.1.7)

    ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)(𝒟𝒟𝑥𝑥(𝑥𝑥) − 1)2 + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)𝒟𝒟𝑥𝑥(𝐹𝐹(𝑦𝑦))2     (Equation 7.1.8)

    ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐺𝐺𝐴𝐴𝐴𝐴
(𝐺𝐺) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)(𝒟𝒟𝑥𝑥(𝐹𝐹(𝑦𝑦)) − 1)2     (Equation 7.1.9)

    ℒ𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷) = ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺

(𝐷𝐷) + ℒ𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷)      (Equation 7.1.10)

    ℒ𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺) = ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺

(𝐺𝐺) + ℒ𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺)      (Equation 7.1.11)

The second set of loss functions are the cycle-consistency losses, which can be 
derived by summing up the contribution from the forward and backward GANs:

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑐𝑐𝑐𝑐𝑐𝑐 + ℒ𝑏𝑏𝑓𝑓𝑐𝑐𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑐𝑐𝑐𝑐𝑐𝑐 

  ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) [‖𝐹𝐹(𝐺𝐺(𝑥𝑥)) − 𝑥𝑥‖1] + 𝔼𝔼𝑐𝑐~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐) [‖𝐺𝐺(𝐹𝐹(𝑦𝑦)) − 𝑦𝑦‖1]     (Equation 7.1.12)

The total CycleGAN loss is:

    ℒ = 𝜆𝜆1ℒ𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜆𝜆2ℒ𝑐𝑐𝑐𝑐𝑐𝑐     (Equation 7.1.13)

CycleGAN recommends the following weight values, 𝜆𝜆1 = 1.0  and 𝜆𝜆2 = 10.0 , to give 
more importance to the cyclic consistency check.

The training strategy is similar to the vanilla GAN. Algorithm 7.1.1 summarizes the 
CycleGAN training procedure.

Algorithm 7.1.1: CycleGAN Training

Repeat for n training steps:

1. Minimize ℒ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷)   by training the forward-cycle discriminator using real 

source and target data. A minibatch of real target data, y, is labeled 1.0. A 
minibatch of fake target data, 𝑦𝑦′ = 𝐺𝐺(𝑥𝑥) , is labeled 0.0.

2. Minimize ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐺𝐺𝐺𝐺𝐺𝐺
(𝐷𝐷)   by training the backward-cycle discriminator using 

real source and target data. A minibatch of real source data, x, is labeled 1.0. 
A minibatch of fake source data, 𝑥𝑥′ = 𝐹𝐹(𝑦𝑦) , is labeled 0.0.
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3. Minimize ℒ𝐺𝐺𝐺𝐺𝐺𝐺
(𝐺𝐺)   and ℒ𝑐𝑐𝑐𝑐𝑐𝑐  by training the forward-cycle and backward-cycle 

generators in the adversarial networks. A minibatch of fake target data, 
𝑦𝑦′ = 𝐺𝐺(𝑥𝑥) , is labeled 1.0. A minibatch of fake source data, 𝑥𝑥′ = 𝐹𝐹(𝑦𝑦) , is 
labeled 1.0. The weights of the discriminators are frozen.

In neural-style transfer problems, the color composition may not be successfully 
transferred from the source image to the fake target image. This problem is shown 
in Figure 7.1.8:

Figure 7.1.8: During style transfer, the color composition may not be transferred successfully.  
To address this issue, the identity loss is added to the total loss function

To address this problem, CycleGAN proposes to include the forward and backward-
cycle identity loss function:

    ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[‖𝐹𝐹(𝑥𝑥) − 𝑥𝑥‖1] + 𝔼𝔼𝑖𝑖~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)[‖𝐺𝐺(𝑦𝑦) − 𝑦𝑦‖1]     (Equation 7.1.14)

The total CycleGAN loss becomes:

ℒ = 𝜆𝜆1ℒ𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜆𝜆2ℒ𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆3ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐     (Equation 7.1.15)

where 𝜆𝜆3 = 0.5 . The identity loss is also optimized during adversarial training. 
Figure 7.1.9 highlights the auxiliary network of CycleGAN implementing the identity 
regularizer:
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Figure 7.1.9: The CycleGAN model with the identity regularizing network  
as highlighted on the left side of the image

In the next section, we will implement CycleGAN in tf.keras.

Implementing CycleGAN using Keras
Let's tackle a simple problem that CycleGAN can address. In Chapter 3, Autoencoders, 
we used an autoencoder to colorize grayscale images from the CIFAR10 dataset. We 
can recall that the CIFAR10 dataset comprises 50,000 trained items of data and 10,000 
test data samples of 32 x 32 RGB images belonging to 10 categories. We can convert 
all color images into grayscale using rgb2gray (RGB), as discussed in Chapter 3, 
Autoencoders.
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Following on from that, we can use the grayscale train images as source domain 
images and the original color images as the target domain images. It's worth noting 
that although the dataset is aligned, the input to our CycleGAN is a random sample 
of color images and a random sample of grayscale images. Thus, our CycleGAN will 
not see the training data as aligned. After training, we'll use the test grayscale images 
to observe the performance of the CycleGAN.

As discussed in the previous sections, to implement the CycleGAN, we need to build 
two generators and two discriminators. The generator of CycleGAN learns the latent 
representation of the source input distribution and translates this representation into 
target output distribution. This is exactly what autoencoders do. However, typical 
autoencoders similar to the ones discussed in Chapter 3, Autoencoders, use an encoder 
that downsamples the input until the bottleneck layer, at which point the process is 
reversed in the decoder.

This structure is not suitable in some image translation problems since many low-
level features are shared between the encoder and decoder layers. For example, in 
colorization problems, the form, structure, and edges of the grayscale image are the 
same as in the color image. To circumvent this problem, the CycleGAN generators 
use a U-Net [7] structure, as shown in Figure 7.1.10:

Figure 7.1.10: Implementation of the forward cycle generator G in Keras. The generator is a U-Network [7] 
comprising an encoder and decoder.
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In a U-Net structure, the output of the encoder layer, en-i, is concatenated with the 
output of the decoder layer, di, where n = 4 is the number of encoder/decoder layers 
and i = 1, 2, and 3 are layer numbers that share information.

We should note that although the example uses n = 4, problems with a higher 
input/ output dimensions may require a deeper encoder/decoder layer. The U-Net 
structure enables a free flow of feature-level information between the encoder and 
decoder.

An encoder layer is made of Instance Normalization(IN)-LeakyReLU-Conv2D, 
while the decoder layer is made of IN-ReLU-Conv2D. The encoder/decoder layer 
implementation is shown in Listing 7.1.1, while the generator implementation is 
shown in Listing 7.1.2.

Instance Normalization (IN) is Batch Normalization (BN) per sample of data (that 
is, IN is BN per image or per feature). In style transfer, it's important to normalize the 
contrast per sample, and not per batch. IN is equivalent to contrast normalization. 
Meanwhile, BN breaks contrast normalization.

Listing 7.1.1: cyclegan-7.1.1.py

def encoder_layer(inputs,
                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU

    """

    conv = Conv2D(filters=filters,

The complete code is available on GitHub:

https://github.com/PacktPublishing/Advanced-Deep-
Learning-with-Keras

Remember to install tensorflow-addons before using IN:
$ pip install tensorflow-addons

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization(axis=3)(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
    x = conv(x)
    return x

def decoder_layer(inputs,
                  paired_inputs,
                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic decoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU
    Arguments: (partial)
    inputs (tensor): the decoder layer input
    paired_inputs (tensor): the encoder layer output 
          provided by U-Net skip connection &
          concatenated to inputs.

    """

    conv = Conv2DTranspose(filters=filters,
                           kernel_size=kernel_size,
                           strides=strides,
                           padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization(axis=3)(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
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    x = conv(x)
    x = concatenate([x, paired_inputs])
    return x

Moving on to the generator implementation:

Listing 7.1.2: cyclegan-7.1.1.py

Generator implementation in Keras:

def build_generator(input_shape,
                    output_shape=None,
                    kernel_size=3,
                    name=None):
    """The generator is a U-Network made of a 4-layer encoder
    and a 4-layer decoder. Layer n-i is connected to layer i.

    Arguments:
    input_shape (tuple): input shape
    output_shape (tuple): output shape
    kernel_size (int): kernel size of encoder & decoder layers
    name (string): name assigned to generator model

    Returns:
    generator (Model):

    """

    inputs = Input(shape=input_shape)
    channels = int(output_shape[-1])
    e1 = encoder_layer(inputs,
                       32,
                       kernel_size=kernel_size,
                       activation='leaky_relu',
                       strides=1)
    e2 = encoder_layer(e1,
                       64,
                       activation='leaky_relu',
                       kernel_size=kernel_size)
    e3 = encoder_layer(e2,
                       128,
                       activation='leaky_relu',
                       kernel_size=kernel_size)
    e4 = encoder_layer(e3,
                       256,
                       activation='leaky_relu',
                       kernel_size=kernel_size)

    d1 = decoder_layer(e4,
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                       e3,
                       128,
                       kernel_size=kernel_size)
    d2 = decoder_layer(d1,
                       e2,
                       64,
                       kernel_size=kernel_size)
    d3 = decoder_layer(d2,
                       e1,
                       32,
                       kernel_size=kernel_size)
    outputs = Conv2DTranspose(channels,
                              kernel_size=kernel_size,
                              strides=1,
                              activation='sigmoid',
                              padding='same')(d3)

    generator = Model(inputs, outputs, name=name)

    return generator

The discriminator of CycleGAN is similar to a vanilla GAN discriminator. The input 
image is downsampled several times (in this example, three times). The final layer is 
a Dense (1) layer, which predicts the probability that the input is real. Each layer is 
similar to the encoder layer of the generator except that no IN is used. However, in 
large images, computing the image as real or fake with a single number turns out to 
be parameter-inefficient and results in poor image quality for the generator.

The solution is to use PatchGAN [6], which divides the image into a grid of patches 
and uses a grid of scalar values to predict the probability that the patches are real. 
The comparison between the vanilla GAN discriminator and a 2 x 2 PatchGAN 
discriminator is shown in Figure 7.1.11:

Figure 7.1.11: A comparison between GAN and PatchGAN discriminators
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In this example, the patches do not overlap and meet at their boundaries. However, 
in general, patches may overlap.

We should note that PatchGAN is not introducing a new type of GAN in 
CycleGAN. To improve the generated image quality, instead of having one output 
to discriminate, we have four outputs to discriminate if we use a 2 x 2 PatchGAN. 
There are no changes in the loss functions. Intuitively, this makes sense since the 
whole image will look more real if every patch or section of the image looks real.

Figure 7.1.12 shows the discriminator network as implemented in tf.keras. 
The illustration shows the discriminator determining the likelihood of the input 
image or a patch being a color CIFAR10 image:

Figure 7.1.12: The target discriminator, Dy, implementation in tf.keras.  
The PatchGAN discriminator is shown on the right

Since the output image is small at only 32 x 32 RGB, a single scalar representing that 
the image is real is sufficient. However, we also evaluate the results when PatchGAN 
is used. Listing 7.1.3 shows the function builder for the discriminator:

Listing 7.1.3: cyclegan-7.1.1.py

Discriminator implementation in tf.keras:

def build_discriminator(input_shape,
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                        kernel_size=3,
                        patchgan=True,
                        name=None):
    """The discriminator is a 4-layer encoder that outputs either
    a 1-dim or a n x n-dim patch of probability that input is real 

    Arguments:
    input_shape (tuple): input shape
    kernel_size (int): kernel size of decoder layers
    patchgan (bool): whether the output is a patch 
        or just a 1-dim
    name (string): name assigned to discriminator model

    Returns:
    discriminator (Model):

    """

    inputs = Input(shape=input_shape)
    x = encoder_layer(inputs,
                      32,
                      kernel_size=kernel_size,
                      activation='leaky_relu',
                      instance_norm=False)
    x = encoder_layer(x,
                      64,
                      kernel_size=kernel_size,
                      activation='leaky_relu',
                      instance_norm=False)
    x = encoder_layer(x,
                      128,
                      kernel_size=kernel_size,
                      activation='leaky_relu',
                      instance_norm=False)
    x = encoder_layer(x,
                      256,
                      kernel_size=kernel_size,
                      strides=1,
                      activation='leaky_relu',
                      instance_norm=False)

    # if patchgan=True use nxn-dim output of probability
    # else use 1-dim output of probability
    if patchgan:
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        x = LeakyReLU(alpha=0.2)(x)
        outputs = Conv2D(1,
                         kernel_size=kernel_size,
                         strides=2,
                         padding='same')(x)
    else:
        x = Flatten()(x)
        x = Dense(1)(x)
        outputs = Activation('linear')(x)

    discriminator = Model(inputs, outputs, name=name)

    return discriminator

Using the generator and discriminator builders, we are now able to build the 
CycleGAN. Listing 7.1.4 shows the builder function. In line with our discussion in 
the previous section, two generators, g_source = F and g_target = G, and two 
discriminators, d_source = Dx and d_target = Dy, are instantiated. The forward 
cycle is 𝑥𝑥′ = 𝐹𝐹(𝐺𝐺(𝑥𝑥)) =  reco_source = g_source(g_target(source_input)).
The backward cycle is 𝑦𝑦′ = 𝐺𝐺(𝐹𝐹(𝑦𝑦)) =  reco_target = g_target(g_source 
(target_input)).

The inputs to the adversarial model are the source and target data, while the outputs 
are the outputs of 𝒟𝒟𝑥𝑥  and 𝒟𝒟𝑦𝑦  and the reconstructed inputs, 𝑥𝑥′  and 𝑦𝑦′ . The identity 
network is not used in this example due to the difference between the number of 
channels in the grayscale image and the color image. We use the recommended 
loss weights of 𝜆𝜆1 = 1.0  and 𝜆𝜆2 = 10.0  for the GAN and cyclic consistency losses, 
respectively. Similar to GANs in the previous chapters, we use RMSprop with a 
learning rate of 2e-4 and a decay rate of 6e-8 for the optimizer of the discriminators. 
The learning and decay rate for the adversarial is half of that of the discriminator's.

Listing 7.1.4: cyclegan-7.1.1.py

CycleGAN builder in tf.keras:

def build_cyclegan(shapes,
                   source_name='source',
                   target_name='target',
                   kernel_size=3,
                   patchgan=False,
                   identity=False
                   ):
    """Build the CycleGAN
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    1) Build target and source discriminators
    2) Build target and source generators
    3) Build the adversarial network

    Arguments:
    shapes (tuple): source and target shapes
    source_name (string): string to be appended on dis/gen models
    target_name (string): string to be appended on dis/gen models
    kernel_size (int): kernel size for the encoder/decoder
        or dis/gen models
    patchgan (bool): whether to use patchgan on discriminator
    identity (bool): whether to use identity loss

    Returns:
    (list): 2 generator, 2 discriminator, 
        and 1 adversarial models 

    """

    source_shape, target_shape = shapes
    lr = 2e-4
    decay = 6e-8
    gt_name = "gen_" + target_name
    gs_name = "gen_" + source_name
    dt_name = "dis_" + target_name
    ds_name = "dis_" + source_name

    # build target and source generators
    g_target = build_generator(source_shape,
                               target_shape,
                               kernel_size=kernel_size,
                               name=gt_name)
    g_source = build_generator(target_shape,
                               source_shape,
                               kernel_size=kernel_size,
                               name=gs_name)
    print('---- TARGET GENERATOR ----')
    g_target.summary()
    print('---- SOURCE GENERATOR ----')
    g_source.summary()

    # build target and source discriminators
    d_target = build_discriminator(target_shape,
                                   patchgan=patchgan,
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                                   kernel_size=kernel_size,
                                   name=dt_name)
    d_source = build_discriminator(source_shape,
                                   patchgan=patchgan,
                                   kernel_size=kernel_size,
                                   name=ds_name)
    print('---- TARGET DISCRIMINATOR ----')
    d_target.summary()
    print('---- SOURCE DISCRIMINATOR ----')
    d_source.summary()

    optimizer = RMSprop(lr=lr, decay=decay)
    d_target.compile(loss='mse',
                     optimizer=optimizer,
                     metrics=['accuracy'])
    d_source.compile(loss='mse',
                     optimizer=optimizer,
                     metrics=['accuracy'])

    d_target.trainable = False
    d_source.trainable = False

    # build the computational graph for the adversarial model
    # forward cycle network and target discriminator
    source_input = Input(shape=source_shape)
    fake_target = g_target(source_input)
    preal_target = d_target(fake_target)
    reco_source = g_source(fake_target)

    # backward cycle network and source discriminator
    target_input = Input(shape=target_shape)
    fake_source = g_source(target_input)
    preal_source = d_source(fake_source)
    reco_target = g_target(fake_source)

    # if we use identity loss, add 2 extra loss terms
    # and outputs
    if identity:
        iden_source = g_source(source_input)
        iden_target = g_target(target_input)
        loss = ['mse', 'mse', 'mae', 'mae', 'mae', 'mae']
        loss_weights = [1., 1., 10., 10., 0.5, 0.5]
        inputs = [source_input, target_input]
        outputs = [preal_source,
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                   preal_target,
                   reco_source,
                   reco_target,
                   iden_source,
                   iden_target]
    else:
        loss = ['mse', 'mse', 'mae', 'mae']
        loss_weights = [1., 1., 10., 10.]
        inputs = [source_input, target_input]
        outputs = [preal_source,
                   preal_target,
                   reco_source,
                   reco_target]

    # build adversarial model
    adv = Model(inputs, outputs, name='adversarial')
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    adv.compile(loss=loss,
                loss_weights=loss_weights,
                optimizer=optimizer,
                metrics=['accuracy'])
    print('---- ADVERSARIAL NETWORK ----')
    adv.summary()

    return g_source, g_target, d_source, d_target, adv

We follow the training procedure that we can recall from Algorithm 7.1.1 in the 
previous section. Listing 7.1.5 shows the CycleGAN training. The minor difference 
between this training and the vanilla GAN is that there are two discriminators to be 
optimized. However, there is only one adversarial model to optimize. For every 2,000 
steps, the generators save the predicted source and target images. We'll use a batch 
size of 32. We also tried a batch size of 1, but the output quality is almost the same 
and takes a longer amount of time to train (43 ms/image for a batch size of 1 versus 
3.6 ms/image for a batch size of 32 on an NVIDIA GTX 1060).

Listing 7.1.5: cyclegan-7.1.1.py

CycleGAN training routine in tf.keras:

def train_cyclegan(models,
                   data,
                   params,
                   test_params,
                   test_generator):
    """ Trains the CycleGAN. 
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    1) Train the target discriminator
    2) Train the source discriminator
    3) Train the forward and backward cyles of 
        adversarial networks

    Arguments:
    models (Models): Source/Target Discriminator/Generator,
        Adversarial Model
    data (tuple): source and target training data
    params (tuple): network parameters
    test_params (tuple): test parameters
    test_generator (function): used for generating 
        predicted target and source images
    """

    # the models
    g_source, g_target, d_source, d_target, adv = models
    # network parameters
    batch_size, train_steps, patch, model_name = params
    # train dataset
    source_data, target_data, test_source_data, test_target_data\
            = data

    titles, dirs = test_params

    # the generator image is saved every 2000 steps
    save_interval = 2000
    target_size = target_data.shape[0]
    source_size = source_data.shape[0]

    # whether to use patchgan or not
    if patch > 1:
        d_patch = (patch, patch, 1)
        valid = np.ones((batch_size,) + d_patch)
        fake = np.zeros((batch_size,) + d_patch)
    else:
        valid = np.ones([batch_size, 1])
        fake = np.zeros([batch_size, 1])

    valid_fake = np.concatenate((valid, fake))
    start_time = datetime.datetime.now()

    for step in range(train_steps):
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        # sample a batch of real target data
        rand_indexes = np.random.randint(0,
                                         target_size,
                                         size=batch_size)
        real_target = target_data[rand_indexes]

        # sample a batch of real source data
        rand_indexes = np.random.randint(0,
                                         source_size,
                                         size=batch_size)
        real_source = source_data[rand_indexes]
        # generate a batch of fake target data fr real source data
        fake_target = g_target.predict(real_source)

        # combine real and fake into one batch
        x = np.concatenate((real_target, fake_target))
        # train the target discriminator using fake/real data
        metrics = d_target.train_on_batch(x, valid_fake)
        log = "%d: [d_target loss: %f]" % (step, metrics[0])

        # generate a batch of fake source data fr real target data
        fake_source = g_source.predict(real_target)
        x = np.concatenate((real_source, fake_source))
        # train the source discriminator using fake/real data
        metrics = d_source.train_on_batch(x, valid_fake)
        log = "%s [d_source loss: %f]" % (log, metrics[0])

        # train the adversarial network using forward and backward
        # cycles. the generated fake source and target 
        # data attempts to trick the discriminators
        x = [real_source, real_target]
        y = [valid, valid, real_source, real_target]
        metrics = adv.train_on_batch(x, y)
        elapsed_time = datetime.datetime.now() - start_time
        fmt = "%s [adv loss: %f] [time: %s]"
        log = fmt % (log, metrics[0], elapsed_time)
        print(log)
        if (step + 1) % save_interval == 0:
            test_generator((g_source, g_target),
                           (test_source_data, test_target_data),
                           step=step+1,
                           titles=titles,
                           dirs=dirs,
                           show=False)
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    # save the models after training the generators
    g_source.save(model_name + "-g_source.h5")
    g_target.save(model_name + "-g_target.h5")

Finally, before we can use the CycleGAN to build and train functions, we have 
to perform some data preparation. The modules cifar10_utils.py and other_ 
utils.py load the CIFAR10 training and test data. Please refer to the source code for 
details of these two files. After loading, the train and test images are converted to 
grayscale to generate the source data and test source data.

Listing 7.1.6 shows how the CycleGAN is used to build and train a generator network 
(g_target) for colorization of grayscale images. Since CycleGAN is symmetric, we 
also build and train a second generator network (g_source) that converts from color 
to grayscale. Two CycleGAN colorization networks were trained. The first uses 
discriminators with a scalar output similar to vanilla GAN, while the second uses a 2 
x 2 PatchGAN.

Listing 7.1.6: cyclegan-7.1.1.py

CycleGAN for colorization:

def graycifar10_cross_colorcifar10(g_models=None):
    """Build and train a CycleGAN that can do
        grayscale <--> color cifar10 images
    """

    model_name = 'cyclegan_cifar10'
    batch_size = 32
    train_steps = 100000
    patchgan = True
    kernel_size = 3
    postfix = ('%dp' % kernel_size) \
            if patchgan else ('%d' % kernel_size)

    data, shapes = cifar10_utils.load_data()
    source_data, _, test_source_data, test_target_data = data
    titles = ('CIFAR10 predicted source images.',
              'CIFAR10 predicted target images.',
              'CIFAR10 reconstructed source images.',
              'CIFAR10 reconstructed target images.')
    dirs = ('cifar10_source-%s' % postfix, \
            'cifar10_target-%s' % postfix)

    # generate predicted target(color) and source(gray) images
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    if g_models is not None:
        g_source, g_target = g_models
        other_utils.test_generator((g_source, g_target),
                                   (test_source_data, \
                                           test_target_data),
                                   step=0,
                                   titles=titles,
                                   dirs=dirs,
                                   show=True)
        return

    # build the cyclegan for cifar10 colorization
    models = build_cyclegan(shapes,
                            "gray-%s" % postfix,
                            "color-%s" % postfix,
                            kernel_size=kernel_size,
                            patchgan=patchgan)
    # patch size is divided by 2^n since we downscaled the input
    # in the discriminator by 2^n (ie. we use strides=2 n times)
    patch = int(source_data.shape[1] / 2**4) if patchgan else 1
    params = (batch_size, train_steps, patch, model_name)
    test_params = (titles, dirs)
    # train the cyclegan
    train_cyclegan(models,
                   data,
                   params,
                   test_params,
                   other_utils.test_generator)

In the next section, we will examine the generator outputs of CycleGAN for 
colorization.

Generator outputs of CycleGAN
Figure 7.1.13 shows the colorization results of CycleGAN. The source images are 
from the test dataset:
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Figure 7.1.13: Colorization using different techniques. Shown are the ground truth, colorization using 
autoencoder (Chapter 3, Autoencoders,), colorization using CycleGAN with a vanilla GAN discriminator, and 
colorization using CycleGAN with a PatchGAN discriminator. Best viewed in color. The original color photos 

can be found on the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-
Learning- with-Keras/blob/master/chapter7-cross-domain-gan/README.md

For comparison, we show the ground truth and the colorization results using a plain 
autoencoder described in Chapter 3, Autoencoders. Generally, all colorized images are 
perceptually acceptable. Overall, it seems that each colorization technique has both 
its own pros and cons. All colorization methods are not consistent with the right 
color of the sky and vehicle.
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For example, the sky in the background of the plane (third row, second column) 
is white. The autoencoder got it right, but the CycleGAN thinks it is light brown 
or blue.

For the sixth row, sixth column, the boat on the dark sea had an overcast sky, but 
was colorized with blue sky and blue sea by the autoencoder and blue sea and white 
sky by CycleGAN without PatchGAN. Both predictions make sense in the real 
world. Meanwhile, the prediction of CycleGAN with PatchGAN is similar to the 
ground truth. On the second-to-last row and second column, no method was able 
to predict the red color of the car. On animals, both flavors of CycleGAN have colors 
close to the ground truth.

Since CycleGAN is symmetric, it also predicts the grayscale image given a color image. 
Figure 7.1.14 shows the color to grayscale conversion performed by the two CycleGAN 
variations. The target images are from the test dataset. Except for minor differences in 
the grayscale shades of some images, the predictions are generally accurate.

Figure 7.1.14: Color (from Figure 7.1.9) to the grayscale conversion of CycleGAN
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To train the CycleGAN for colorization, the command is:

python3 cyclegan-7.1.1.py -c

The reader can run the image translation by using the pretrained models for 
CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --cifar10_g_source=cyclegan_cifar10-g_source.h5

--cifar10_g_target=cyclegan_cifar10-g_target.h5

In this section, we demonstrated one practical application of CycleGAN on 
colorization. In the next section, we will train a CycleGAN on more challenging 
datasets. The source domain MNIST is drastically different from the target domain 
SVHN dataset [1].

CycleGAN on MNIST and SVHN datasets
We're now going to tackle a more challenging problem. Suppose we use MNIST 
digits in grayscale as our source data, and we want to borrow style from SVHN [1], 
which is our target data. The sample data in each domain is shown in Figure 7.1.15:

Figure 7.1.15: Two different domains with data that are not aligned. The original color photo can be found on 
the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/

blob/master/chapter7-cross-domain-gan/README.md
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We can reuse all the build and train functions for CycleGAN that were discussed in 
the previous section to perform style transfer. The only difference is that we have to 
add routines for loading MNIST and SVHN data. The SVHN dataset can be found 
at http://ufldl.stanford.edu/housenumbers/.

We introduce the mnist_svhn_utils.py module to help us with this task. Listing 
7.1.7 shows the initialization and training of the CycleGAN for cross-domain 
transfer.

The CycleGAN structure is the same as in the previous section, except that we use 
a kernel size of five since the two domains are drastically different.

Listing 7.1.7: cyclegan-7.1.1.py

CycleGAN for cross-domain style transfer between MNIST and SVHN:

def mnist_cross_svhn(g_models=None):
    """Build and train a CycleGAN that can do mnist <--> svhn
    """

    model_name = 'cyclegan_mnist_svhn'
    batch_size = 32
    train_steps = 100000
    patchgan = True
    kernel_size = 5
    postfix = ('%dp' % kernel_size) \
            if patchgan else ('%d' % kernel_size)

    data, shapes = mnist_svhn_utils.load_data()
    source_data, _, test_source_data, test_target_data = data
    titles = ('MNIST predicted source images.',
              'SVHN predicted target images.',
              'MNIST reconstructed source images.',
              'SVHN reconstructed target images.')
    dirs = ('mnist_source-%s' \
            % postfix, 'svhn_target-%s' % postfix)

http://ufldl.stanford.edu/housenumbers/.
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    # generate predicted target(svhn) and source(mnist) images
    if g_models is not None:
        g_source, g_target = g_models
        other_utils.test_generator((g_source, g_target),
                                   (test_source_data, \
                                           test_target_data),
                                   step=0,
                                   titles=titles,
                                   dirs=dirs,
                                   show=True)
        return

    # build the cyclegan for mnist cross svhn
    models = build_cyclegan(shapes,
                            "mnist-%s" % postfix,
                            "svhn-%s" % postfix,
                            kernel_size=kernel_size,
                            patchgan=patchgan)
    # patch size is divided by 2^n since we downscaled the input
    # in the discriminator by 2^n (ie. we use strides=2 n times)
    patch = int(source_data.shape[1] / 2**4) if patchgan else 1
    params = (batch_size, train_steps, patch, model_name)
    test_params = (titles, dirs)
    # train the cyclegan
    train_cyclegan(models,
                   data,
                   params,
                   test_params,
                   other_utils.test_generator)

The results for transferring the MNIST from the test dataset to SVHN are shown in 
Figure 7.1.16. The generated images have the style of SVHN, but the digits are not 
completely transferred. For example, on the fourth row, digits 3, 1, and 3 are stylized 
by CycleGAN. 
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However, on the third row, digits 9, 6, and 6 are stylized as 0, 6, 01, 0, 65, and 68 for 
the CycleGAN without and with PatchGAN, respectively:

Figure 7.1.16: Style transfer of test data from the MNIST domain to SVHN. The original color photos can be 
found on the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/ blob/master/chapter7-cross-domain-gan/README.md

The results of the backward cycle are shown in Figure 7.1.17. In this case, the target 
images are from the SVHN test dataset. The generated images have the style of 
MNIST, but the digits are not correctly translated. For example, on the first row, the 
digits 5, 2, and 210 are stylized as 7, 7, 8, 3, 3, and 1 for the CycleGAN without and 
with PatchGAN, respectively:
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Figure 7.1.17: Style transfer of test data from the SVHN domain to MNIST. The original color photo can be 
found on the book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-

with-Keras/blob/master/chapter7-cross-domain-gan/README.md

In the case of PatchGAN, the output 1 is understandable given that the predicted 
MNIST digit is constrained to one digit. There are somehow correct predictions, 
such as in the second row, the last three columns of the SVHN digits, 6, 3, and 4 are 
converted to 6, 3, and 6 by CycleGAN without PatchGAN. However, the outputs on 
both flavors of CycleGAN are consistently single digit and recognizable.

The problem exhibited in the conversion from MNIST to SVHN, where a digit in 
the source domain is translated to another digit in the target domain, is called label 
flipping [8]. Although the predictions of CycleGAN are cycle-consistent, they are not 
necessarily semantic-consistent. The meaning of digits is lost during translation. 
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To address this problem, Hoffman [8] introduced an improved CycleGAN called 
Cycle-Consistent Adversarial Domain Adaptation (CyCADA). The difference is 
that the additional semantic loss term ensures that the prediction is not only cycle-
consistent, but also sematic-consistent.

Figure 7.1.18 shows CycleGAN reconstructing MNIST digits in the forward cycle. 
The reconstructed MNIST digits are almost identical to the source MNIST digits:

Figure 7.1.18: Forward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target). The 
reconstructed source is similar to the original source. The original color photo can be found on the book's 
GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/blob/ 

master/chapter7-cross-domain-gan/README.md
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Figure 7.1.19 shows the CycleGAN reconstructing SVHN digits in the backward 
cycle:

Figure 7.1.19: The backward cycle of CycleGAN with PatchGAN on MNIST (source) to SVHN (target). The 
reconstructed target is not entirely similar to the original target. The original color photos can be found on the 

book's GitHub repository at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/
blob/master/chapter7-cross-domain-gan/README.md

In Figure 7.1.3, CycleGAN is described to be cycle consistent. In other words, given 
source x, CycleGAN reconstructs the source in the forward cycle as 𝑥𝑥′ . In addition, 
given target y, CycleGAN reconstructs the target in the backward cycle as 𝑦𝑦′ .
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Many target images are reconstructed. Some digits are clearly the same, such as the 
second row, in the last two columns (3 and 4), while some are the same but blurred, 
such as the first row, in the first two columns (5 and 2). Some digits are transformed 
to another digit, although the style remains like the second row, in the first two 
columns (from 33 and 6 to 1 and an unrecognizable digit).

To train the CycleGAN for MNIST to SVHN, the command is:

python3 cyclegan-7.1.1.py -m

The reader is encouraged to run the image translation by using the pretrained 
models of CycleGAN with PatchGAN:

python3 cyclegan-7.1.1.py --mnist_svhn_g_source=cyclegan_mnist_svhn-g_ 
source.h5 --mnist_svhn_g_target=cyclegan_mnist_svhn-g_target.h5

So far, we have only seen two practical applications of CycleGAN. Both are 
demonstrated on small datasets to emphasize the concept of reproducibility. 
As mentioned earlier in this chapter, there are many other practical applications of 
CycleGAN. The CycleGAN that we introduced here can serve as the foundation for 
translation of images with much bigger resolutions.

2. Conclusion
In this chapter, we've discussed CycleGAN as an algorithm that can be used for 
image translation. In CycleGAN, the source and target data are not necessarily 
aligned. We demonstrated two examples, grayscale ↔ color, and MNIST ↔ SVHN, 
although there are many other possible image translations that CycleGAN can 
perform.

In the next chapter, we'll embark on another type of generative model, Variational 
AutoEncoders (VAEs). VAEs have a similar learning objective – how to generate 
new images (data). They focus on learning the latent vector modeled as a Gaussian 
distribution. We'll demonstrate other similarities in the problem being addressed 
by GANs in the form of conditional VAEs and the disentangling of latent 
representations in VAEs.
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8
Variational Autoencoders 

(VAEs)
Similar to Generative Adversarial Networks (GANs) that we've discussed in the 
previous chapters, Variational Autoencoders (VAEs) [1] belong to the family of 
generative models. The generator of VAEs is able to produce meaningful outputs 
while navigating its continuous latent space. The possible attributes of the decoder 
outputs are explored through the latent vector.

In GANs, the focus is on how to arrive at a model that approximates the input 
distribution. VAEs attempt to model the input distribution from a decodable 
continuous latent space. This is one of the possible underlying reasons why GANs 
are able to generate more realistic signals when compared to VAEs. For example, 
in image generation, GANs are able to produce more realistic-looking images, while 
VAEs, in comparison, generate images that are less sharp.

Within VAEs, the focus is on the variational inference of latent codes. Therefore, 
VAEs provide a suitable framework for both learning and efficient Bayesian 
inference with latent variables. For example, VAEs with disentangled representations 
enable latent code reuse for transfer learning.

In terms of structure, VAE bears a resemblance to an autoencoder. It is also made up 
of an encoder (also known as a recognition or inference model) and a decoder (also 
known as a generative model). Both VAEs and autoencoders attempt to reconstruct 
the input data while learning the latent vector. 
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However, unlike autoencoders, the latent space of VAE is continuous, and the 
decoder itself is used as a generative model.

In the same line of discussions on GANs that we discussed in the previous chapters, 
the VAE's decoder can also be conditioned. For example, in the MNIST dataset, we're 
able to specify the digit to produce given a one-hot vector. This class of conditional 
VAE is called CVAE [2]. VAE latent vectors can also be disentangled by including 
a regularizing hyperparameter on the loss function. This is called 𝛽𝛽 -VAE [5]. For 
example, within MNIST, we're able to isolate the latent vector that determines the 
thickness or tilt angle of each digit. The goal of this chapter is to present:

• The principles of VAE
• An understanding of the reparameterization trick that facilitates the use 

of stochastic gradient descent on VAE optimization
• The principles of conditional VAE (CVAE) and 𝛽𝛽  -VAE
• An understanding of how to implement VAE using tf.keras

We'll start off by talking about the underlying principles of VAE.

1. Principles of VAE
In a generative model, we're often interested in approximating the true distribution 
of our inputs using neural networks:

𝒙𝒙~𝑃𝑃𝜃𝜃(𝒙𝒙)     (Equation 8.1.1)

In the preceding equation, 𝜃𝜃  represents the parameters determined during training. 
For example, in the context of the celebrity faces dataset, this is equivalent to finding 
a distribution that can draw faces. Similarly, in the MNIST dataset, this distribution 
can generate recognizable handwritten digits.

In machine learning, to perform a certain level of inference, we're interested in 
finding 𝑃𝑃𝜃𝜃(𝒙𝒙, 𝒛𝒛) , a joint distribution between inputs, 𝒙𝒙 , and latent variables, 𝒛𝒛 . The 
latent variables are not part of the dataset but instead encode certain properties 
observable from inputs. In the context of celebrity faces, these might be facial 
expressions, hairstyles, hair color, gender, and so on. In the MNIST dataset, 
the latent variables may represent the digit and writing styles.

𝑃𝑃𝜃𝜃(𝒙𝒙, 𝒛𝒛)  is practically a distribution of input data points and their attributes. 𝑃𝑃𝜃𝜃(𝒙𝒙)  
can be computed from the marginal distribution:

𝑃𝑃𝜃𝜃(𝒙𝒙) = ∫ 𝑃𝑃𝜃𝜃(𝒙𝒙, 𝒛𝒛)𝑑𝑑𝒛𝒛     (Equation 8.1.2)
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In other words, considering all of the possible attributes, we end up with the 
distribution that describes the inputs. In celebrity faces, if we consider all the facial 
expressions, hairstyles, hair colors, and gender, the distribution describing the 
celebrity faces is recovered. In the MNIST dataset, if we consider all of the possible 
digits, writing styles, and so on, we end up with the distribution of handwritten 
digits.

The problem is that Equation 8.1.2 is intractable. The equation does not have an 
analytic form or an efficient estimator. It cannot be differentiated with respect to 
its parameters. Therefore, optimization by a neural network is not feasible.

Using Bayes' theorem, we can find an alternative expression for Equation 8.1.2:

𝑃𝑃𝜃𝜃(𝒙𝒙) = ∫ 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)𝑃𝑃(𝒛𝒛)𝑑𝑑𝒛𝒛     (Equation 8.1.3)

𝑃𝑃(𝒛𝒛)  is a prior distribution over 𝒛𝒛 . It is not conditioned on any observations. If 𝒛𝒛  is 
discrete and 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)  is a Gaussian distribution, then 𝑃𝑃𝜃𝜃(𝒙𝒙)  is a mixture of Gaussians. 
If 𝒛𝒛  is continuous, 𝑃𝑃𝜃𝜃(𝒙𝒙)  is an infinite mixture of Gaussians.

In practice, if we try to build a neural network to approximate 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)  
without a suitable loss function, it will just ignore 𝒛𝒛  and arrive at a trivial solution, 
𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)  =𝑃𝑃𝜃𝜃(𝒙𝒙) . Therefore, Equation 8.1.3 does not provide us with a good estimate  
of 𝑃𝑃𝜃𝜃(𝒙𝒙) . Alternatively, Equation 8.1.2 can also be expressed as:

𝑃𝑃𝜃𝜃(𝒙𝒙) = ∫ 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)𝑃𝑃(𝒙𝒙)𝑑𝑑𝒛𝒛     (Equation 8.1.4)

However, 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)  is also intractable. The goal of a VAE is to find a tractable 
distribution that closely estimates 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) , an estimate of the conditional distribution 
of the latent attributes, 𝒛𝒛 , given the input, 𝒙𝒙 .

Variational inference
In order to make 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)  tractable, VAE introduces the variational inference model 
(an encoder):

𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) ≈ 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)     (Equation 8.1.5)

𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  provides a good estimate of 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) . It is both parametric and tractable. 
𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  can be approximated by deep neural networks by optimizing the parameter 
𝜙𝜙 . Typically, 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  is chosen to be a multivariate gaussian:

𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) = 𝒩𝒩(𝒛𝒛;𝝁𝝁(𝒙𝒙), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝈𝝈(𝒙𝒙)2))     (Equation 8.1.6)
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Both mean, 𝝁𝝁(𝒙𝒙) , and standard, 𝝈𝝈(𝒙𝒙) , deviation are computed by the encoder neural 
network using the input data points. The diagonal matrix implies that the elements 
of 𝒛𝒛  are independent.

In the next section, we will solve for the core equation of VAE. The core equation will 
lead us to an optimization algorithm that will help us determine the parameters of 
the inference model.

Core equation
The inference model, 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) , generates a latent vector, 𝒛𝒛 , from input 𝒙𝒙 . 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  is 
like the encoder in an autoencoder model. On the other hand, 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)  reconstructs 
the input from the latent code, 𝒛𝒛 . 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)  acts like the decoder in an autoencoder 
model. To estimate 𝑃𝑃𝜃𝜃(𝒙𝒙) , we must identify its relationship with 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  and 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) .

If 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  is an estimate of 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) , the Kullback–Leibler (KL) divergence 
determines the distance between these two conditional densities:

𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) − log𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)]     (Equation 8.1.7)

Using Bayes' theorem:

𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) =
𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)𝑃𝑃𝜃𝜃(𝒛𝒛)

𝑃𝑃𝜃𝜃(𝒙𝒙)
     (Equation 8.1.8)

in Equation 8.1.7:

𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) − log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) − log𝑃𝑃𝜃𝜃(𝒛𝒛)] + log𝑃𝑃𝜃𝜃(𝒙𝒙)     
(Equation 8.1.9)

log𝑃𝑃𝜃𝜃(𝒙𝒙)  can be taken out of the expectation since it is not dependent on 𝒛𝒛~𝑄𝑄 . 
Rearranging Equation 8.1.9 and recognizing that:

𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙) − log𝑃𝑃𝜃𝜃(𝒛𝒛)] = 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛)) , it follows that:

log𝑃𝑃𝜃𝜃(𝒙𝒙) − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) = 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)] − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛))     
(Equation 8.1.10)

Equation 8.1.10 is the core of VAEs. The left-hand side is the term 𝑃𝑃𝜃𝜃(𝒙𝒙) , which 
we are maximizing less the error due to the distance of 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  from the true 
𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) . We can recall that the logarithm does not change the location of maxima 
(or minima). Given an inference model that provides a good estimate of 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙) , 
𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙))  is approximately zero.
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The first term, 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛) , on the right-hand side resembles a decoder that takes samples 
from the inference model to reconstruct the input.

The second term is another distance. This time it's between 𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)  and the prior 
𝑃𝑃𝜃𝜃(𝒛𝒛) . The left side of Equation 8.1.10 is also known as the variational lower bound 
or evidence lower bound (ELBO). Since the KL is always positive, ELBO is the lower 
bound of log𝑃𝑃𝜃𝜃(𝒙𝒙) . Maximizing ELBO by optimizing the parameters 𝜙𝜙  and 𝜃𝜃  of the 
neural network means that:

• 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙)) → 0  or the inference model is getting better in 
encoding the attributes 𝒙𝒙  in 𝒛𝒛 .

• log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)  on the right-hand side of Equation 8.1.10 is maximized or the 
decoder model is getting better in reconstructing 𝒙𝒙  from the latent vector, 𝒛𝒛 .

• In the next section, we will exploit the structure of Equation 8.1.10 to 
determine the loss functions of the inference model (encoder) and decoder.

Optimization
The right-hand side of Equation 8.1.10 has two important bits of information 
regarding the loss function of VAEs. The decoder term 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛)]  means that 
the generator takes 𝒛𝒛  samples from the output of the inference model to reconstruct 
the inputs. Maximizing this term implies that we minimize the Reconstruction Loss, 
ℒ𝑅𝑅 . If the image (data) distribution is assumed to be Gaussian, then MSE can be used.

If every pixel (data) is considered a Bernoulli distribution, then the loss function  
is a binary cross-entropy.

The second term, −𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛)) , turns out to be straightforward to evaluate. 
From Equation 8.1.6, 𝑄𝑄𝜙𝜙  is a Gaussian distribution. Typically, 𝑃𝑃𝜃𝜃(𝒛𝒛) = 𝑃𝑃(𝒛𝒛) = 𝒩𝒩(0, 𝐼𝐼)  
is also a Gaussian with zero mean and standard deviation equal to 1.0. In Equation 
8.1.11, we see that the KL term simplifies to:

−𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙)‖𝑃𝑃𝜃𝜃(𝒛𝒛)) =
1
2∑(1+ log(𝜎𝜎𝑗𝑗)

2 − (𝜇𝜇𝑗𝑗)
2 − (𝜎𝜎𝑗𝑗)

2)
𝐽𝐽

𝑗𝑗=1
     (Equation 8.1.11)

where 𝐽𝐽  is the dimensionality of 𝒛𝒛 . Both 𝜇𝜇𝑗𝑗  and 𝜎𝜎𝑗𝑗  are functions of 𝒙𝒙  computed 
through the inference model. To maximize: −𝐷𝐷𝐾𝐾𝐾𝐾 , 𝜎𝜎𝑗𝑗 → 1  and 𝜇𝜇𝑗𝑗 → 0 . The choice of 
𝑃𝑃(𝒛𝒛) = 𝒩𝒩(0, 𝐼𝐼)  stems from the property of the isotropic unit Gaussian, which can be 
morphed to an arbitrary distribution given a suitable function [6].
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From Equation 8.1.11, the KL loss, ℒ𝐾𝐾𝐾𝐾,  is simply 𝐷𝐷𝐾𝐾𝐾𝐾 .

In summary, the VAE loss function is defined in Equation 8.1.12 as:

ℒ𝑉𝑉𝑉𝑉𝑉𝑉 = ℒ𝑅𝑅 + ℒ𝐾𝐾𝐾𝐾     (Equation 8.1.12)

Given the encoder and decoder models, there is one more problem to solve before 
we can build and train a VAE, the stochastic sampling block, which generates the 
latent attributes. In the next section, we will discuss this issue and how to resolve 
it using the reparameterization trick.

Reparameterization trick
The left-hand side of Figure 8.1.1 below shows the VAE network. The encoder 
takes the input, 𝒙𝒙 , and estimates the mean, 𝝁𝝁 , and the standard deviation, 𝝈𝝈 , of the 
multivariate Gaussian distribution of the latent vector, 𝒛𝒛 . The decoder takes samples 
from the latent vector, 𝒛𝒛 , to reconstruct the input as 𝒙𝒙~ . This seems straightforward 
until the gradient updates happen during backpropagation:

Figure 8.1.1: A VAE network with and without the reparameterization trick

Backpropagation gradients will not pass through the stochastic Sampling block. 
While it's fine to have stochastic inputs for neural networks, it's not possible for 
the gradients to go through a stochastic layer.

The solution to this problem is to push out the Sampling process as the input, 
as shown on the right side of Figure 8.1.1. Then, compute the sample as:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝝁𝝁 + 𝝐𝝐𝝐𝝐     (Equation 8.1.13)
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If 𝝐𝝐  and 𝝈𝝈  are expressed in vector format, then 𝝐𝝐𝝐𝝐  is element-wise multiplication. 
Using Equation 8.1.13, it appears as if sampling is directly coming from the 
latent space as originally intended. This technique is better known as the 
Reparameterization trick.

With Sampling now happening at the input, the VAE network can be trained using 
the familiar optimization algorithms, such as SGD, Adam, or RMSProp.

Before discussing how to implement VAE in tf.keras, let's first show how a trained 
decoder is tested.

Decoder testing
After training the VAE network, the inference model, including the addition and 
multiplication operator, can be discarded. To generate new meaningful outputs, 
samples are taken from the Gaussian distribution used in generating 𝝐𝝐 . Figure 8.1.2 
shows us the test setup of the decoder:

Figure 8.1.2: Decoder testing setup

With the reparameterization trick fixing the last issue on VAE, we are now ready 
to implement and train a variational autoencoder in tf.keras.

VAE in Keras
The structure of VAE bears a resemblance to a typical autoencoder. The difference is 
mainly on the sampling of the Gaussian random variables in the reparameterization 
trick. Listing 8.1.1 shows the encoder, decoder, and VAE, which are implemented 
using MLP. 
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This code has also been contributed to the official Keras GitHub repository:

https://github.com/keras-team/keras/blob/master/examples/variational_
autoencoder.py

For ease of visualization of the latent codes, the dimension of 𝒛𝒛  is set to 2. The 
encoder is just a two-layer MLP, with the second layer generating the mean and log 
variance. The use of log variance is for simplicity in the computation of KL loss and 
the reparameterization trick. The third output of the encoder is the sampling of 𝒛𝒛  
using the reparameterization trick. We should note that in the sampling function, 
𝑒𝑒0.5log𝜎𝜎2 = √𝜎𝜎2 = 𝜎𝜎 , since 𝜎𝜎 > 0  given that it is the standard deviation of the 
Gaussian distribution.

The decoder is also a two-layer MLP that takes samples of 𝒛𝒛  to approximate the 
inputs. Both the encoder and the decoder use an intermediate dimension with a size 
of 512.

The VAE network is simply both the encoder and the decoder joined together. The 
loss function is the sum of both the reconstruction loss and KL loss. The VAE network 
has good results on the default Adam optimizer. The total number of parameters in 
the VAE network is 807,700.

The Keras code for the VAE MLP has pretrained weights. To test, we need to run:

python3 vae-mlp-mnist-8.1.1.py --weights=vae_mlp_mnist.tf

Listing 8.1.1: vae-mlp-mnist-8.1.1.py

# reparameterization trick
# instead of sampling from Q(z|X), sample eps = N(0,I)
# z = z_mean + sqrt(var)*eps
def sampling(args):
    """Reparameterization trick by sampling 
        fr an isotropic unit Gaussian.

    # Arguments:
        args (tensor): mean and log of variance of Q(z|X)

    # Returns:
        z (tensor): sampled latent vector

The complete code can be found at the following link: https://
github.com/PacktPublishing/Advanced-Deep-Learning-
with-Keras

https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py 
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py 
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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    """

    z_mean, z_log_var = args
    # K is the keras backend
    batch = K.shape(z_mean)[0]
    dim = K.int_shape(z_mean)[1]
    # by default, random_normal has mean=0 and std=1.0
    epsilon = K.random_normal(shape=(batch, dim))
    return z_mean + K.exp(0.5 * z_log_var) * epsilon

# MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()

image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255

# network parameters
input_shape = (original_dim, )
intermediate_dim = 512
batch_size = 128
latent_dim = 2
epochs = 50

# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary 
# with the TensorFlow backend
z = Lambda(sampling,
           output_shape=(latent_dim,),
           name='z')([z_mean, z_log_var])

# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')



Variational Autoencoders (VAEs)

[ 264 ]

# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')

# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    help_ = "Load tf model trained weights"
    parser.add_argument("-w", "--weights", help=help_)
    help_ = "Use binary cross entropy instead of mse (default)"
    parser.add_argument("--bce", help=help_, action='store_true')
    args = parser.parse_args()
    models = (encoder, decoder)
    data = (x_test, y_test)

    # VAE loss = mse_loss or xent_loss + kl_loss
    if args.bce:
        reconstruction_loss = binary_crossentropy(inputs,
                                                  outputs)
    else:
        reconstruction_loss = mse(inputs, outputs)
    
    reconstruction_loss *= original_dim
    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
    kl_loss = K.sum(kl_loss, axis=-1)
    kl_loss *= -0.5
    vae_loss = K.mean(reconstruction_loss + kl_loss)
    vae.add_loss(vae_loss)
    vae.compile(optimizer='adam')
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Figures 8.1.3 shows the encoder model, which is an MLP with two outputs, the 
mean and variance of the latent vectors. The lambda function implements the 
reparameterization trick to push the sampling of the stochastic latent codes outside 
the VAE network:

Figure 8.1.3: The encoder models of the VAE MLP

Figures 8.1.4 shows the decoder model. The 2-dim input comes from the lambda 
function. The output is the reconstructed MNIST digit:

Figure 8.1.4: The decoder model of the VAE MLP
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Figures 8.1.5 shows the complete VAE model. It is made by joining the encoder and 
decoder models together:

Figure 8.1.5: The VAE model using the MLP

Figure 8.1.6 shows the continuous space of the latent vector after 50 epochs using 
plot_results(). For simplicity, the function is not shown here but can be found 
in the rest of the code of vae-mlp-mnist-8.1.1.py. The function plots two images, 
the test dataset labels (Figure 8.1.6) and the sample generated digits (Figure 8.1.7), 
both as a function of 𝒛𝒛 . Both plots demonstrate how the latent vector determines 
the attributes of the generated digits:

Figure 8.1.6: The MNIST digit label as a function of latent vector mean values for the test dataset (VAE MLP). 
The original image can be found on the book's GitHub repository at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
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Navigating through the continuous space will always result in an output that bears 
a resemblance to the MNIST digits. For example, the region of digit 9 is close to the 
region of digit 7. Moving from 9 near the center to the lower left morphs the digit to 
7. Moving from the center up changes the generated digits from 3 to 5, and finally to 
0. The morphing of the digits is more evident in Figure 8.1.7 which is another way of 
interpreting Figure 8.1.6.

In Figure 8.1.7, the generator output is displayed. The distribution of digits in the 
latent space is shown. It can be observed that all the digits are represented. Since 
the distribution is dense near the center, the change is rapid in the middle and slow 
in regions that have high mean values. We need to remember that Figure 8.1.7 is a 
reflection of Figure 8.1.6. For example, digit 0 is in the upper-left quadrant on both 
figures, while digit 1 is in the lower-right quadrant.

There are some unrecognizable digits in Figure 8.1.7, especially in the top-right 
quadrant. From Figure 8.1.6, it can be observed that this region is mostly empty and 
far away from the center:

Figure 8.1.7: The digits generated as a function of latent vector mean values (VAE MLP).  
For ease of interpretation, the range of values for the mean is similar to Figure 8.1.6
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In this section, we demonstrated how to implement VAE in the MLP. We also 
interpreted the results of navigating the latent space. In the next section, we will 
implement the same VAE using CNN.

Using CNN for AE
In the original paper, Auto-encoding Variational Bayes [1], the VAE network was 
implemented using MLP, which is similar to what we covered in the previous 
section. In this section, we'll demonstrate that using CNN will result in a significant 
improvement in the quality of the digits produced and a remarkable reduction in the 
number of parameters down to 134,165.

Listing 8.1.3 shows the encoder, decoder, and VAE network. This code was also 
contributed to the official Keras GitHub repository:

https://github.com/keras-team/keras/blob/master/examples/variational_
autoencoder_deconv.py

For conciseness, some lines of code that are similar to the MLP VAE are no longer 
shown. The encoder is made of two layers of CNN and two layers of MLP in order 
to generate the latent code. The encoder output structure is similar to the MLP 
implementation seen in the previous section. The decoder is made up of one layer 
of Dense and three layers of transposed CNN.

The Keras code for the VAE CNN has pretrained weights. To test, we need to run:

python3 vae-cnn-mnist-8.1.2.py --weights=vae_cnn_mnist.tf

Listing 8.1.3: vae-cnn-mnist-8.1.2.py

VAE in tf.keras using CNN layers:

# network parameters
input_shape = (image_size, image_size, 1)
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30

# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
for i in range(2):
    filters *= 2

https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder_deconv.py 
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder_deconv.py 
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    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               activation='relu',
               strides=2,
               padding='same')(x)

# shape info needed to build decoder model
shape = K.int_shape(x)

# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary 
# with the TensorFlow backend
z = Lambda(sampling,
           output_shape=(latent_dim,),
           name='z')([z_mean, z_log_var])

# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(shape[1] * shape[2] * shape[3],
          activation='relu')(latent_inputs)
x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        activation='relu',
                        strides=2,
                        padding='same')(x)
    filters //= 2

outputs = Conv2DTranspose(filters=1,
                          kernel_size=kernel_size,
                          activation='sigmoid',
                          padding='same',
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                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')

# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')

Figure 8.1.8 shows the CNN encoder model's two outputs, the mean and variance 
of the latent vectors. The lambda function implements the reparameterization trick to 
push the sampling of the stochastic latent codes outside the VAE network:

Figure 8.1.8: The encoder of VAE CNN
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Figure 8.1.9 shows the CNN decoder model. The 2-dim input comes from the lambda 
function. The output is the reconstructed MNIST digit:

Figure 8.1.9: The decoder of VAE CNN

Figure 8.1.10 shows the complete CNN VAE model. It is made by joining the encoder 
and decoder models together:

Figure 8.1.10: The VAE model using CNNs
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The VAE was trained for 30 epochs. Figure 8.1.11 shows the distribution of digits 
as we navigate the continuous latent space of a VAE. For example, from the center 
to the right, the digit changes from 2 to 0:

Figure 8.1.11: The MNIST digit label as a function of latent vector mean values for the test dataset (VAE CNN). 
The original image can be found on the book's GitHub repository at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae.

Figure 8.1.12 shows us the output of the generative model. Qualitatively, there 
are fewer digits that are ambiguous as compared to Figure 8.1.7 with the MLP 
implementation:
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Figure 8.1.12: The digits generated as a function of latent vector mean values (VAE CNN). For ease of 
interpretation, the range of values for the mean is similar to Figure 8.1.11

The previous two sections discussed the implementation of VAE using MLP or CNN. 
We analyzed the results of both implementations and showed that the CNN results 
in a lower parameter count and better perceptive quality. In the next section, we will 
demonstrate how to implement conditioning in VAE so that we can control which 
digit to generate.
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2. Conditional VAE (CVAE)
Conditional VAE [2] is similar to the idea of CGAN. In the context of the MNIST 
dataset, if the latent space is randomly sampled, VAE has no control over which digit 
will be generated. CVAE is able to address this problem by including a condition 
(a one-hot label) of the digit to produce. The condition is imposed on both the 
encoder and decoder inputs.

Formally, the core equation of VAE in Equation 8.1.10 is modified to include the 
condition, 𝒄𝒄 :

log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒄𝒄) − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙, 𝒄𝒄)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒙𝒙, 𝒄𝒄))
= 𝔼𝔼𝒛𝒛~𝑄𝑄[log𝑃𝑃𝜃𝜃(𝒙𝒙|𝒛𝒛, 𝒄𝒄)] − 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙, 𝒄𝒄)‖𝑃𝑃𝜃𝜃(𝒛𝒛|𝒄𝒄)) 

    (Equation 8.2.1)

Similar to VAEs, Equation 8.2.1 means that if we want to maximize the output 
conditioned 𝒄𝒄 , 𝑃𝑃𝜃𝜃(𝒙𝒙|𝒄𝒄) , then the two loss terms must be minimized:

• Reconstruction loss of the decoder given both the latent vector and the 
condition.

• KL loss between the encoder given both the latent vector and the condition 
and the prior distribution given the condition. Similar to a VAE, we typically 
choose 𝑃𝑃𝜃𝜃(𝒛𝒛|𝒄𝒄) = 𝑃𝑃(𝒛𝒛|𝒄𝒄) = 𝒩𝒩(0, 𝐼𝐼) .

Implementing CVAE requires a few modifications in the code of the VAE. For the 
CVAE, the VAE CNN implementation is used since it results in a smaller network 
with perceptually better digits produced.

Listing 8.2.1 highlights the changes made to the original code of VAE for MNIST 
digits. The encoder input is now a concatenation of the original input image and 
its one-hot label. The decoder input is now a combination of the latent space 
sampling and the one-hot label of the image it should generate. The total number 
of parameters is 174,437. The codes related to 𝛽𝛽 -VAE will be discussed in the next 
section of this chapter.

There are no changes in the loss function. However, the one-hot labels are supplied 
during training, testing, and the plotting of results.

Listing 8.2.1: cvae-cnn-mnist-8.2.1.py

CVAE in tf.keras using CNN layers. Highlighted are the changes made to support 
CVAE:

# compute the number of labels
num_labels = len(np.unique(y_train))
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# network parameters
input_shape = (image_size, image_size, 1)
label_shape = (num_labels, )
batch_size = 128
kernel_size = 3
filters = 16
latent_dim = 2
epochs = 30

# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
y_labels = Input(shape=label_shape, name='class_labels')
x = Dense(image_size * image_size)(y_labels)
x = Reshape((image_size, image_size, 1))(x)
x = keras.layers.concatenate([inputs, x])
for i in range(2):
    filters *= 2
    x = Conv2D(filters=filters,
               kernel_size=kernel_size,
               activation='relu',
               strides=2,
               padding='same')(x)

# shape info needed to build decoder model
shape = K.int_shape(x)

# generate latent vector Q(z|X)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary 
# with the TensorFlow backend
z = Lambda(sampling,
           output_shape=(latent_dim,),
           name='z')([z_mean, z_log_var])

# instantiate encoder model
encoder = Model([inputs, y_labels],
                [z_mean, z_log_var, z],
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                name='encoder')

# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = concatenate([latent_inputs, y_labels])
x = Dense(shape[1]*shape[2]*shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)

for i in range(2):
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        activation='relu',
                        strides=2,
                        padding='same')(x)
    filters //= 2

outputs = Conv2DTranspose(filters=1,
                          kernel_size=kernel_size,
                          activation='sigmoid',
                          padding='same',
                          name='decoder_output')(x)

# instantiate decoder model
decoder = Model([latent_inputs, y_labels],
                outputs,
                name='decoder')

# instantiate vae model
outputs = decoder([encoder([inputs, y_labels])[2], y_labels])
cvae = Model([inputs, y_labels], outputs, name='cvae')

Figure 8.2.1 shows the encoder of the CVAE model. The additional input, the 
conditioning label in the form of a one-hot vector, class_labels, is indicated:
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Figure 8.2.1: The encoder in CVAE CNN. The input now comprises the concatenation  
of the VAE input and a conditioning label
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Figure 8.2.2 shows the decoder of the CVAE model. The additional input, the 
conditioning label in the form of a one-hot vector, class_labels, is indicated:

Figure 8.2.2: The decoder in CVAE CNN. The input now comprises  
the concatenation of the z sampling and a conditioning label

Figure 8.2.3 shows the complete CVAE model, which is the encoder and decoder 
joined together. The additional input, the conditioning label in the form of a one-hot 
vector, class_labels, is indicated:
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Figure 8.2.3: The CVAE model using a CNN. The input now comprises a VAE input and a conditioning label

In Figure 8.2.4, the distribution of the mean per label is shown after 30 epochs. 
Unlike in Figure 8.1.6 and Figure 8.1.11 in the previous sections, each label is not 
concentrated on a region but distributed across the plot. This is expected since every 
sampling in the latent space should generate a specific digit. Navigating the latent 
space changes the attribute of that specific digit. For example, if the digit specified is 
0, then navigating the latent space will still produce a 0, but the attributes, such as tilt 
angle, thickness, and other writing style aspects, will be different.

Figure 8.2.4: The MNIST digit label as a function of latent vector mean values for the test dataset (CVAE CNN). 
The original image can be found on the book's GitHub repository at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
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Figure 8.2.4 is more clearly shown in Figure 8.2.5 for digits 0 to 5. Each frame has the 
same digit, with the attributes changing smoothly as we navigate the latent codes:

Figure 8.2.5: Digits 0 to 5 generated as a function of latent vector mean values and a one-hot label  
(CVAE CNN). For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4
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Figure 8.2.6 shows Figure 8.2.4 for digits 6 to 9:

Figure 8.2.6: Digits 6 to 9 generated as a function of latent vector mean values and a one-hot label (CVAE CNN). 
For ease of interpretation, the range of values for the mean is similar to Figure 8.2.4

For ease of comparison, the range of values for the latent vector is the same as in 
Figure 8.2.4. Using the pretrained weights, a digit (for example, 0) can be generated 
by executing the command:

python3 cvae-cnn-mnist-8.2.1.py –bce --weights=cvae_cnn_mnist.tf 
--digit=0

In Figure 8.2.5 and Figure 8.2.6, it can be noticed that the width and roundness (if 
applicable) of each digit change as z[0] is traced from left to right. Meanwhile, the tilt 
angle and roundness (if applicable) of each digit changes as z[1] is navigated from 
top to bottom. As we move away from the center of the distribution, the image of the 
digit starts to degrade. This is expected since the latent space is a circle.
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Other noticeable variations in attributes may be digit-specific. For example, the 
horizontal stroke (arm) for digit 1 becomes visible in the upper left quadrant. The 
horizontal stroke (crossbar) for digit 7 can be seen in the right quadrants only.

In the next section, we will discover that CVAE is actually just a special case 
of another type of VAE called 𝛽𝛽 -VAE.

3. 𝜷𝜷 -VAE – VAE with disentangled latent 
representations
In Chapter 6, Disentangled Representation GANs, the concept and importance of the 
disentangled representation of latent codes were discussed. We can recall that a 
disentangled representation is where single latent units are sensitive to changes in 
single generative factors while being relatively invariant to changes in other factors 
[3]. Varying a latent code results in changes in one attribute of the generated output, 
while the remainder of the properties remain the same.

In the same chapter, InfoGAN [4] demonstrated to us that for the MNIST dataset, 
it is possible to control which digit to generate and the tilt and thickness of the 
writing style. Observing the results in the previous section, it can be noticed that the 
VAE is intrinsically disentangling the latent vector dimensions to a certain extent. 
For example, looking at digit 8 in Figure 8.2.6, navigating z[1] from top to bottom 
decreases the width and roundness while rotating the digit clockwise. Increasing 
z[0] from left to right also decreases the width and roundness while rotating the digit 
counterclockwise. In other words, z[1] controls the clockwise rotation, while z[0] affects 
the counterclockwise rotation, and both of them alter the width and roundness.

In this section, we'll demonstrate that a simple modification in the loss function of 
VAE forces the latent codes to disentangle further. The modification is the positive 
constant weight, 𝛽𝛽 >  1, acting as a regularizer on the KL loss:

ℒ𝛽𝛽−𝑉𝑉𝑉𝑉𝑉𝑉 = ℒ𝑅𝑅 + 𝛽𝛽ℒ𝐾𝐾𝐾𝐾     (Equation 8.3.1)

This variation of VAE is called 𝛽𝛽 -VAE [5]. The implicit effect of 𝛽𝛽  is tighter standard 
deviation. In other words, 𝛽𝛽  forces the latent codes in the posterior distribution, 
𝑄𝑄𝜙𝜙(𝒛𝒛|𝒙𝒙),  to be independent.

It is straightforward to implement 𝛽𝛽 -VAE. For example, for the CVAE from the 
previous example, the required modification is the extra beta factor in kl_loss:
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kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5 * beta

CVAE is a special case of 𝛽𝛽 -VAE with 𝛽𝛽  = 1. Everything else is the same. However, 
determining the value of 𝛽𝛽  requires some trial and error. There must be a careful 
balance between the reconstruction error and regularization for latent code 
independence. The disentanglement is maximized at around 𝛽𝛽  = 9. When the value 
of 𝛽𝛽 >  9, 𝛽𝛽 -VAE is forced to learn one disentangled representation only while muting 
the other latent dimension.

Figure 8.3.1 and Figure 8.3.2 show the latent vector means for 𝛽𝛽 -VAE with 𝛽𝛽  = 9 and  
𝛽𝛽  = 10:

Figure 8.3.1: The MNIST digit label as a function of latent vector mean values for the test dataset (𝛽𝛽 -VAE 
with 𝛽𝛽  = 9). The original image can be found on the book's GitHub repository at https://github.com/

PacktPublishing/Advanced- Deep-Learning-with-Keras/tree/master/chapter8-vae
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With 𝛽𝛽  = 9, the distribution has smaller standard deviation compared to CVAE. With 
𝛽𝛽  = 10, there is only latent code that is learned. The distribution is practically shrunk 
to one dimension, with the first latent code z[0] ignored by the encoder and decoder.

Figure 8.3.2: The MNIST digit label as a function of latent vector mean values for the test dataset  
(𝛽𝛽 -VAE with 𝛽𝛽 =  10)

The original image can be found on the book's GitHub repository at https://
github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/
master/chapter8-vae.

These observations are reflected in Figure 8.3.3. 𝛽𝛽 -VAE with 𝛽𝛽  = 9 has two latent 
codes that are practically independent. z[0] determines the tilt of the writing style, 
while z[1] specifies the width and roundness (if applicable) of the digits. For 𝛽𝛽 -VAE 
with 𝛽𝛽  = 10, z[0] is muted. Increasing z[0] does not alter the digit in a significant way. 
z[1] determines the tilt angle and width of the writing style:

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter8-vae


Chapter 8

[ 285 ]

Figure 8.3.3: Digits 0 to 3 generated as a function of latent vector mean values and a one-hot label (𝛽𝛽 -VAE 𝛽𝛽  
=1, 9, and 10). For ease of interpretation, the range of values for the mean is similar to Figure 8.3.1

The tf.keras code for 𝛽𝛽 -VAE has pretrained weights. To test 𝛽𝛽 -VAE with 𝛽𝛽  = 9 
generating digit 0, we need to run the following command:

python3 cvae-cnn-mnist-8.2.1.py --beta=9 --bce --weights=beta-cvae_cnn_
mnist.tf --digit=0
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In summary, we have demonstrated that disentangled representation learning is 
easier to implement on 𝛽𝛽 -VAE compared to GANs. All we need is to tune a single 
hyperparameter.

4. Conclusion
In this chapter, we've covered the principles of VAEs. As we learned in the principles 
of VAEs, they bear a resemblance to GANs from the point of view of both attempts 
to create synthetic outputs from latent space. However, it can be noticed that 
the VAE networks are much simpler and easier to train compared to GANs. It's 
becoming clear how CVAE and 𝛽𝛽 -VAE are similar in concept to conditional GANs 
and disentangled representation GANs, respectively.

VAEs have an intrinsic mechanism to disentangle the latent vectors. Therefore, 
building a 𝛽𝛽  -VAE is straightforward. We should note, however, that interpretable 
and disentangled codes are important in building intelligent agents.

In the next chapter, we're going to focus on reinforcement learning. Without any 
prior data, an agent learns by interacting with the world around it. We'll discuss 
how the agent can be rewarded for correct actions, and punished for the wrong ones.
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9
Deep Reinforcement 

Learning
Reinforcement Learning (RL) is a framework that is used by an agent for decision 
making. The agent is not necessarily a software entity, such as you might see in video 
games. Instead, it could be embodied in hardware such as a robot or an autonomous 
car. An embodied agent is probably the best way to fully appreciate and utilize RL, 
since a physical entity interacts with the real world and receives responses.

The agent is situated within an environment. The environment has a state that 
can be partially or fully observable. The agent has a set of actions that it can use 
to interact with its environment. The result of an action transitions the environment 
to a new state. A corresponding scalar reward is received after executing an action.

The goal of the agent is to maximize the accumulated future reward by learning 
a policy that will decide which action to take given a state.

RL has a strong similarity to human psychology. Humans learn by experiencing the 
world. Wrong actions result in a certain form of penalty and should be avoided in 
the future, whilst actions that are correct are rewarded and should be encouraged. 
This strong similarity to human psychology has convinced many researchers to 
believe that RL can lead us toward true Artificial Intelligence (AI).

RL has been around for decades. However, beyond simple world models, RL has 
struggled to scale. This is where Deep Learning (DL) came into play. It solved this 
scalability problem, which opened up the era of Deep Reinforcement Learning 
(DRL). In this chapter, our focus is on DRL. One of the notable examples in DRL 
is the work of DeepMind on agents that were able to surpass the best human 
performance on different video games.
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In this chapter, we discuss both RL and DRL.

In summary, the goal of this chapter is to present:

• The principles of RL
• The RL technique, Q-learning
• Advanced topics, including Deep Q-Network (DQN), and Double 

Q-Learning (DDQN)
• Instructions on how to implement RL on Python and DRL using tf.keras

Let's start with the fundamentals, the principles behind RL.

1. Principles of Reinforcement 
Learning (RL)
Figure 9.1.1 shows the perception-action-learning loop that is used to describe RL. 
The environment is a soda can sitting on the floor. The agent is a mobile robot whose 
goal is to pick up the soda can. It observes the environment around it and tracks the 
location of the soda can through an onboard camera. The observation is summarized 
in a form of a state that the robot will use to decide which action to take. The actions 
it takes may pertain to low-level control, such as the rotation angle/speed of each 
wheel, the rotation angle/speed of each joint of the arm, and whether the gripper 
is open or closed.

Alternatively, the actions may be high-level control moves such as moving the robot 
forward/backward, steering with a certain angle, and grab/release. Any action that 
moves the gripper away from the soda receives a negative reward. Any action that 
closes the gap between the gripper location and the soda receives a positive reward. 
When the robot arm successfully picks up the soda can, it receives a big positive 
reward. The goal of RL is to learn the optimal policy that helps the robot to decide 
which action to take given a state to maximize the accumulated discounted reward:
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Figure 9.1.1: The perception-action-learning loop in RL

Formally, the RL problem can be described as a Markov decision process (MDP).

For simplicity, we'll assume a deterministic environment where a certain action in 
a given state will consistently result in a known next state and reward. In a later 
section of this chapter, we'll look at how to consider stochasticity. At timestep t:

• The environment is in a state, st, from the state space, 𝒮𝒮 , which may be 
discrete or continuous. The starting state is s0, while the terminal state is sT.

• The agent takes an action, sa,from the action space, 𝒜𝒜 , by obeying the policy, 
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) . 𝒜𝒜  may be discrete or continuous.

• The environment transitions to a new state, st+1, using the state transition 
dynamics 𝒯𝒯(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) . The next state is only dependent on the current state 
and action. 𝒯𝒯  is not known to the agent.

• The agent receives a scalar reward using a reward function, rt+1 = R(st, at), 
with 𝑟𝑟:𝒜𝒜 × 𝒮𝒮 → ℝ . The reward is only dependent on the current state and 
action. 𝑅𝑅  is not known to the agent.

• Future rewards are discounted by 𝛾𝛾𝑘𝑘 , where 𝛾𝛾 ∈ [0,1]  and k is the future 
timestep.

• Horizon, H, is the number of timesteps, T, needed to complete one episode 
from s0 to sT.
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The environment may be fully or partially observable. The latter is also known as 
a partially observable MDP or POMDP. Most of the time, it's unrealistic to fully 
observe the environment. To improve the observability, past observations are also 
taken into consideration with the current observation. The state comprises the 
sufficient observations about the environment for the policy to decide on which 
action to take. Recalling Figure 9.1.1, this could be the three dimensional position of 
the soda can with respect to the robot gripper as estimated by the robot camera.

Every time the environment transitions to a new state, the agent receives a scalar 
reward, rt+1. In Figure 9.1.1, the reward could be +1 whenever the robot gets closer to 
the soda can, -1 whenever it gets farther away, and +100 when it closes the gripper 
and successfully picks up the soda can. The goal of the agent is to learn an optimal 
policy, 𝜋𝜋∗ , that maximizes the return from all states:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑅𝑅𝑡𝑡     (Equation 9.1.1)

The return is defined as the discounted cumulative reward, 𝑅𝑅𝑡𝑡 =∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
r𝑡𝑡+𝑘𝑘 . It can 

be observed from Equation 9.1.1 that future rewards have lower weights compared to 
immediate rewards since generally, 𝛾𝛾𝑘𝑘 < 1.0,  where 𝛾𝛾 ∈ [0,1] . At the extremes, when 
𝛾𝛾 = 0 , only the immediate reward matters. When 𝛾𝛾 = 1 , future rewards have the 
same weight as the immediate reward.

Return can be interpreted as a measure of the value of a given state by following an 
arbitrary policy, 𝜋𝜋 :

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝑅𝑅𝑡𝑡 = ∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
r𝑡𝑡+𝑘𝑘     (Equation 9.1.2)

To put the RL problem in another way, the goal of the agent is to learn the optimal 
policy that maximizes 𝑉𝑉𝜋𝜋  for all states s:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑉𝑉𝜋𝜋(𝑠𝑠)     (Equation 9.1.3)

The value function of the optimal policy is simply 𝑉𝑉∗ . In Figure 9.1.1, the optimal 
policy is the one that generates the shortest sequence of actions that brings the robot 
closer and closer to the soda can until it is fetched. The closer the state to the goal 
state, the higher its value. The sequence of events leading to the goal (or terminal 
state) can be modeled as the trajectory or rollout of the policy:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  (s0a0𝑇𝑇1s1, s1a1𝑇𝑇2s2, … , s𝑇𝑇−1a𝑇𝑇−1𝑇𝑇𝑇𝑇s𝑇𝑇)     (Equation 9.1.4)



Chapter 9

[ 293 ]

If the MDP is episodic, when the agent reaches the terminal state, sT, the state is reset 
to s0. If T is finite, we have a finite horizon. Otherwise, the horizon is infinite. In 
Figure 9.1.1, if the MDP is episodic, after collecting the soda can, the robot may look 
for another soda can to pick up and the RL problem repeats.

A key objective of RL is therefore to find a policy that maximizes the value of each 
state. In the next section, we will present a learning algorithm for the policy that can 
be used to maximize the value function.

2. The Q value
If the RL problem is to find 𝜋𝜋∗ , how does the agent learn by interacting with the 
environment? Equation 9.1.3 does not explicitly indicate the action to try and the 
succeeding state to compute the return. In RL, it is easier to learn 𝜋𝜋∗  by using the 
Q value:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄(𝑠𝑠, 𝑎𝑎)     (Equation 9.2.1)

where:

𝑉𝑉∗(𝑠𝑠) = max
𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑎𝑎)     (Equation 9.2.2)

In other words, instead of finding the policy that maximizes the value for all states, 
Equation 9.2.1 looks for the action that maximizes the quality (Q) value for all states. 
After finding the Q value function, 𝑉𝑉∗,  and hence 𝜋𝜋∗,  are determined by Equation 
9.2.2 and Equation 9.1.3, respectively.

If, for every action, the reward and the next state can be observed, we can formulate 
the following iterative or trial-and-error algorithm to learn the Q value:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)     (Equation 9.2.3)

For notational simplicity, 𝑠𝑠′  and 𝑎𝑎′  are the next state and action, respectively. 
Equation 9.2.3 is known as the Bellman equation, which is the core of the Q-learning 
algorithm. Q-learning attempts to approximate the first-order expansion of return 
or value (Equation 9.1.2) as a function of both current state and action. From zero 
knowledge of the dynamics of the environment, the agent tries an action 𝑎𝑎 , observes 
what happens in the form of a reward, 𝑟𝑟 , and next state, 𝑠𝑠′ . max

𝑎𝑎′ 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)  chooses 
the next logical action that will give the maximum Q value for the next state. With 
all terms in Equation 9.2.3 known, the Q value for that current state-action pair is 
updated. Doing the update iteratively will eventually enable the agent to learn the 
Q value function.
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Q-learning is an off-policy RL algorithm. It learns how to improve a policy by not 
directly sampling experiences from that policy. In other words, the Q values are 
learned independent of the underlying policy being used by the agent. When the 
Q value function has converged, only then is the optimal policy determined using 
Equation 9.2.1.

Before giving an example of how to use Q-learning, note that the agent must 
continually explore its environment while gradually taking advantage of what it 
has learned so far. This is one of the issues in RL – finding the right balance between 
exploration and exploitation. Generally, during the start of learning, the action is 
random (exploration). As the learning progresses, the agent takes advantage of the 
Q value (exploitation). For example, at the start, 90% of the action is random and 
10% stems from the Q value function. At the end of each episode, this is gradually 
decreased. Eventually, the action is 10% random and 90% from the Q value function.

In the next section, we will give a concrete example as to how Q-learning is used  
in a simple deterministic environment.

3. Q-learning example
To illustrate the Q-learning algorithm, we need to consider a simple deterministic 
environment, as shown in Figure 9.3.1. The environment has six states.

The rewards for allowed transitions are shown. The reward is non-zero in two cases. 
Transition to the Goal (G) state has a +100 reward, while moving into the Hole (H) 
state has a -100 reward. These two states are terminal states and constitute the end 
of one episode from the Start state:

Figure 9.3.1: Rewards in a simple deterministic world
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To formalize the identity of each state, we use a (row, column) identifier as shown 
in Figure 9.3.2. Since the agent has not learned anything yet about its environment, 
the Q-table also shown in Figure 9.3.2 has zero initial values. In this example, 
the discount factor 𝛾𝛾 = 0.9 . Recall that in the estimate of the current Q value, the 
discount factor determines the weight of future Q values as a function of the number 
of steps, 𝛾𝛾𝑘𝑘 . In Equation 9.2.3, we only consider the immediate future Q value, 𝑘𝑘 = 1 .

Figure 9.3.2: States in the simple deterministic environment and the agent's initial Q-table

Initially, the agent assumes a policy that selects a random action 90% of the time and 
exploits the Q-table 10% of the time. Suppose the first action is randomly chosen and 
indicates a move to the right. Figure 9.3.3 illustrates the computation of the new Q 
value of state (0, 0) for a move to the right. The next state is (0, 1). The reward is 0, 
and the maximum of all the next state's Q values is zero. Therefore, the Q value of 
state (0, 0) for a move to the right remains 0.

To easily track the initial state and next state, we use different shades of gray on both 
the environment and the Q-table—lighter gray for the initial state, and darker gray 
for the next state. 
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In choosing the next action for the next state, the candidate actions are in the thicker 
border:

Figure 9.3.3: Assuming the action taken by the agent is a move to the right,  
an update to the Q value of state (0, 0) is shown

Let's suppose that the next randomly chosen action is a move in a downward 
direction. Figure 9.3.4 shows no change in the Q value of state (0, 1) for the move  
in a downward direction:

Figure 9.3.4: Assuming the action chosen by the agent is a move down,  
an update to the Q value of state (0, 1) is shown
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In Figure 9.3.5, the agent's third random action is a move to the right;

Figure 9.3.5: Assuming the action chosen by the agent is a move to the right,  
an update to the Q value of state (1, 1) is shown

It encountered the H state and received a -100 reward. This time, the update is non-
zero. The new Q value for the state (1, 1) is -100 for the move to the right. Note that 
since this is a terminal state, there are no next states. One episode has just finished, 
and the agent returns to the Start state.

Let's suppose the agent is still in exploration mode, as shown in Figure 9.3.6:

Figure 9.3.6: Assuming the actions chosen by the agent are two successive moves to the right,  
an update to the Q value of state (0, 1) is shown
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The first step it took for the second episode was a move to the right. As expected, the 
update is 0. However, the second random action it chose is also a move to the right. 
The agent reached the G state and received a big +100 reward. The Q value for the 
state (0, 1) moving to the right becomes 100. The second episode is done, and the 
agent goes back to the Start state.

At the beginning of the third episode, the random action taken by the agent is a 
move to the right. The Q value of state (0, 0) is now updated with a non-zero value 
because the next state's possible actions have 100 as the maximum Q value. Figure 
9.3.7 shows the computation involved. The Q value of the next state (0, 1) ripples 
back to the earlier state (0, 0). It is like giving credit to the earlier states that helped 
in finding the G state.

Figure 9.3.7: Assuming the action chosen by the agent is a move to the right,  
an update to the Q value of state (0, 0) is shown

The progress in the Q-table has been substantial. In fact, in the next episode, if, for 
some reason, the policy decided to exploit the Q-table instead of randomly exploring 
the environment, the first action is to move to the right according to the computation 
in Figure 9.3.8. In the first row of the Q-table, the action that results in the maximum 
Q value is a move to the right. For the next state (0, 1), the second row of the Q-table 
suggests that the next action is still to move to the right. The agent has successfully 
reached its goal. The policy guided the agent on the right set of actions to achieve 
its goal:
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Figure 9.3.8: In this instance, the agent's policy decided to exploit the Q-table to  
determine the action at states (0, 0) and (0, 1). The Q-table suggests moving to the right for both states

If the Q-learning algorithm continues to run indefinitely, the Q-table will converge. 
The assumptions for convergence are that the RL problem must be a deterministic 
MDP with bounded rewards, and all states are visited infinitely often.

In the next section, we will simulate the environment using Python. We will also 
show the code implementation of the Q-learning algorithm. 

Q-Learning in Python
The environment and the Q-learning discussed in the previous section can be 
implemented in Python. Since the policy is just a simple table, at this point in time, 
there is no need to use the tf.keras library. Listing 9.3.1 shows q-learning-
9.3.1.py, the implementation of the simple deterministic world (environment, 
agent, action, and Q-table algorithms) using the QWorld class. For conciseness, 
the functions dealing with the user interface are not shown.

In this example, the environment dynamics is represented by self.transition_
table. At every action, self.transition_table determines the next state. The 
reward for executing an action is stored in self.reward_table. The two tables are 
consulted every time an action is executed by the step() function. The Q-learning 
algorithm is implemented by the update_q_table() function. Every time the agent 
needs to decide which action to take, it calls the act() function. The action may be 
randomly drawn or decided by the policy using the Q-table. The percentage chance 
that the action chosen is random is stored in the self.epsilon variable, which is 
updated by the update_epsilon() function using a fixed epsilon_decay.
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Before executing the code in Listing 9.3.1, we need to run:

sudo pip3 install termcolor

to install the termcolor package. This package helps in visualizing text outputs on 
the Terminal.

Listing 9.3.1: q-learning-9.3.1.py

A simple deterministic MDP with six states:

from collections import deque
import numpy as np
import argparse
import os
import time
from termcolor import colored

class QWorld:
    def __init__(self):
        """Simulated deterministic world made of 6 states.
        Q-Learning by Bellman Equation. 
        """
        # 4 actions
        # 0 - Left, 1 - Down, 2 - Right, 3 - Up
        self.col = 4

        # 6 states
        self.row = 6

        # setup the environment
        self.q_table = np.zeros([self.row, self.col])
        self.init_transition_table()
        self.init_reward_table()

        # discount factor
        self.gamma = 0.9

        # 90% exploration, 10% exploitation

The complete code can be found on GitHub at https://github.
com/PacktPublishing/Advanced-Deep-Learning-with-
Keras.

https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras


Chapter 9

[ 301 ]

        self.epsilon = 0.9
        # exploration decays by this factor every episode
        self.epsilon_decay = 0.9
        # in the long run, 10% exploration, 90% exploitation
        self.epsilon_min = 0.1

        # reset the environment
        self.reset()
        self.is_explore = True

    def reset(self):
        """start of episode"""
        self.state = 0
        return self.state

    def is_in_win_state(self):
        """agent wins when the goal is reached"""
        return self.state == 2

    def init_reward_table(self):
        """
        0 - Left, 1 - Down, 2 - Right, 3 - Up
        ----------------
        | 0 | 0 | 100  |
        ----------------
        | 0 | 0 | -100 |
        ----------------
        """
        self.reward_table = np.zeros([self.row, self.col])
        self.reward_table[1, 2] = 100.
        self.reward_table[4, 2] = -100.

    def init_transition_table(self):
        """
        0 - Left, 1 - Down, 2 - Right, 3 - Up
        -------------
        | 0 | 1 | 2 |
        -------------
        | 3 | 4 | 5 |
        -------------
        """
        self.transition_table = np.zeros([self.row, self.col],
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                                         dtype=int)

        self.transition_table[0, 0] = 0
        self.transition_table[0, 1] = 3
        self.transition_table[0, 2] = 1
        self.transition_table[0, 3] = 0

        self.transition_table[1, 0] = 0
        self.transition_table[1, 1] = 4
        self.transition_table[1, 2] = 2
        self.transition_table[1, 3] = 1

        # terminal Goal state
        self.transition_table[2, 0] = 2
        self.transition_table[2, 1] = 2
        self.transition_table[2, 2] = 2
        self.transition_table[2, 3] = 2

        self.transition_table[3, 0] = 3
        self.transition_table[3, 1] = 3
        self.transition_table[3, 2] = 4
        self.transition_table[3, 3] = 0

        self.transition_table[4, 0] = 3
        self.transition_table[4, 1] = 4
        self.transition_table[4, 2] = 5
        self.transition_table[4, 3] = 1

        # terminal Hole state
        self.transition_table[5, 0] = 5
        self.transition_table[5, 1] = 5
        self.transition_table[5, 2] = 5
        self.transition_table[5, 3] = 5

    def step(self, action):
        """execute the action on the environment
        Argument:
            action (tensor): An action in Action space
        Returns:
            next_state (tensor): next env state
            reward (float): reward received by the agent
            done (Bool): whether the terminal state 
                is reached
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        """
        # determine the next_state given state and action
        next_state = self.transition_table[self.state, action]
        # done is True if next_state is Goal or Hole
        done = next_state == 2 or next_state == 5
        # reward given the state and action
        reward = self.reward_table[self.state, action]
        # the enviroment is now in new state
        self.state = next_state
        return next_state, reward, done

    def act(self):
        """determine the next action
            either fr Q Table(exploitation) or
            random(exploration)
        Return:
            action (tensor): action that the agent
                must execute
        """
        # 0 - Left, 1 - Down, 2 - Right, 3 - Up
        # action is from exploration
        if np.random.rand() <= self.epsilon:
            # explore - do random action
            self.is_explore = True
            return np.random.choice(4,1)[0]

        # or action is from exploitation
        # exploit - choose action with max Q-value
        self.is_explore = False
        action = np.argmax(self.q_table[self.state])
        return action

    def update_q_table(self, state, action, reward, next_state):
        """Q-Learning - update the Q Table using Q(s, a)
        Arguments:
            state (tensor) : agent state
            action (tensor): action executed by the agent
            reward (float): reward after executing action 
                for a given state
            next_state (tensor): next state after executing
                action for a given state
        """
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        # Q(s, a) = reward + gamma * max_a' Q(s', a')
        q_value = self.gamma * np.amax(self.q_table[next_state])
        q_value += reward
        self.q_table[state, action] = q_value

    def update_epsilon(self):
        """update Exploration-Exploitation mix"""
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

The perception-action-learning loop is illustrated in Listing 9.3.2. At every episode, 
the environment resets to the Start state. The action to execute is chosen and applied 
to the environment. The reward and next state are observed and used to update 
the Q-table. The episode is completed (done = True) upon reaching the Goal or 
Hole state.

For this example, the Q-learning runs for 100 episodes or 10 wins, whichever comes 
first. Due to the decrease in the value of the self.epsilon variable at every episode, 
the agent starts to favor exploitation of the Q-table to determine the action to perform 
given a state. To see the Q-learning simulation, we simply need to run the following 
command:

python3 q-learning-9.3.1.py

Listing 9.3.2: q-learning-9.3.1.py

The main Q-learning loop:

    # state, action, reward, next state iteration
    for episode in range(episode_count):
        state = q_world.reset()
        done = False
        print_episode(episode, delay=delay)
        while not done:
            action = q_world.act()
            next_state, reward, done = q_world.step(action)
            q_world.update_q_table(state, action, reward, next_state)
            print_status(q_world, done, step, delay=delay)
            state = next_state
            # if episode is done, perform housekeeping
            if done:
                if q_world.is_in_win_state():
                    wins += 1
                    scores.append(step)
                    if wins > maxwins:
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                        print(scores)
                        exit(0)
                # Exploration-Exploitation is updated every episode
                q_world.update_epsilon()
                step = 1
            else:
                step += 1

Figure 9.3.9 shows the screenshot if maxwins = 2000 (2000x Goal state is reached) 
and delay = 0. To see the final Q-table only, execute:

python3 q-learning-9.3.1.py --train

Figure 9.3.9: A screenshot showing the Q-table after 2,000 wins on the part of the agent

The Q-table has converged and shows the logical action that the agent can take given 
a state. For example, in the first row or state (0, 0), the policy advises a move to the 
right. The same goes for the state (0, 1) on the second row. The second action reaches 
the Goal state. The scores variable dump shows that the minimum number of steps 
taken decreases as the agent gets correct actions from the policy.

From Figure 9.3.9, we can compute the value of each state from Equation 9.2.2,  
𝑉𝑉∗(𝑠𝑠) = max

𝑎𝑎
𝑄𝑄(𝑠𝑠, 𝑎𝑎) . For example, for state (0, 0), 𝑉𝑉∗(𝑠𝑠) = max

𝑎𝑎
(0.0, 72.9, 90.0, 81.0) = 90 .
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Figure 9.3.10 shows the value for each state.

Figure 9.3.10: The value for each state from Figure 9.3.9 and Equation 9.2.2

This simple example illustrated all elements of Q-learning for an agent in a simple 
deterministic world. In the next section, we will present the slight modification 
needed to take stochasticity into account.

4. Nondeterministic environment
In the event that the environment is nondeterministic, both the reward and action are 
probabilistic. The new system is a stochastic MDP. To reflect the nondeterministic 
reward, the new value function is:

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝔼𝔼⟦𝑅𝑅𝑡𝑡⟧ = 𝔼𝔼⟦∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
r𝑡𝑡+𝑘𝑘⟧     (Equation 9.4.1)

The Bellman equation is modified as:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝑠𝑠′ ⟦𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)⟧     (Equation 9.4.2)

However, in this chapter, we will focus on deterministic environments. In the next 
section, we will present a more generalized Q-learning algorithm called Temporal-
Difference (TD) learning.
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5. Temporal-difference learning
Q-learning is a special case of a more generalized TD learning, 𝑇𝑇𝑇𝑇(𝜆𝜆) . More 
specifically, it is a special case of one-step TD learning, TD(0):

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 (𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎))     (Equation 9.5.1)

Where 𝛼𝛼  is the learning rate. Note that when 𝛼𝛼 = 1 , Equation 9.5.1 is similar to the 
Bellman equation. For simplicity, we also refer to Equation 9.5.1 as Q-learning, or 
generalized Q-learning.

Previously, we referred to Q-learning as an off-policy RL algorithm since it learns 
the Q value function without directly using the policy that it is trying to optimize. 
An example of an on-policy one-step TD-learning algorithm is SARSA, which is 
similar to Equation 9.5.1:

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼(𝑟𝑟 + 𝛾𝛾𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎))     (Equation 9.5.2)

The main difference is the use of the policy that is being optimized to determine 𝑎𝑎′ .  
The terms 𝑠𝑠 , 𝑎𝑎 , 𝑟𝑟 , 𝑠𝑠′ , and 𝑎𝑎′  (thus the name SARSA) must be known to update the Q 
value function every iteration. Both Q-learning and SARSA use existing estimates 
in the Q value iteration, a process known as bootstrapping. In bootstrapping, we 
update the current Q value estimate from the reward and the subsequent Q value 
estimate(s).

Before presenting another example, there appears to be a need for a suitable RL 
simulation environment. Otherwise, we can only run RL simulations on very simple 
problems like in the previous example. Fortunately, OpenAI created Gym, https://
gym.openai.com, which we'll cover in the following section.

Q-learning on OpenAI Gym
OpenAI Gym is a toolkit for developing and comparing RL algorithms. It works with 
most DL libraries, including tf.keras. The gym can be installed by running the 
following command:

sudo pip3 install gym

https://gym.openai.com
https://gym.openai.com
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The gym has several environments where an RL algorithm can be tested against, 
such as toy text, classic control, algorithmic, Atari, and two-dimensional/three-
dimensional robots. For example, FrozenLake-v0 (Figure 9.5.1) is a toy text 
environment similar to the simple deterministic world used in the Q-learning in 
Python example:

Figure 9.5.1: The FrozenLake-v0 environment in OpenAI Gym

FrozenLake-v0 has 12 states, the state marked S is the starting state, F is the frozen 
part of the lake, which is safe, H is the Hole state, which should be avoided, and G is 
the Goal state where the frisbee is located. The reward is +1 for transitioning to the 
Goal state. For all other states, the reward is zero.

In FrozenLake-v0, there are also four available actions (left, down, right, up) known 
as action space. However, unlike the simple deterministic world earlier, the actual 
movement direction is only partially dependent on the chosen action. There are 
two variations of the FrozenLake-v0 environment; slippery and non-slippery. As 
expected, the slippery mode is more challenging.

An action applied to FrozenLake-v0 returns the observation (equivalent to the next 
state), reward, done (whether the episode is finished), and a dictionary of debugging 
information. The observable attributes of the environment, known as observation 
space, are captured by the returned observation object.

Generalized Q-learning can be applied to the FrozenLake-v0 environment. Table 
9.5.1 shows the improvement in performance of both slippery and non-slippery 
environments. A method of measuring the performance of the policy is the 
percentage of episodes executed that resulted in reaching the Goal state. The higher 
the percentage, the better. From the baseline of pure exploration (random action) of 
about 1.5%, the policy can achieve ~76% Goal state for the non-slippery environment 
and ~71% for the slippery environment. As expected, it is harder to control the 
slippery environment.
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Mode Run Approx % Goal
Train non-slippery python3 q-frozenlake-9.5.1.py 26
Test non-slippery python3 q-frozenlake-9.5.1.py -d 76
Pure random action 
non-slippery

python3 q-frozenlake-9.5.1.py -e 1.5

Train slippery python3 q-frozenlake-9.5.1.py -s 26
Test slippery python3 q-frozenlake-9.5.1.py -s -d 71
Pure random slippery python3 q-frozenlake-9.5.1.py -s -e 1.5

Table 9.5.1: Baseline and performance of generalized Q-learning on the  
FrozenLake-v0 environment with a learning rate = 0.5

The code can still be implemented in Python and NumPy since it only requires a 
Q-table. Listing 9.5.1 shows the implementation of the QAgent class. Apart from using 
the FrozenLake-v0 environment from OpenAI Gym, the most important change is 
the implementation of the generalized Q-learning, as defined by Equation 9.5.1 in the 
update_q_table() function.

Listing 9.5.1: q-frozenlake-9.5.1.py

Q-learning on the FrozenLake-v0 environment:

from collections import deque
import numpy as np
import argparse
import os
import time
import gym
from gym import wrappers, logger

class QAgent:
    def __init__(self,
                 observation_space,
                 action_space,
                 demo=False,
                 slippery=False,
                 episodes=40000):
        """Q-Learning agent on FrozenLake-v0 environment

        Arguments:
            observation_space (tensor): state space
            action_space (tensor): action space
            demo (Bool): whether for demo or training
            slippery (Bool): 2 versions of FLv0 env
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            episodes (int): number of episodes to train
        """

        self.action_space = action_space
        # number of columns is equal to number of actions
        col = action_space.n
        # number of rows is equal to number of states
        row = observation_space.n
        # build Q Table with row x col dims
        self.q_table = np.zeros([row, col])

        # discount factor
        self.gamma = 0.9

        # initially 90% exploration, 10% exploitation
        self.epsilon = 0.9
        # iteratively applying decay til 
        # 10% exploration/90% exploitation
        self.epsilon_min = 0.1
        self.epsilon_decay = self.epsilon_min / self.epsilon
        self.epsilon_decay = self.epsilon_decay ** \
                             (1. / float(episodes))

        # learning rate of Q-Learning
        self.learning_rate = 0.1

        # file where Q Table is saved on/restored fr
        if slippery:
            self.filename = 'q-frozenlake-slippery.npy'
        else:
            self.filename = 'q-frozenlake.npy'

        # demo or train mode 
        self.demo = demo
        # if demo mode, no exploration
        if demo:
            self.epsilon = 0

    def act(self, state, is_explore=False):
        """determine the next action
            if random, choose from random action space
            else use the Q Table
        Arguments:
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            state (tensor): agent's current state
            is_explore (Bool): exploration mode or not
        Return:
            action (tensor): action that the agent
                must execute
        """
        # 0 - left, 1 - Down, 2 - Right, 3 - Up
        if is_explore or np.random.rand() < self.epsilon:
            # explore - do random action
            return self.action_space.sample()

        # exploit - choose action with max Q-value
        action = np.argmax(self.q_table[state])
        return action

    def update_q_table(self, state, action, reward, next_state):
        """TD(0) learning (generalized Q-Learning) with learning rate
        Arguments:
            state (tensor): environment state
            action (tensor): action executed by the agent for
                the given state
            reward (float): reward received by the agent for
                executing the action
            next_state (tensor): the environment next state
        """
        # Q(s, a) += 
        # alpha * (reward + gamma * max_a' Q(s', a') - Q(s, a))
        q_value = self.gamma * np.amax(self.q_table[next_state])
        q_value += reward
        q_value -= self.q_table[state, action]
        q_value *= self.learning_rate
        q_value += self.q_table[state, action]
        self.q_table[state, action] = q_value

    def update_epsilon(self):
        """adjust epsilon"""
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

Listing 9.5.2 demonstrates the agent's perception-action-learning loop. At every 
episode, the environment resets by calling env.reset(). The action to execute is 
chosen by agent.act() and applied to the environment by env.step(action). The 
reward and next state are observed and used to update the Q-table. 
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After every action, the TD learning is executed by agent.update_q_table(). Due 
to the decrease in the value of the self.epsilon variable at every episode's call 
to agent.update_epsilon(), the agent starts to favor exploitation of Q-table to 
determine the action to perform given a state. The episode is completed (done = 
True) upon reaching the Goal or Hole state. For this example, the TD learning runs 
for 4,000 episodes.

Listing 9.5.2: q-frozenlake-9.5.1.py.

Q-learning loop for the FrozenLake-v0 environment:

    # loop for the specified number of episode
    for episode in range(episodes):
        state = env.reset()
        done = False
        while not done:
            # determine the agent's action given state
            action = agent.act(state, is_explore=args.explore)
            # get observable data
            next_state, reward, done, _ = env.step(action)
            # clear the screen before rendering the environment
            os.system('clear')
            # render the environment for human debugging
            env.render()
            # training of Q Table
            if done:
                # update exploration-exploitation ratio
                # reward > 0 only when Goal is reached
                # otherwise, it is a Hole
                if reward > 0:
                    wins += 1

            if not args.demo:
                agent.update_q_table(state,
                                     action, 
                                     reward, 
                                     next_state)
                agent.update_epsilon()

            state = next_state
            percent_wins = 100.0 * wins / (episode + 1)
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The agent object can operate in either slippery or non-slippery mode. After training, 
the agent can exploit the Q-table to choose the action to execute given any policy, as 
shown in the test mode of Table 9.5.1. There is a huge performance boost in using the 
learned policy as demonstrated in Table 9.5.1. With the use of the gym, many lines 
of code in constructing the environment are no longer needed. For example, unlike 
in the previous example, with the use of OpenAI Gym, we do not need to create the 
state transition table and the rewards table.

This will help us to focus on building a working RL algorithm. To run the code in 
slow motion or have a delay of 1 second per action:

python3 q-frozenlake-9.5.1.py -d -t=1

In this section, we demonstrated Q-learning on a more challenging environment. 
We also introduced the OpenAI Gym. However, our environment is still a toy 
environment. What if we have a huge number of states or actions? In that case, it 
is no longer feasible to use a Q-table. In the next section, we will use a deep neural 
network to learn the Q-table.

6. Deep Q-Network (DQN)
Using the Q-table to implement Q-learning is fine in small discrete environments. 
However, when the environment has numerous states or is continuous, as in most 
cases, a Q-table is not feasible or practical. For example, if we are observing a state 
made of four continuous variables, the size of the table is infinite. Even if we attempt 
to discretize the four variables into 1,000 values each, the total number of rows in the 
table is a staggering 10004 = 1e12. Even after training, the table is sparse – most of the 
cells in this table are zero.

A solution to this problem is called DQN [2], which uses a deep neural network 
to approximate the Q-table, as shown in Figure 9.6.1. There are two approaches 
to building the Q-network:

• The input is the state-action pair, and the prediction is the Q value
• The input is the state, and the prediction is the Q value for each action

The first option is not optimal since the network will be called a number of times 
equal to the number of actions. The second is the preferred method. The Q-network 
is called only once.
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The most desirable action is simply the action with the biggest Q value.

Figure 9.6.1: A deep Q-network

The data required to train the Q-network comes from the agent's experiences: 
(s0a0𝑟𝑟1s1, s1a1𝑟𝑟2s2,… , s𝑇𝑇−1a𝑇𝑇−1𝑟𝑟𝑇𝑇s𝑇𝑇) . Each training sample is a unit of experience, 
s𝑡𝑡a𝑡𝑡𝑟𝑟𝑡𝑡+1s𝑡𝑡+1 . At a given state at timestep 𝑡𝑡 , 𝑠𝑠 = s𝑡𝑡 , the action, 𝑎𝑎 = a𝑡𝑡 , is determined 
using the Q-learning algorithm similar to the previous section:

𝜋𝜋(𝑠𝑠) = {
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 < 𝜀𝜀

argmax
𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑠𝑠) 𝑟𝑟𝑜𝑜ℎ𝑠𝑠𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠      (Equation 9.6.1)

For notational simplicity, we omit the subscript and the use of bold letters. Note that 
𝑄𝑄(𝑠𝑠, 𝑎𝑎)  is the Q-network. Strictly speaking, it is 𝑄𝑄(𝑎𝑎|𝑠𝑠)  since the action is moved to 
the prediction stage (in other words, output) as shown on the right of Figure 9.6.1. 
The action with the highest Q value is the action that is applied to the environment 
to get the reward, 𝑟𝑟 = 𝑟𝑟𝑡𝑡+1 , the next state, 𝑠𝑠′ = s𝑡𝑡+1 , and a Boolean done, indicating 
whether the next state is terminal. From Equation 9.5.1 on generalized Q-learning, 
an MSE loss function can be determined by applying the chosen action:

ℒ = (𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎))
2
     (Equation 9.6.2)

where all terms are familiar from the previous discussion on Q-learning and 
𝑄𝑄(𝑎𝑎|𝑠𝑠) → 𝑄𝑄(𝑠𝑠, 𝑎𝑎) . The term max

𝑎𝑎′
𝑄𝑄(𝑎𝑎′|𝑠𝑠′) →  max

𝑎𝑎′
𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) . In other words, 

using the Q-network, predict the Q value of each action given the next state 
and get the maximum from among them. Note that at the terminal state, 𝑠𝑠′ , 
max
𝑎𝑎′ 𝑄𝑄(𝑎𝑎′|𝑠𝑠′) = max

𝑎𝑎′ 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) = 0 .



Chapter 9

[ 315 ]

However, it turns out that training the Q-network is unstable. There are two 
problems causing the instability: 1) high correlation between samples; and 2) a non-
stationary target. A high correlation is due to the sequential nature of sampling 
experiences. DQN addressed this issue by creating a buffer of experiences. The 
training data is randomly sampled from this buffer. This process is known as 
experience replay.

The issue of the non-stationary target is due to the target network 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)  that is 
modified after every mini batch of training. A small change in the target network can 
create a significant change in the policy, the data distribution, and the correlation 
between the current Q value and target Q value. This is resolved by freezing the 
weights of the target network for 𝐶𝐶  training steps. In other words, two identical 
Q-networks are created. The target Q-network parameters are copied from the 
Q-network under training every 𝐶𝐶  training steps.

The deep Q-network algorithm is summarized in Algorithm 9.6.1.

Algorithm 9.6.1: DQN algorithm

Require: Initialize replay memory 𝐷𝐷  to capacity 𝑁𝑁 

Require: Initialize action-value function 𝑄𝑄  with random weights 𝜃𝜃 

Require: Initialize target action-value function 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  with weights 𝜃𝜃− = 𝜃𝜃 

Require: Exploration rate, 𝜀𝜀 , and discount factor, γ 

1. for episode = 1, … , M, do:
2.     Given initial state s
3.         for step = 1, … , T do:

4.         Choose action 𝑎𝑎 = {
𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 < 𝜀𝜀

argmax
𝑎𝑎

𝑄𝑄(𝑠𝑠, 𝑎𝑎; 𝜃𝜃) 𝑟𝑟𝑜𝑜ℎ𝑠𝑠𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠  

5.         Execute action 𝑎𝑎 , observe reward r, and Next state 𝑠𝑠′  
6.         Store transition (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′)  in 𝐷𝐷 
7.         Update the state, 𝑠𝑠 = 𝑠𝑠′ 
8.         // experience replay
9.         Sample a mini batch of episode experiences (𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗, 𝑟𝑟𝑗𝑗+1, 𝑠𝑠𝑗𝑗+1)  from 𝐷𝐷 

10.      𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = {
𝑟𝑟𝑗𝑗+1 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑗𝑗 + 1

𝑟𝑟𝑗𝑗+1 + γmax
𝑚𝑚𝑗𝑗+1

𝑄𝑄𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑗𝑗+1, 𝑡𝑡𝑗𝑗+1; 𝜃𝜃−) 𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  
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11.         Perform gradient descent step on (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄(𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗; 𝜃𝜃))
2
 w.r.t. parameters 𝜃𝜃 

12.         // periodic update of target network
13.         Every 𝐶𝐶  steps, 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑄𝑄 , in other words, set 𝜃𝜃− = 𝜃𝜃 
14.         end
15. end

Algorithm 9.6.1 sums up all the techniques needed in order to implement Q-learning 
on environments with discrete action space and continuous state space. In the next 
section, we will demonstrate how DQN is used in a more challenging OpenAI Gym 
environment.

DQN on Keras
To illustrate DQN, the CartPole-v0 environment of the OpenAI Gym is used. 
CartPole-v0 is a pole balancing problem. The goal is to keep the pole from falling 
over. The environment is two dimensional. The action space is made of two discrete 
actions (left and right movements). However, the state space is continuous and 
comprises four variables:

• Linear position
• Linear velocity
• Angle of rotation
• Angular velocity

The CartPole-v0 environment is shown in Figure 9.6.1:

Figure 9.6.1: The CartPole-v0 environment
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Initially, the pole is upright. A reward of +1 is provided for every timestep that the 
pole remains upright. The episode ends when the pole exceeds 15 degrees from the 
vertical, or 2.4 units from the center. The CartPole-v0 problem is considered solved 
if the average reward is 195.0 in 100 consecutive trials:

Listing 9.6.1 shows us the DQN implementation for CartPole-v0. The DQNAgent 
class represents the agent using DQN. Two Q-networks are created:

• A Q-network, or Q, in Algorithm 9.6.1
• A target Q-network, or Qtarget, in Algorithm 9.6.1

Both networks are MLP with 3 hidden layers of 256 units each. Both networks 
are created by means of the build_model() method. The Q-network is trained 
during experience replay, replay(). At a regular interval of C = 10 training steps, the 
Q-network parameters are copied to the target Q-network by update_weights(). 
This implements line 13, Qtarget = Q, in Algorithm 9.6.1. After every episode, the ratio 
of exploration-exploitation is decreased by update_epsilon() to take advantage of 
the learned policy.

Listing 9.6.1: dqn-cartpole-9.6.1.py

DQN in tf.keras:

class DQNAgent:
    def __init__(self,
                 state_space,
                 action_space,
                 episodes=500):
        """DQN Agent on CartPole-v0 environment

        Arguments:
            state_space (tensor): state space
            action_space (tensor): action space
            episodes (int): number of episodes to train
        """
        self.action_space = action_space

        # experience buffer
        self.memory = []

        # discount rate
        self.gamma = 0.9

        # initially 90% exploration, 10% exploitation
        self.epsilon = 1.0
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        # iteratively applying decay til 
        # 10% exploration/90% exploitation
        self.epsilon_min = 0.1
        self.epsilon_decay = self.epsilon_min / self.epsilon
        self.epsilon_decay = self.epsilon_decay ** \
                             (1. / float(episodes))

        # Q Network weights filename
        self.weights_file = 'dqn_cartpole.h5'
        # Q Network for training
        n_inputs = state_space.shape[0]
        n_outputs = action_space.n
        self.q_model = self.build_model(n_inputs, n_outputs)
        self.q_model.compile(loss='mse', optimizer=Adam())
        # target Q Network
        self.target_q_model = self.build_model(n_inputs, n_outputs)
        # copy Q Network params to target Q Network
        self.update_weights()

        self.replay_counter = 0
        self.ddqn = True if args.ddqn else False

    def build_model(self, n_inputs, n_outputs):
        """Q Network is 256-256-256 MLP

        Arguments:
            n_inputs (int): input dim
            n_outputs (int): output dim

        Return:
            q_model (Model): DQN
        """
        inputs = Input(shape=(n_inputs, ), name='state')
        x = Dense(256, activation='relu')(inputs)
        x = Dense(256, activation='relu')(x)
        x = Dense(256, activation='relu')(x)
        x = Dense(n_outputs,
                  activation='linear',
                  name='action')(x)
        q_model = Model(inputs, x)
        q_model.summary()
        return q_model
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    def act(self, state):
        """eps-greedy policy
        Return:
            action (tensor): action to execute
        """
        if np.random.rand() < self.epsilon:
            # explore - do random action
            return self.action_space.sample()

        # exploit
        q_values = self.q_model.predict(state)
        # select the action with max Q-value
        action = np.argmax(q_values[0])
        return action

    def remember(self, state, action, reward, next_state, done):
        """store experiences in the replay buffer
        Arguments:
            state (tensor): env state
            action (tensor): agent action
            reward (float): reward received after executing
                action on state
            next_state (tensor): next state
        """
        item = (state, action, reward, next_state, done)
        self.memory.append(item)

    def get_target_q_value(self, next_state, reward):
        """compute Q_max
           Use of target Q Network solves the 
            non-stationarity problem
        Arguments:
            reward (float): reward received after executing
                action on state
            next_state (tensor): next state
        Return:
            q_value (float): max Q-value computed by
                DQN or DDQN
        """
        # max Q value among next state's actions
        if self.ddqn:
            # DDQN
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            # current Q Network selects the action
            # a'_max = argmax_a' Q(s', a')
            action = np.argmax(self.q_model.predict(next_state)[0])
            # target Q Network evaluates the action
            # Q_max = Q_target(s', a'_max)
            q_value = self.target_q_model.predict(\
                                          next_state)[0][action]
        else:
            # DQN chooses the max Q value among next actions
            # selection and evaluation of action is 
            # on the target Q Network
            # Q_max = max_a' Q_target(s', a')
            q_value = np.amax(\
                      self.target_q_model.predict(next_state)[0])

        # Q_max = reward + gamma * Q_max
        q_value *= self.gamma
        q_value += reward
        return q_value

    def replay(self, batch_size):
        """experience replay addresses the correlation issue 
            between samples
        Arguments:
            batch_size (int): replay buffer batch 
                sample size
        """
        # sars = state, action, reward, state' (next_state)
        sars_batch = random.sample(self.memory, batch_size)
        state_batch, q_values_batch = [], []

        # fixme: for speedup, this could be done on the tensor level
        # but easier to understand using a loop
        for state, action, reward, next_state, done in sars_batch:
            # policy prediction for a given state
            q_values = self.q_model.predict(state)

            # get Q_max
            q_value = self.get_target_q_value(next_state, reward)

            # correction on the Q value for the action used
            q_values[0][action] = reward if done else q_value
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            # collect batch state-q_value mapping
            state_batch.append(state[0])
            q_values_batch.append(q_values[0])

        # train the Q-network
        self.q_model.fit(np.array(state_batch),
                         np.array(q_values_batch),
                         batch_size=batch_size,
                         epochs=1,
                         verbose=0)

        # update exploration-exploitation probability
        self.update_epsilon()

        # copy new params on old target after 
        # every 10 training updates
        if self.replay_counter % 10 == 0:
            self.update_weights()

        self.replay_counter += 1

    def update_epsilon(self):
        """decrease the exploration, increase exploitation"""
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

To implement line 10 in Algorithm 9.6.1 during experience replay replay(), for each 
experience unit (sj, aj, rj+1, and sj+1) the Q value for the action aj is set to Qmax. All other 
actions have their Q values unchanged.

This is implemented by the following lines in the DQNAgent replay() function:

# policy prediction for a given state q_values = self.q_model.
predict(state)

# get Q_max
q_value = self.get_target_q_value(next_state)

# correction on the Q value for the action used q_values[0][action] = 
reward if done else q_value
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Only the action aj has a non-zero loss equal to (𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄(𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗; 𝜃𝜃))
2
 , as shown by 

line 11 of Algorithm 9.6.1. Note that the experience replay is called by the perception-
action-learning loop in Listing 9.6.2 after the end of each episode, assuming that 
there is sufficient data in the buffer (in other words, the buffer size is greater than, 
or equal to, the batch size). During experience replay, one batch of experience units 
is randomly sampled and used to train the Q-network.

Similar to the Q-table, act() implements the 𝜖𝜖 -greedy policy, Equation 9.6.1.

Experiences are stored by remember() in the replay buffer. Q is computed by means 
of the get_target_q_value() function.

Listing 9.6.2 summarizes the agent's perception-action-learning loop. At every 
episode, the environment resets by calling env.reset(). The action to execute 
is chosen by agent.act() and applied to the environment by env.step(action). 
The reward and next state are observed and stored in the replay buffer. After 
every action, the agent calls replay() to train the DQN and adjust the exploration-
exploitation ratio.

The episode is completed (done = True) when the pole exceeds 15 degrees from 
the vertical, or 2.4 units from the center. For this example, Q-learning runs for 
a maximum of 3,000 episodes if the DQN agent cannot solve the problem. The 
CartPole-v0 problem is considered solved if the average mean_score reward is 
195.0 over 100 consecutive trials, win_trials.

Listing 9.6.2: dqn-cartpole-9.6.1.py

Training loop of DQN in tf.keras:

    # Q-Learning sampling and fitting
    for episode in range(episode_count):
        state = env.reset()
        state = np.reshape(state, [1, state_size])
        done = False
        total_reward = 0
        while not done:
            # in CartPole-v0, action=0 is left and action=1 is right
            action = agent.act(state)
            next_state, reward, done, _ = env.step(action)
            # in CartPole-v0:
            # state = [pos, vel, theta, angular speed]
            next_state = np.reshape(next_state, [1, state_size])
            # store every experience unit in replay buffer
            agent.remember(state, action, reward, next_state, done)
            state = next_state
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            total_reward += reward

        # call experience relay
        if len(agent.memory) >= batch_size:
            agent.replay(batch_size)

        scores.append(total_reward)
        mean_score = np.mean(scores)
        if mean_score >= win_reward[args.env_id] \
                and episode >= win_trials:
            print("Solved in episode %d: \
                   Mean survival = %0.2lf in %d episodes"
                  % (episode, mean_score, win_trials))
            print("Epsilon: ", agent.epsilon)
            agent.save_weights()
            break
        if (episode + 1) % win_trials == 0:
            print("Episode %d: Mean survival = \
                   %0.2lf in %d episodes" %
                  ((episode + 1), mean_score, win_trials))

Across the average of 10 runs, CartPole-v0 is solved by DQN within 822 episodes. 
We need to take note that the results may vary every time the training runs.

Since the introduction of DQN, successive papers have proposed improvements 
to Algorithm 9.6.1. One good example is Double DQN (DDQN), which is discussed 
next.

Double Q-learning (DDQN)
In DQN, the target Q-network selects and evaluates every action, resulting in an 
overestimation of the Q value. To resolve this issue, DDQN [3] proposes to use the 
Q-network to choose the action and use the target Q-network to evaluate the action.

In DQN, as summarized by Algorithm 9.6.1, the estimate of the Q value in line 10 is:

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 = {
𝑟𝑟𝑗𝑗+1 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑗𝑗 + 1

𝑟𝑟𝑗𝑗+1 + γmax
𝑚𝑚𝑗𝑗+1

𝑄𝑄𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑗𝑗+1, 𝑡𝑡𝑗𝑗+1; 𝜃𝜃−) 𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  

• 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  chooses and evaluates the action, 𝑎𝑎𝑗𝑗+1 .
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DDQN proposes to change line 10 to:

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

= {
𝑟𝑟𝑗𝑗+1 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑗𝑗 + 1

𝑟𝑟𝑗𝑗+1 + γ 𝑄𝑄𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑒𝑒𝑗𝑗+1, argmax
𝑚𝑚𝑗𝑗+1

𝑄𝑄(𝑒𝑒𝑗𝑗+1, 𝑡𝑡𝑗𝑗+1; 𝜃𝜃) ; 𝜃𝜃−) 𝑒𝑒𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  

The term argmax
𝑎𝑎𝑗𝑗+1

𝑄𝑄(𝑠𝑠𝑗𝑗+1, 𝑎𝑎𝑗𝑗+1; 𝜃𝜃)  lets the Q function to choose the action. Then, this 

action is evaluated by 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 .

Listing 9.6.3 shows when we create a new DDQNAgent class, which inherits from 
the DQNAgent class. Only the get_target_q_value() method is overridden to 
implement the change in the computation of the maximum Q value.

Listing 9.6.3: dqn-cartpole-9.6.1.py:

class DDQNAgent(DQNAgent):
    def __init__(self,
                 state_space,
                 action_space,
                 episodes=500):
        super().__init__(state_space,
                         action_space,
                         episodes)
        """DDQN Agent on CartPole-v0 environment

        Arguments:
            state_space (tensor): state space
            action_space (tensor): action space
            episodes (int): number of episodes to train
        """

        # Q Network weights filename
        self.weights_file = 'ddqn_cartpole.h5'

    def get_target_q_value(self, next_state, reward):
        """compute Q_max
           Use of target Q Network solves the 
            non-stationarity problem
        Arguments:
            reward (float): reward received after executing
                action on state
            next_state (tensor): next state
        Returns:
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            q_value (float): max Q-value computed
        """
        # max Q value among next state's actions
        # DDQN
        # current Q Network selects the action
        # a'_max = argmax_a' Q(s', a')
        action = np.argmax(self.q_model.predict(next_state)[0])
        # target Q Network evaluates the action
        # Q_max = Q_target(s', a'_max)
        q_value = self.target_q_model.predict(\
                                      next_state)[0][action]

        # Q_max = reward + gamma * Q_max
        q_value *= self.gamma
        q_value += reward
        return q_value

For comparison, across the average of 10 runs, CartPole-v0 is solved by DDQN 
within 971 episodes. To use DDQN, run the following command:

python3 dqn-cartpole-9.6.1.py -d

Both DQN and DDQN demonstrated that with DL, Q-learning was able to scale 
up and solve problems with continuous state space and discrete action space. In 
this chapter, we demonstrated DQN only on one of the simplest problems with 
continuous state space and discrete action space. In the original paper, DQN [2] 
demonstrated that it can achieve super-human levels of performance in many 
Atari games.

7. Conclusion
In this chapter, we've been introduced to DRL, a powerful technique believed by 
many researchers to be the most promising lead toward AI. We have gone over the 
principles of RL. RL is able to solve many toy problems, but the Q-table is unable to 
scale to more complex real-world problems. The solution is to learn the Q-table using 
a deep neural network. However, training deep neural networks on RL is highly 
unstable due to sample correlation and the non-stationarity of the target Q-network.

DQN proposed a solution to these problems using experience replay and separating 
the target network from the Q-network under training. DDQN suggested 
further improvement of the algorithm by separating the action selection from 
action evaluation to minimize the overestimation of the Q value. There are other 
improvements proposed for the DQN. Prioritized experience replay [6] argues that 
the experience buffer should not be sampled uniformly. 
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Instead, experiences that are more important based on TD errors should be sampled 
more frequently to accomplish more efficient training. [7] proposes a dueling 
network architecture to estimate the state value function and the advantage function. 
Both functions are used to estimate the Q value for faster learning.

The approach presented in this chapter is value iteration/fitting. The policy is 
learned indirectly by finding an optimal value function. In the next chapter, the 
approach will be to learn the optimal policy directly by using a family of algorithms 
called policy gradient methods. Learning the policy has many advantages. In 
particular, policy gradient methods can deal with both discrete and continuous 
action spaces.
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10
Policy Gradient Methods

In this chapter, we're going to introduce algorithms that directly optimize the 
policy network in reinforcement learning. These algorithms are collectively referred 
to as policy gradient methods. Since the policy network is directly optimized during 
training, the policy gradient methods belong to the family of on-policy reinforcement 
learning algorithms. Like value-based methods, which we discussed in Chapter 9, 
Deep Reinforcement Learning, policy gradient methods can also be implemented as 
deep reinforcement learning algorithms.

A fundamental motivation in studying the policy gradient methods is addressing 
the limitations of Q-learning. We'll recall that Q-learning is about selecting the 
action that maximizes the value of the state. With the Q function, we're able to 
determine the policy that enables the agent to decide on which action to take for a 
given state. The chosen action is simply the one that gives the agent the maximum 
value. In this respect, Q-learning is limited to a finite number of discrete actions. 
It's not able to deal with continuous action space environments. Furthermore, 
Q-learning is not directly optimizing the policy. In the end, reinforcement learning 
is about finding that optimal policy that the agent will be able to use in order to 
decide upon which action it should take in order to maximize the return.

In contrast, policy gradient methods are applicable to environments with discrete 
or continuous action spaces. In addition, the four policy gradient methods that we 
will be presenting in this chapter are directly optimizing the performance measure 
of the policy network. This results in a trained policy network that the agent can 
use to act in its environment optimally.
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In summary, the goal of this chapter is to present:

• The policy gradient theorem
• Four policy gradient methods: REINFORCE, REINFORCE with baseline, 

Actor-Critic, and Advantage Actor-Critic (A2C)
• A guide on how to implement the policy gradient methods in tf.keras in 

a continuous action space environment

Let's begin by getting into the theorem.

1. Policy gradient theorem
As discussed in Chapter 9, Deep Reinforcement Learning, the agent is situated in 
an environment that is in state st, an element of state space, 𝒮𝒮 . The state space 𝒮𝒮  
may be discrete or continuous. The agent takes an action 𝑎𝑎𝑡𝑡  from the action space 
𝒜𝒜  by obeying the policy, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) . 𝒜𝒜  may be discrete or continuous. As a result 
of executing the action 𝑎𝑎𝑡𝑡 , the agent receives a reward rt+1 and the environment 
transitions to a new state, st+1. The new state is dependent only on the current state 
and action. The goal of the agent is to learn an optimal policy 𝜋𝜋∗  that maximizes 
the return from all states:

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝑅𝑅𝑡𝑡     (Equation 9.1.1)

The return, Rt, is defined as the discounted cumulative reward from time t until 
the end of the episode or when the terminal state is reached:

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝑅𝑅𝑡𝑡 = ∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
𝑟𝑟𝑡𝑡+𝑘𝑘     (Equation 9.1.2)

From Equation 9.1.2, the return can also be interpreted as a value of a given state 
by following the policy 𝜋𝜋 . It can be observed from Equation 9.1.1 that future 
rewards have lower weights compared to immediate rewards since generally, 
𝛾𝛾𝑘𝑘 < 1.0  where 𝛾𝛾 ∈ [0,1] .

So far, we have only considered learning the policy by optimizing a value-based 
function, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) .

Our goal in this chapter is to directly learn the policy by parameterizing 
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) → 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) . By means of parameterization, we can use a neural network 
to learn the policy function. 
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Learning the policy means that we are going to maximize a certain objective 
function, 𝒥𝒥(𝜃𝜃) , which is a performance measure with respect to parameter 𝜃𝜃 . 
In episodic reinforcement learning, the performance measure is the value of the 
start state. In a continuous case, the objective function is the average reward rate.

Maximizing the objective function, 𝒥𝒥(𝜃𝜃) , is done by performing gradient ascent. 
In gradient ascent, the gradient update is in the direction of the derivative of 
the function being optimized. So far, all our loss functions are optimized by 
minimization or by performing gradient descent. Later, in the tf.keras implementation, 
we will see that gradient ascent can be performed by simply negating the objective 
function and performing gradient descent.

The advantage of learning the policy directly is that it can be applied to both 
discrete and continuous action spaces. For discrete action spaces:

𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑡𝑡, 𝜽𝜽) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠(𝑎𝑎𝑖𝑖)  𝑠𝑠𝑠𝑠𝑓𝑓  𝑎𝑎𝑖𝑖 ∈ 𝒜𝒜     (Equation 10.1.1)

where 𝑎𝑎𝑖𝑖  is the i-th action. 𝑎𝑎𝑖𝑖  can be the prediction of a neural network or a linear 
function of state-action features:

𝑎𝑎𝑖𝑖 = 𝜙𝜙(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑖𝑖)𝑇𝑇 𝜃𝜃     (Equation 10.1.2)

𝜙𝜙(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑖𝑖)  is any function, such as an encoder, that converts the state-action to features.

𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑡𝑡, 𝜃𝜃)  determines the probability of each 𝑎𝑎𝑖𝑖  . For example, in the cartpole 
balancing problem in the previous chapter, the goal is to keep the pole upright by 
moving the cart along the two-dimensional axis to the left or to the right. In this 
case, 𝑎𝑎0  and 𝑎𝑎1  are the probabilities of the left and right movements, respectively. In 
general, the agent takes the action with the highest probability, 𝑎𝑎𝑡𝑡 = max

𝑖𝑖
𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

For continuous action spaces, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)  samples an action from a probability 
distribution given the state. For example, if the continuous action space is the range 
𝑎𝑎𝑡𝑡 ∈ [−1.0, 1.0] , then 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)  is usually a Gaussian distribution whose mean and 
standard deviation are predicted by the policy network. The predicted action is a 
sample from this Gaussian distribution. To ensure that no invalid predictions are 
generated, the action is clipped between -1.0 and 1.0.

Formally, for continuous action spaces, the policy is a sample from a Gaussian 
distribution:

𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) = 𝑎𝑎𝑡𝑡 ~ 𝒩𝒩(𝜇𝜇(𝑠𝑠𝑡𝑡), 𝜎𝜎2(𝑠𝑠𝑡𝑡))     (Equation 10.1.3)
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The mean, 𝜇𝜇 , and standard deviation, 𝜎𝜎 , are both functions of the state features:

𝜇𝜇(𝑠𝑠𝑡𝑡) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜇𝜇     (Equation 10.1.4)

𝜎𝜎(𝑠𝑠𝑡𝑡) =  𝜁𝜁(𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜎𝜎)     (Equation 10.1.5)

𝜙𝜙(𝑠𝑠𝑡𝑡)  is any function that converts the state to its features. 𝜁𝜁(𝑥𝑥) = log(1 + 𝑒𝑒𝑥𝑥)  is 
the softplus function that ensures positive values of standard deviation. One 
way of implementing the state feature function, 𝜙𝜙(𝑠𝑠𝑡𝑡) , is to use the encoder of an 
autoencoder network. At the end of this chapter, we will train an autoencoder 
and use the encoder part as the state feature function. Training a policy network 
is therefore a matter of optimizing the parameters 𝜃𝜃 = [𝜃𝜃𝜇𝜇 𝜃𝜃𝜎𝜎] .

Given a continuously differentiable policy function, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , the policy gradient 
can be computed as:

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝔼𝔼𝜋𝜋 [
𝛻𝛻𝜃𝜃𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)

𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)] = 𝔼𝔼𝜋𝜋[𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)]     (Equation 10.1.6)

Equation 10.1.6 is also known as the Policy Gradient Theorem. It is applicable to 
both discrete and continuous action spaces. The gradient with respect to the 
parameter 𝜃𝜃  is computed from the natural logarithm of the policy action sampling 
scaled by the Q value. Equation 10.1.6 takes advantage of the property of the 

natural logarithm, 
𝛻𝛻𝛻𝛻
𝛻𝛻 = 𝛻𝛻 𝑙𝑙𝑙𝑙 𝛻𝛻 .

The policy gradient theorem is intuitive in the sense that the performance gradient is 
estimated from the target policy samples and is proportional to the policy gradient. 
The policy gradient is scaled by the Q value to encourage actions that positively 
contribute to the state value. The gradient is also inversely proportional to the 
action probability to penalize frequently occurring actions that do not contribute 
to improved performance.

There are subtle advantages associated with policy gradient methods. For example, 
in some card-based games, value-based methods have no straightforward procedure 
in handling stochasticity, unlike policy-based methods. In policy-based methods, 
the action probability changes smoothly with the parameters. 

For proof of the policy gradient theorem, please refer to [2] 
and lecture notes from David Silver on reinforcement learning: 
http://www0.cs.ucl.ac.uk/staff/d.silver/web/
Teaching_files/pg.pdf

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf
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Meanwhile, value-based actions may suffer from drastic changes with respect to 
small changes in parameters. Lastly, the dependence of policy-based methods on 
parameters leads us to different formulations on how to perform gradient ascent 
on the performance measure. These are the four policy gradient methods to be 
presented in the succeeding sections.

Policy-based methods have their own disadvantages as well. They are generally 
harder to train because of the tendency to converge on a local optimum instead of 
the global optimum. In the experiments to be presented at the end of this chapter, 
it is easy for an agent to become comfortable and to choose actions that do not 
necessarily give the highest value. The policy gradient is also characterized by high 
variance.

The gradient updates are frequently overestimated. Furthermore, training policy-
based methods are time-consuming. Training requires thousands of episodes (that 
is, not sample-efficient). Each episode only provides a small number of samples. 
Typical training in the implementation provided at the end of the chapter would 
take about an hour for 1,000 episodes on a GTX 1060 GPU.

In the following sections, we discuss the four policy gradient methods. While the 
discussion focuses on continuous action spaces, the concept is generally applicable 
to discrete action spaces.

2. Monte Carlo policy gradient 
(REINFORCE) method
The simplest policy gradient method is REINFORCE [4], which is a Monte Carlo 
policy gradient method:

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝔼𝔼𝜋𝜋[𝑅𝑅𝑡𝑡𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)]     (Equation 10.2.1)

where Rt is the return as defined in Equation 9.1.2. Rt is an unbiased sample of 
𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)  in the policy gradient theorem.

Algorithm 10.2.1 summarizes the REINFORCE algorithm [2]. REINFORCE is a 
Monte Carlo algorithm. It does not require knowledge of the dynamics of the 
environment (in other words, model-free). Only experience samples, (𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖+1𝑠𝑠𝑖𝑖+1) , 
are needed to optimally tune the parameters of the policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) . The 
discount factor, 𝛾𝛾 , takes into consideration the fact that rewards decrease in value as 
the number of steps increases. The gradient is discounted by 𝛾𝛾𝑡𝑡 . Gradients taken at 
later steps have smaller contributions. The learning rate, 𝛼𝛼 , is a scaling factor of the 
gradient update.
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The parameters are updated by performing gradient ascent using the discounted 
gradient and learning rate. As a Monte Carlo algorithm, REINFORCE requires that 
the agent completes an episode before processing the gradient updates. Also due 
to its Monte Carlo nature, the gradient update of REINFORCE is characterized by 
high variance.

Algorithm 10.2.1 REINFORCE

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1]  and learning rate 𝛼𝛼 . For example, 𝛾𝛾 = 0.99  and 
𝛼𝛼 = 1𝑒𝑒 − 3 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0 ).

1. Repeat.
2.     Generate an episode 〈𝑠𝑠0𝑎𝑎0𝑟𝑟1𝑠𝑠1, 𝑠𝑠1𝑎𝑎1𝑟𝑟2𝑠𝑠2,… , 𝑠𝑠𝑇𝑇−1𝑎𝑎𝑇𝑇−1𝑟𝑟𝑇𝑇𝑠𝑠𝑇𝑇〉  by following 

    𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .
3.     for steps 𝑡𝑡 = 0,… , 𝑇𝑇 − 1  do.

4.         Compute the return, 𝑅𝑅𝑡𝑡 =∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
𝑟𝑟𝑡𝑡+𝑘𝑘 .

5.          Compute the discounted performance gradient,  
𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

6.         Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .

In REINFORCE, the parameterized policy can be modeled by a neural network as 
shown in Figure 10.2.1:

Figure 10.2.1: Policy network
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As discussed in the previous section, in the case of continuous action spaces, the 
state input is converted into features. The state features are the inputs of the policy 
network. The Gaussian distribution representing the policy function has a mean 
and standard deviation that are both functions of the state features. The policy 
network, 𝜋𝜋(𝜃𝜃) , could be an MLP, CNN, or an RNN depending on the nature of 
the state inputs. The predicted action is simply a sample from the policy function.

Listing 10.2.1 shows the REINFORCEAgent class, which implements Algorithm 10.2.1 
in tf.keras. train_by_episode(), is called after an episode is completed to 
compute the return per step. train() performs Lines 5 and 6 of Algorithm 10.2.1 by 
optimizing the network for the objective function, logp_model. The parent class, 
PolicyAgent, implements the common lines in the algorithms of the four policy 
gradient methods that are covered in this chapter. PolicyAgent will be presented 
after discussing all the policy gradient methods.

Listing 10.2.1: policygradient-car-10.1.1.py

class REINFORCEAgent(PolicyAgent):
    def __init__(self, env):
        """Implements the models and training of 
           REINFORCE policy gradient method
        Arguments:
            env (Object): OpenAI gym environment
        """
        super().__init__(env)

    def train_by_episode(self):
        """Train by episode
           Prepare the dataset before the step by step training
        """
        # only REINFORCE and REINFORCE with baseline
        # use the ff code
        # convert the rewards to returns
        rewards = []
        gamma = 0.99
        for item in self.memory:
            [_, _, _, reward, _] = item
            rewards.append(reward)
    

        # compute return per step
        # return is the sum of rewards from t til end of episode
        # return replaces reward in the list
        for i in range(len(rewards)):
            reward = rewards[i:]
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            horizon = len(reward)
            discount =  [math.pow(gamma, t) for t in range(horizon)]
            return_ = np.dot(reward, discount)
            self.memory[i][3] = return_

        # train every step
        for item in self.memory:
            self.train(item, gamma=gamma)

    def train(self, item, gamma=1.0):
        """Main routine for training 
        Arguments:
            item (list) : one experience unit
            gamma (float) : discount factor [0,1]
        """
        [step, state, next_state, reward, done] = item

        # must save state for entropy computation
        self.state = state

        discount_factor = gamma**step
        delta = reward

        # apply the discount factor as shown in Algorithms
        # 10.2.1, 10.3.1 and 10.4.1
        discounted_delta = delta * discount_factor
        discounted_delta = np.reshape(discounted_delta, [-1, 1])
        verbose = 1 if done else 0

        # train the logp model (implies training of actor model
        # as well) since they share exactly the same set of
        # parameters
        self.logp_model.fit(np.array(state),
                            discounted_delta,
                            batch_size=1,
                            epochs=1,
                            verbose=verbose)

The following section proposes an improvement over the REINFORCE method.
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3. REINFORCE with baseline method
The REINFORCE algorithm can be generalized by subtracting a baseline from 
the return, 𝛿𝛿 = 𝑅𝑅𝑡𝑡 − 𝐵𝐵(𝑠𝑠𝑡𝑡) . The baseline function, 𝐵𝐵(𝑠𝑠𝑡𝑡) , can be any function as 
long as it does not depend on 𝑎𝑎𝑡𝑡 . The baseline does not alter the expectation of 
the performance gradient:

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝔼𝔼𝜋𝜋[(𝑅𝑅𝑡𝑡 − 𝐵𝐵(𝑠𝑠𝑡𝑡))𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)] = 𝔼𝔼𝜋𝜋[𝑅𝑅𝑡𝑡𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)]     (Equation 10.3.1)

Equation 10.3.1 implies that 𝔼𝔼𝜋𝜋[𝐵𝐵(𝑠𝑠𝑡𝑡)𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)] = 0  since 𝐵𝐵(𝑠𝑠𝑡𝑡)  is not a 
function of 𝑎𝑎𝑡𝑡 . While the introduction of a baseline does not change the expectation, 
it reduces the variance of the gradient updates. The reduction in variance generally 
accelerates learning.

In most cases, we use the value function, 𝐵𝐵(𝑠𝑠𝑡𝑡) = 𝑉𝑉(𝑠𝑠𝑡𝑡),  as the baseline. If the 
return is overestimated, the scaling factor is proportionally reduced by the value 
function, resulting in a lower variance. The value function is also parameterized, 
𝑉𝑉(𝑠𝑠𝑡𝑡) → 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) , and is jointly trained with the policy network. In continuous 
action spaces, the state value can be a linear function of state features:

𝑣𝑣𝑡𝑡 = 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝑣𝑣     (Equation 10.3.2)

Algorithm 10.3.1 summarizes the REINFORCE with baseline method [1]. This is 
similar to REINFORCE, except that the return is replaced by 𝛿𝛿 . The difference is 
we are now training two neural networks.

Algorithm 10.3.1 REINFORCE with baseline

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Require: A differentiable parameterized value network, 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] , learning rate 𝛼𝛼  for the performance gradient, 
and learning rate for the value gradient, 𝛼𝛼𝑣𝑣 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0 ). 𝜃𝜃𝑣𝑣0 , initial 
value network parameters (for example, 𝜃𝜃𝑣𝑣0 → 0 ).

1. Repeat.
2.     Generate an episode 〈𝑠𝑠0𝑎𝑎0𝑟𝑟1𝑠𝑠1, 𝑠𝑠1𝑎𝑎1𝑟𝑟2𝑠𝑠2,… , 𝑠𝑠𝑇𝑇−1𝑎𝑎𝑇𝑇−1𝑟𝑟𝑇𝑇𝑠𝑠𝑇𝑇〉  by following  

    𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .
3.     for steps 𝑡𝑡 = 0,… , 𝑇𝑇 − 1  do.



Policy Gradient Methods

[ 336 ]

4.         Compute the return, 𝑅𝑅𝑡𝑡 =∑𝛾𝛾𝑘𝑘
𝑇𝑇

𝑘𝑘=0
𝑟𝑟𝑡𝑡+𝑘𝑘 .

5.         Subtract the baseline, 𝛿𝛿 = 𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .
6.         Compute the discounted value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃𝑣𝑣𝛻𝛻(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .
7.         Perform gradient ascent, 𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑣𝑣 + 𝛼𝛼𝑣𝑣𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) .
8.          Compute the discounted performance gradient,  

        𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .
9.         Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .

As shown in Figure 10.3.1, in addition to the policy network, 𝜋𝜋(𝜃𝜃),  the value 
network, 𝑉𝑉(𝜃𝜃) , is also trained at the same time. The policy network parameters are 
updated by the performance gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃) , while the value network parameters 
are adjusted by the value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) . Since REINFORCE is a Monte Carlo 
algorithm, it follows that the value function training is also a Monte Carlo algorithm.

The learning rates are not necessarily the same. Note that the value network is also 
performing gradient ascent.

Figure 10.3.1: Policy and value networks. REINFORCE with baseline has a value network that computes the 
baseline

Listing 10.3.1 shows the REINFORCEBaselineAgent class, which implements 
Algorithm 10.3.1 in tf.keras. It inherits from REINFORCEAgent since the two 
algorithms differ only in the train() method. Line 5 of Algorithm 10.3.1 is computed 
by delta = reward - self.value(state)[0]. Then, the networks for the 
objective and value functions, logp_model and value_model, in lines 7 and 9 are 
optimized by calling the fit() method of their respective models.



Chapter 10

[ 337 ]

Listing 10.3.1: policygradient-car-10.1.1.py

class REINFORCEBaselineAgent(REINFORCEAgent):
    def __init__(self, env):
        """Implements the models and training of 
           REINFORCE w/ baseline policy 
           gradient method
        Arguments:
            env (Object): OpenAI gym environment
        """
        super().__init__(env)

    def train(self, item, gamma=1.0):
        """Main routine for training 
        Arguments:
            item (list) : one experience unit
            gamma (float) : discount factor [0,1]
        """
        [step, state, next_state, reward, done] = item

        # must save state for entropy computation
        self.state = state

        discount_factor = gamma**step

        # reinforce-baseline: delta = return - value
        delta = reward - self.value(state)[0]

        # apply the discount factor as shown in Algorithms
        # 10.2.1, 10.3.1 and 10.4.1
        discounted_delta = delta * discount_factor
        discounted_delta = np.reshape(discounted_delta, [-1, 1])
        verbose = 1 if done else 0

        # train the logp model (implies training of actor model
        # as well) since they share exactly the same set of
        # parameters
        self.logp_model.fit(np.array(state),
                            discounted_delta,
                            batch_size=1,
                            epochs=1,
                            verbose=verbose)

        # train the value network (critic)
        self.value_model.fit(np.array(state),
                             discounted_delta,
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                             batch_size=1,
                             epochs=1,
                             verbose=verbose)

In the next section, we will present an improvement over the REINFORCE with 
baseline method.

4. Actor-Critic method
In the REINFORCE with baseline method, the value is used as a baseline. It is 
not used to train the value function. In this section, we introduce a variation of 
REINFORCE with baseline, called the Actor-Critic method. The policy and value 
networks play the roles of actor and critic networks. The policy network is the 
actor deciding which action to take given the state. Meanwhile, the value network 
evaluates the decision made by the actor or policy network.

The value network acts as a critic that quantifies how good or bad the chosen action 
undertaken by the actor is. The value network evaluates the state value, 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣) 
, by comparing it with the sum of the reward received, 𝑟𝑟 , and the discounted value 
of the observed next state, 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) . The difference, 𝛿𝛿 , is expressed as:

𝛿𝛿 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝜃𝜃𝑣𝑣) − 𝛾𝛾(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) = 𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) − 𝛾𝛾(𝑠𝑠, 𝜃𝜃𝑣𝑣)     (Equation 10.4.1)

where we dropped the subscripts of r and s for simplicity. Equation 10.4.1 is similar 
to the temporal differencing in Q-learning discussed in Chapter 9, Deep Reinforcement 
Learning. The next state value is discounted by 𝛾𝛾 ∈ [0.0,1.0].  Estimating distant 
future rewards is difficult. Therefore, our estimate is based only on the immediate 
future, 𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) . This is known as the bootstrapping technique.

The bootstrapping technique and the dependence on state representation in Equation 
10.4.1 often accelerates learning and reduces variance. From Equation 10.4.1, we 
notice that the value network evaluates the current state, s = st, which is due to 
the previous action, 𝑎𝑎𝑡𝑡−1 , of the policy network. Meanwhile, the policy gradient is 
based on the current action, 𝑎𝑎𝑡𝑡 . In a sense, the evaluation is delayed by one step.

Algorithm 10.4.1 summarizes the Actor-Critic method [1]. Apart from the evaluation 
of the state value, which is used to train both the policy and value networks, the 
training is done online. At every step, both networks are trained. This is unlike 
REINFORCE and REINFORCE with baseline, where the agent completes an episode 
before the training is performed. The value network is consulted twice, firstly, during 
the value estimate of the current state, and secondly, for the value of the next state. 
Both values are used in the computation of gradients.
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Algorithm 10.4.1 Actor-Critic

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎|𝑠𝑠, 𝜃𝜃) .

Require: A differentiable parameterized value network, 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] , learning rate 𝛼𝛼  for the performance gradient, and 
learning rate for the value gradient, 𝛼𝛼𝑣𝑣 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0 ). 𝜃𝜃𝑣𝑣0 , initial value 
network parameters (for example, 𝜃𝜃𝑣𝑣0 → 0 ).

1. Repeat.
2.     for steps 𝑡𝑡 = 0,… , 𝑇𝑇 − 1  do.
3.         Sample an action 𝑎𝑎~𝜋𝜋(𝑎𝑎|𝑠𝑠, 𝜃𝜃) .
4.         Execute the action and observe the reward, 𝑟𝑟 , and the next state, 𝑠𝑠′ .
5.         Evaluate the state value estimate, 𝛿𝛿 = 𝑟𝑟 + 𝛾𝛾𝛾𝛾(𝑠𝑠′, 𝜃𝜃𝑣𝑣) − 𝛾𝛾(𝑠𝑠, 𝜃𝜃𝑣𝑣) .
6.         Compute the discounted value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃𝑣𝑣𝛻𝛻(𝑠𝑠, 𝜃𝜃𝑣𝑣) .
7.         Perform gradient ascent, 𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑣𝑣 + 𝛼𝛼𝑣𝑣𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) .
8.          Compute the discounted performance gradient, 

𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛾𝛾𝑡𝑡𝛿𝛿𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎|𝑠𝑠, 𝜃𝜃) .
9.         Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .
10.         𝑠𝑠 = 𝑠𝑠′ 

Figure 10.4.1 shows the Actor-Critic network:

Figure 10.4.1: Actor-Critic network. Actor-Critic differs from REINFORCE with baseline by the second 
evaluation of value V', which is used to critique the policy
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Listing 10.4.1 shows the ActorCriticAgent class, which implements Algorithm 10.4.1 
in tf.keras. Unlike the two REINFORCE methods, Actor-Critic does not wait for 
the episode to complete. Therefore, it does not implement train_by_episode(). 
At every experience unit, the networks for the objective and value functions, 
logp_model and value_model, in Lines 7 and 9 are optimized by calling the fit() 
method of their respective models. The delta variable stores the result of line 5.

Listing 10.4.1: policygradient-car-10.1.1.py

class ActorCriticAgent(PolicyAgent):
    def __init__(self, env):
        """Implements the models and training of 
           Actor Critic policy gradient method
        Arguments:
            env (Object): OpenAI gym environment
        """
        super().__init__(env)

    def train(self, item, gamma=1.0):
        """Main routine for training
        Arguments:
            item (list) : one experience unit
            gamma (float) : discount factor [0,1]
        """
        [step, state, next_state, reward, done] = item

        # must save state for entropy computation
        self.state = state

        discount_factor = gamma**step

        # actor-critic: delta = reward - value 
        #       + discounted_next_value
        delta = reward - self.value(state)[0]

        # since this function is called by Actor-Critic
        # directly, evaluate the value function here
        if not done:
            next_value = self.value(next_state)[0]
            # add  the discounted next value
            delta += gamma*next_value

        # apply the discount factor as shown in Algortihms
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        # 10.2.1, 10.3.1 and 10.4.1
        discounted_delta = delta * discount_factor
        discounted_delta = np.reshape(discounted_delta, [-1, 1])
        verbose = 1 if done else 0

        # train the logp model (implies training of actor model
        # as well) since they share exactly the same set of
        # parameters
        self.logp_model.fit(np.array(state),
                            discounted_delta,
                            batch_size=1,
                            epochs=1,
                            verbose=verbose)

The final policy gradient method is A2C.

5. Advantage Actor-Critic (A2C) method
In the Actor-Critic method from the previous section, the objective is for the value 
function to evaluate the state value correctly. There are other techniques for training 
the value network. One obvious method is to use mean square error (MSE) in the 
value function optimization, similar to the algorithm in Q-learning. The new value 
gradient is equal to the partial derivative of the MSE between the return, Rt, and 
the state value:

𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) =
𝜕𝜕(𝑅𝑅𝑡𝑡 − 𝛻𝛻(𝑠𝑠, 𝜃𝜃𝑣𝑣))

2

𝜕𝜕𝜃𝜃𝑣𝑣
     (Equation 10.5.1)

As (𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)) → 0 , the value network prediction gets more accurate in 
predicting the return for a given state. We refer to this variation of the Actor-Critic 
algorithm as Advantage Actor-Critic (A2C). A2C is a single-threaded or synchronous 
version of the Asynchronous Advantage Actor-Critic (A3C) by [3]. The quantity 
(𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣))  is called the Advantage.

Algorithm 10.5.1 summarizes the A2C method. There are some differences between 
A2C and Actor-Critic. Actor-Critic is online or is trained on a per-experience sample. 
A2C is similar to the Monte Carlo algorithms, REINFORCE, and REINFORCE with 
baseline. It is trained after one episode has been completed. Actor-Critic is trained 
from the first state to the last state. A2C training starts from the last state and ends 
on the first state. In addition, the A2C policy and value gradients are no longer 
discounted by 𝛾𝛾𝑡𝑡 .
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The corresponding network for A2C is similar to Figure 10.4.1 since we only 
changed the method of gradient computation. To encourage agent exploration 
during training, the A3C algorithm [3] suggests that the gradient of the 
weighted entropy value of the policy function is added to the gradient function, 
𝛽𝛽𝛽𝛽𝜃𝜃𝐻𝐻(𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)) . Recall that entropy is a measure of information or uncertainty 
of an event.

Algorithm 10.5.1 Advantage Actor-Critic (A2C)

Require: A differentiable parameterized target policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Require: A differentiable parameterized value network, 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) .

Require: Discount factor, 𝛾𝛾 ∈ [0,1] , learning rate 𝛼𝛼  for the performance gradient, 
learning rate for the value gradient, 𝛼𝛼𝑣𝑣  and entropy weight, 𝛽𝛽 .

Require: 𝜃𝜃0 , initial policy network parameters (for example, 𝜃𝜃0 → 0 ). 𝜃𝜃𝑣𝑣0 , initial value 
network parameters (for example, 𝜃𝜃𝑣𝑣0 → 0 ).

1. Repeat.
2.     Generate an episode (𝑠𝑠0𝑎𝑎0𝑟𝑟1𝑠𝑠1, 𝑠𝑠1𝑎𝑎1𝑟𝑟2𝑠𝑠2,… , 𝑠𝑠𝑇𝑇−1𝑎𝑎𝑇𝑇−1𝑟𝑟𝑇𝑇𝑠𝑠𝑇𝑇 ) by following  

    𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

3.     𝑅𝑅𝑡𝑡 = { 0 𝑖𝑖𝑖𝑖 𝑠𝑠𝑇𝑇 𝑖𝑖𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉(𝑠𝑠𝑇𝑇, 𝜃𝜃𝑣𝑣) 𝑖𝑖𝑓𝑓𝑡𝑡 𝑡𝑡𝑓𝑓𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡, 𝑠𝑠𝑇𝑇 , 𝑏𝑏𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏 𝑖𝑖𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

4.     for steps 𝑡𝑡 = 𝑇𝑇 − 1,… ,0  do.
5.         Compute the return, 𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡 .

6.         Compute the value gradient, 𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) =
𝜕𝜕(𝑅𝑅𝑡𝑡 − 𝛻𝛻(𝑠𝑠, 𝜃𝜃𝑣𝑣))

2

𝜕𝜕𝜃𝜃𝑣𝑣
 .

7.         Accumulate the gradient, 𝜃𝜃𝑣𝑣 = 𝜃𝜃𝑣𝑣 + 𝛼𝛼𝑣𝑣𝛻𝛻𝛻𝛻(𝜃𝜃𝑣𝑣) .
8.          Compute the performance gradient,  

        𝛻𝛻𝛻𝛻(𝜃𝜃) = 𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)(𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)) + 𝛽𝛽𝛻𝛻𝜃𝜃𝐻𝐻(𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)) .
9.         Perform gradient ascent, 𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃) .

Listing 10.5.1 shows the A2CAgent class, which implements Algorithm 10.5.1 in 
tf.keras. Unlike the two REINFORCE methods, the return is computed from 
the last experience unit or state to the first. At every experience unit, the networks 
for the objective and value functions, logp_model and value_model, in Lines 7 and 
9 are optimized by calling the fit() method of their respective models. Note that 
during object instantiation, the beta or weight of the entropy loss is set to 0.9 to 
indicate that the entropy loss function will be used. Furthermore, value_model is 
trained using the MSE loss function.
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Listing 10.5.1: policygradient-car-10.1.1.py

class A2CAgent(PolicyAgent):
    def __init__(self, env):
        """Implements the models and training of 
           A2C policy gradient method
        Arguments:
            env (Object): OpenAI gym environment
        """
        super().__init__(env)
        # beta of entropy used in A2C
        self.beta = 0.9
        # loss function of A2C value_model is mse
        self.loss = 'mse'

    def train_by_episode(self, last_value=0):
        """Train by episode 
           Prepare the dataset before the step by step training
        Arguments:
            last_value (float): previous prediction of value net
        """
        # implements A2C training from the last state
        # to the first state
        # discount factor
        gamma = 0.95
        r = last_value
        # the memory is visited in reverse as shown
        # in Algorithm 10.5.1
        for item in self.memory[::-1]:
            [step, state, next_state, reward, done] = item
            # compute the return
            r = reward + gamma*r
            item = [step, state, next_state, r, done]
            # train per step
            # a2c reward has been discounted
            self.train(item)

    def train(self, item, gamma=1.0):
        """Main routine for training 
        Arguments:
            item (list) : one experience unit
            gamma (float) : discount factor [0,1]
        """
        [step, state, next_state, reward, done] = item
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        # must save state for entropy computation
        self.state = state

        discount_factor = gamma**step

        # a2c: delta = discounted_reward - value
        delta = reward - self.value(state)[0]

        verbose = 1 if done else 0

        # train the logp model (implies training of actor model
        # as well) since they share exactly the same set of
        # parameters
        self.logp_model.fit(np.array(state),
                            discounted_delta,
                            batch_size=1,
                            epochs=1,
                            verbose=verbose)

        # in A2C, the target value is the return (reward
        # replaced by return in the train_by_episode function)
        discounted_delta = reward
        discounted_delta = np.reshape(discounted_delta, [-1, 1])

        # train the value network (critic)
        self.value_model.fit(np.array(state),
                             discounted_delta,
                             batch_size=1,
                             epochs=1,
                             verbose=verbose)

In the four algorithms presented, they differ only in the objective function and value 
(if applicable) optimization. In the next section, we will present the unified code for 
the four algorithms.

6. Policy Gradient methods using Keras
The four policy gradient methods (Algorithm 10.2.1 to Algorithm 10.5.1) discussed 
in the previous sections use identical policy and value network models. The policy 
and value networks in Figure 10.2.1 to Figure 10.4.1 have the same configurations. 
The four policy gradient methods differ only in:

• Performance and value gradient formulas
• Training strategy
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In this section, we will discuss the implementation in tf.keras of the common 
routines of Algorithm 10.2.1 to Algorithm 10.5.1 in one code.

But before discussing the implementation, let's briefly explore the training 
environment.

Unlike Q-learning, policy gradient methods are applicable to both discrete and 
continuous action spaces. In our example, we'll demonstrate the four policy gradient 
methods on a continuous action space case example, MountainCarContinuous-v0 
of OpenAI gym, https://gym.openai.com. In case you are not familiar with 
OpenAI Gym, please refer to Chapter 9, Deep Reinforcement Learning.

A snapshot of the MountainCarContinuous-v0 two-dimensional environment is 
shown in Figure 10.6.1 In this two-dimensional environment, a car with a not too 
powerful engine is between two mountains:

Figure 10.6.1: MountainCarContinuous-v0 OpenAI Gym environment

In order to reach the yellow flag on top of the mountain on the right, it must drive 
back and forth to gain enough momentum. The more energy (that is, the greater the 
absolute value of action) that is applied to the car, the smaller (or, the more negative) 
is the reward. 

The complete code can be found at https://github.com/
PacktPublishing/Advanced-Deep-Learning-with-Keras.

https://gym.openai.com
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras
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The reward is always negative, and it is only positive upon reaching the flag. In 
that case, the car receives a reward of +100. However, every action is penalized 
by the following code:

reward-= math.pow(action[0],2)*0.1

The continuous range of valid action values is [-1.0, 1.0]. Beyond the range, the 
action is clipped to its minimum or maximum value. Therefore, it makes no sense 
to apply an action value that is greater than 1.0 or less than -1.0.

The MountainCarContinuous-v0 environment state has two elements:

• Car position
• Car velocity

The state is converted to state features by an encoder. Like action space, the state 
space is also continuous. The predicted action is the output of the policy model 
given the state. The output of the value function is the predicted value of the state.

As shown in Figure 10.2.1 to Figure 10.4.1, before building the policy and value 
networks, we must first create a function that converts the state to features. This 
function is implemented by an encoder of an autoencoder similar to the ones 
implemented in Chapter 3, Autoencoders.

Figure 10.6.2 shows an autoencoder comprising an encoder and a decoder:

Figure 10.6.2: Autoencoder model

In Figure 10.6.3, the encoder is an MLP made of Input(2)-Dense(256, 
activation='relu')-Dense(128, activation='relu')-Dense(32). Every state 
is converted into a 32-dim feature vector:
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Figure 10.6.3: Encoder model

In Figure 10.6.4, the decoder is also an MLP but made of Input(32)-Dense(128, 
activation='relu')-Dense(256, activation='relu')-Dense(2):

Figure 10.6.4: Decoder model
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The autoencoder is trained for 10 epochs with an MSE, loss function, and tf.keras 
default Adam optimizer. We sampled 220,000 random states for the training and 
test dataset and applied a 200,000/20,000 train-test split. After training, the encoder 
weights are saved for future use in the policy and value networks' training. Listing 
10.6.1 shows the methods for building and training the autoencoder.

In the tf.keras implementation, all the routines that we will mention in this 
section are implemented as methods in the PolicyAgent class unless otherwise 
noted. The role of PolicyAgent is to represent policy gradient methods' common 
functionalities, including building and training the autoencoder network model 
and predicting the action, log probability, entropy, and state value. This is the 
super class of each policy gradient method agent class presented in Listing 10.2.1 
to Listing 10.5.1.

Listing 10.6.1: policygradient-car-10.1.1.py

Methods for building and training the feature autoencoder:

class PolicyAgent:
    def __init__(self, env):
        """Implements the models and training of 
            Policy Gradient Methods
        Argument:
            env (Object): OpenAI gym environment
        """

        self.env = env
        # entropy loss weight
        self.beta = 0.0
        # value loss for all policy gradients except A2C
        self.loss = self.value_loss

        # s,a,r,s' are stored in memory
        self.memory = []

        # for computation of input size
        self.state = env.reset()
        self.state_dim = env.observation_space.shape[0]
        self.state = np.reshape(self.state, [1, self.state_dim])
        self.build_autoencoder()

    def build_autoencoder(self):
        """autoencoder to convert states into features
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        """
        # first build the encoder model
        inputs = Input(shape=(self.state_dim, ), name='state')
        feature_size = 32
        x = Dense(256, activation='relu')(inputs)
        x = Dense(128, activation='relu')(x)
        feature = Dense(feature_size, name='feature_vector')(x)

        # instantiate encoder model
        self.encoder = Model(inputs, feature, name='encoder')
        self.encoder.summary()
        plot_model(self.encoder,
                   to_file='encoder.png',
                   show_shapes=True)

        # build the decoder model
        feature_inputs = Input(shape=(feature_size,),
                               name='decoder_input')
        x = Dense(128, activation='relu')(feature_inputs)
        x = Dense(256, activation='relu')(x)
        outputs = Dense(self.state_dim, activation='linear')(x)

        # instantiate decoder model
        self.decoder = Model(feature_inputs,
                             outputs,
                             name='decoder')
        self.decoder.summary()
        plot_model(self.decoder,
                   to_file='decoder.png',
                   show_shapes=True)

        # autoencoder = encoder + decoder
        # instantiate autoencoder model
        self.autoencoder = Model(inputs,
                                 self.decoder(self.encoder(inputs)),
                                 name='autoencoder')
        self.autoencoder.summary()
        plot_model(self.autoencoder,
                   to_file='autoencoder.png',
                   show_shapes=True)

        # Mean Square Error (MSE) loss function, Adam optimizer
        self.autoencoder.compile(loss='mse', optimizer='adam')
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    def train_autoencoder(self, x_train, x_test):
        """Training the autoencoder using randomly sampled
            states from the environment
        Arguments:
            x_train (tensor): autoencoder train dataset
            x_test (tensor): autoencoder test dataset
        """
        # train the autoencoder
        batch_size = 32
        self.autoencoder.fit(x_train,
                             x_train,
                             validation_data=(x_test, x_test),
                             epochs=10,
                             batch_size=batch_size)

Given the MountainCarContinuous-v0 environment, the policy (or actor) 
model predicts the action that must be applied to the car. As discussed in the 
first section of this chapter on policy gradient methods, for continuous action 
spaces, the policy model samples an action from a Gaussian distribution, 
𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) = 𝑎𝑎𝑡𝑡 ~ 𝒩𝒩(𝜇𝜇(𝑠𝑠𝑡𝑡), 𝜎𝜎2(𝑠𝑠𝑡𝑡)) . In tf.keras, this is implemented as:

import tensorflow_probability as tfp
    def action(self, args):
        """Given mean and stddev, sample an action, clip 
            and return
            We assume Gaussian distribution of probability 
            of selecting an action given a state
        Arguments:
            args (list) : mean, stddev list
        """
        mean, stddev = args
        dist = tfp.distributions.Normal(loc=mean, scale=stddev)
        action = dist.sample(1)
        action = K.clip(action,
                        self.env.action_space.low[0],
                        self.env.action_space.high[0])
        return action
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The action is clipped between its minimum and maximum possible values. In 
this method, we use the TensorFlow probability package. It can be installed 
separately by:

pip3 install --upgrade tensorflow-probability

The role of the policy network is to predict the mean and standard deviation of the 
Gaussian distribution. Figure 10.6.5 shows the policy network to model 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) .

Figure 10.6.5: Policy model (actor model)

Note that the encoder model has pretrained weights that are frozen. Only the 
mean and standard deviation weights receive the performance gradient updates. 
The policy network is basically the implementation of Equation 10.1.4 and Equation 
10.1.5, which are repeated here for convenience:

𝜇𝜇(𝑠𝑠𝑡𝑡) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜇𝜇     (Equation 10.1.4)

𝜎𝜎(𝑠𝑠𝑡𝑡) =  𝜁𝜁(𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝜎𝜎)     (Equation 10.1.5)
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where 𝜙𝜙(𝑠𝑠𝑡𝑡)  is the encoder, 𝜃𝜃𝜇𝜇  are the weights of the mean's Dense(1) layer, and 
𝜃𝜃𝜎𝜎  are the weights of the standard deviation's Dense(1) layer. We used a modified 
softplus function, 𝜁𝜁(∙) , to avoid zero standard deviation:

def softplusk(x):
    """Some implementations use a modified softplus 
        to ensure that the stddev is never zero
    Argument:
        x (tensor): activation input
    """
    return K.softplus(x) + 1e-10

The policy model builder is shown in Listing 10.6.2. Also included in this listing 
are the log probability, entropy, and value models, which we will discuss next.

Listing 10.6.2: policygradient-car-10.1.1.py

Method for building the policy (actor), logp, entropy, and value models from the 
encoded state features:

    def build_actor_critic(self):
        """4 models are built but 3 models share the
            same parameters. hence training one, trains the rest.
            The 3 models that share the same parameters 
                are action, logp, and entropy models. 
            Entropy model is used by A2C only.
            Each model has the same MLP structure:
            Input(2)-Encoder-Output(1).
            The output activation depends on the nature 
                of the output.
        """
        inputs = Input(shape=(self.state_dim, ), name='state')
        self.encoder.trainable = False
        x = self.encoder(inputs)
        mean = Dense(1,
                     activation='linear',
                     kernel_initializer='zero',
                     name='mean')(x)
        stddev = Dense(1,
                       kernel_initializer='zero',
                       name='stddev')(x)
        # use of softplusk avoids stddev = 0
        stddev = Activation('softplusk', name='softplus')(stddev)
        action = Lambda(self.action,
                        output_shape=(1,),
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                        name='action')([mean, stddev])
        self.actor_model = Model(inputs, action, name='action')
        self.actor_model.summary()
        plot_model(self.actor_model,
                   to_file='actor_model.png',
                   show_shapes=True)

        logp = Lambda(self.logp,
                      output_shape=(1,),
                      name='logp')([mean, stddev, action])
        self.logp_model = Model(inputs, logp, name='logp')
        self.logp_model.summary()
        plot_model(self.logp_model,
                   to_file='logp_model.png',
                   show_shapes=True)

        entropy = Lambda(self.entropy,
                         output_shape=(1,),
                         name='entropy')([mean, stddev])
        self.entropy_model = Model(inputs, entropy, name='entropy')
        self.entropy_model.summary()
        plot_model(self.entropy_model,
                   to_file='entropy_model.png',
                   show_shapes=True)

        value = Dense(1,
                      activation='linear',
                      kernel_initializer='zero',
                      name='value')(x)
        self.value_model = Model(inputs, value, name='value')
        self.value_model.summary()
        plot_model(self.value_model,
                   to_file='value_model.png',
                   show_shapes=True)

        # logp loss of policy network
        loss = self.logp_loss(self.get_entropy(self.state),
                              beta=self.beta)
        optimizer = RMSprop(lr=1e-3)
        self.logp_model.compile(loss=loss, optimizer=optimizer)

        optimizer = Adam(lr=1e-3)
        self.value_model.compile(loss=self.loss, optimizer=optimizer)
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Figure 10.6.6: Gaussian log probability model of the policy

Apart from the policy network, 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , we must also have the action log 
probability (logp) network 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , since this is actually the one that calculates 
the gradient. As shown in Figure 10.6.6, the logp network is simply the policy 
network where an additional Lambda(1) layer computes the log probability of 
the Gaussian distribution given the action, mean, and standard deviation.

The logp network and actor (policy) model share the same set of parameters. The 
Lambda layer does not have any parameters. It is implemented by the following 
function:

    def logp(self, args):
        """Given mean, stddev, and action compute
            the log probability of the Gaussian distribution
        Arguments:
            args (list) : mean, stddev action, list
        """
        mean, stddev, action = args
        dist = tfp.distributions.Normal(loc=mean, scale=stddev)
        logp = dist.log_prob(action)
        return logp
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Training the logp network trains the actor model as well. In the training methods 
that are discussed in this section, only the logp network is trained.

As shown in Figure 10.6.7, the entropy model also shares parameters with the 
policy network:

Figure 10.6.7: Entropy model

The output Lambda(1) layer computes the entropy of the Gaussian distribution 
given the mean and standard deviation using the following function:

    def entropy(self, args):
        """Given the mean and stddev compute 
            the Gaussian dist entropy
        Arguments:
            args (list) : mean, stddev list
        """
        mean, stddev = args
        dist = tfp.distributions.Normal(loc=mean, scale=stddev)
        entropy = dist.entropy()
        return entropy

The entropy model is only used by the A2C method.
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Figure 10.6.8 shows the value model:

Figure 10.6.8: A value model

The model also uses the pretrained encoder with frozen weights to implement 
the following equation, Equation 10.3.2, which is repeated here for convenience:

𝑣𝑣𝑡𝑡 = 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣) = 𝜙𝜙(𝑠𝑠𝑡𝑡)𝑇𝑇𝜃𝜃𝑣𝑣     (Equation 10.3.2)

𝜃𝜃𝑣𝑣  are the weights of the Dense(1) layer, the only layer that receives value gradient 
updates. Figure 10.6.8 represents 𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣)  in Algorithm 10.3.1 to Algorithm 10.5.1. 
The value model can be built in a few lines:

inputs = Input(shape=(self.state_dim, ), name='state')
self.encoder.trainable = False
x = self.encoder(inputs)

value = Dense(1,
              activation='linear',
              kernel_initializer='zero',
              name='value')(x)
self.value_model = Model(inputs, value, name='value')

These lines are also implemented in the build_actor_critic() method, which is 
shown in Listing 10.6.2.

After building the network models, the next step is training. In Algorithm 10.2.1 to 
Algorithm 10.5.1, we perform objective function maximization by gradient ascent. 
In tf.keras, we perform loss function minimization by gradient descent. The loss 
function is simply the negative of the objective function being maximized. The 
gradient descent is the negative of gradient ascent. Listing 10.6.3 shows the logp 
and value loss functions.
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We can take advantage of the common structure of the loss functions to unify 
the loss functions in Algorithm 10.2.1 to Algorithm 10.5.1. The performance and 
value gradients differ only in their constant factors. All performance gradients 
have the common term, 𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) . This is represented by y_pred in the 
policy log probability loss function, logp_loss(). The factor to the common term, 
𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙 𝜋𝜋 (𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃) , depends on which algorithm and is implemented as y_true. Table 
10.6.1 shows the values of y_true. The remaining term is the weighted gradient 
of entropy, 𝛽𝛽𝛽𝛽𝜽𝜽𝐻𝐻(𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝜃𝜃)) . This is implemented as the product of beta and 
entropy in the logp_loss() function. Only A2C uses this term, so, by default, 
self.beta=0.0. For A2C, self.beta=0.9.

Listing 10.6.3: policygradient-car-10.1.1.py

Loss functions of the logp and value networks:

    def logp_loss(self, entropy, beta=0.0):
        """logp loss, the 3rd and 4th variables 
            (entropy and beta) are needed by A2C 
            so we have a different loss function structure
        Arguments:
            entropy (tensor): Entropy loss
            beta (float): Entropy loss weight
        """
        def loss(y_true, y_pred):
            return -K.mean((y_pred * y_true) \
                    + (beta * entropy), axis=-1)

        return loss

    def value_loss(self, y_true, y_pred):
        """Typical loss function structure that accepts 
            2 arguments only
           this will be used by value loss of all methods 
            except A2C
        Arguments:
            y_true (tensor): value ground truth
            y_pred (tensor): value prediction
        """
        return -K.mean(y_pred * y_true, axis=-1)
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Algorithm y_true of logp_loss y_true of value_loss
10.2.1 REINFORCE 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 Not applicable

10.3.1 REINFORCE with 
baseline

𝛾𝛾𝑡𝑡𝛿𝛿 𝛾𝛾𝑡𝑡𝛿𝛿 

10.4.1 Actor-Critic 𝛾𝛾𝑡𝑡𝛿𝛿 𝛾𝛾𝑡𝑡𝛿𝛿 

10.5.1 A2C (𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜽𝜽𝑣𝑣)) 𝑅𝑅𝑡𝑡 

Table 10.6.1: y_true value of logp_loss and value_loss

The code implementation for computing y_true in Table 10.6.1 is shown in 
Table 10.6.2:

Algorithm y_true formula y_true in Keras
10.2.1 REINFORCE 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡 reward * discount_factor

10.3.1 REINFORCE 
with baseline

𝛾𝛾𝑡𝑡𝛿𝛿 (reward - self.value(state)[0]) * 
discount_factor

10.4.1 Actor-Critic 𝛾𝛾𝑡𝑡𝛿𝛿 (reward - self.value(state)[0]
+gamma*next_value) * discount_ 
factor

10.5.1 A2C (𝑅𝑅𝑡𝑡 − 𝑉𝑉(𝑠𝑠, 𝜃𝜃𝑣𝑣)) 

and 𝑅𝑅𝑡𝑡 

(reward - self.value(state)[0])
and reward

Table 10.6.2: y_true value in Table 10.6.1

Similarly, the value loss functions of Algorithm 10.3.1 and Algorithm 10.4.1 have 
the same structure. The value loss functions are implemented in tf.keras as 
value_loss(), as shown in Listing 10.6.3. The common gradient factor 𝛻𝛻𝜃𝜃𝑣𝑣𝑉𝑉(𝑠𝑠𝑡𝑡, 𝜃𝜃𝑣𝑣)  
is represented by the tensor, y_pred. The remaining factor is represented by y_true. 
The y_true values are also shown in Table 10.6.1. REINFORCE does not use a 
value function. A2C uses the MSE loss function to learn the value function. In A2C, 
y_true represents the target value or ground truth.

With all the network models and loss functions in place, the last part is the training 
strategy, which is different for each algorithm. The training algorithm per policy 
gradient method has been discussed in Listing 10.2.1 to Listing 10.5.1. Algorithm 
10.2.1, Algorithm 10.3.1, and Algorithm 10.5.1 wait for a complete episode to finish 
before training, so it runs both train_by_episode() and train(). The complete 
episode is saved in self.memory. Actor-Critic Algorithm 10.4.1 trains per step 
and only runs train().
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Listing 10.6.4 shows how one episode unfolds when the agent executes and trains 
the policy and value models. The for loop is executed for 1,000 episodes. An 
episode terminates upon reaching 1,000 steps or when the car touches the flag. 
The agent executes the action predicted by the policy at every step. After each 
episode or step, the training routine is called.

Listing 10.6.4: policygradient-car-10.1.1.py

    # sampling and fitting
    for episode in range(episode_count):
        state = env.reset()
        # state is car [position, speed]
        state = np.reshape(state, [1, state_dim])
        # reset all variables and memory before the start of
        # every episode
        step = 0
        total_reward = 0
        done = False
        agent.reset_memory()
        while not done:
            # [min, max] action = [-1.0, 1.0]
            # for baseline, random choice of action will not move
            # the car pass the flag pole
            if args.random:
                action = env.action_space.sample()
            else:
                action = agent.act(state)
            env.render()
            # after executing the action, get s', r, done
            next_state, reward, done, _ = env.step(action)
            next_state = np.reshape(next_state, [1, state_dim])
            # save the experience unit in memory for training
            # Actor-Critic does not need this but we keep it anyway.
            item = [step, state, next_state, reward, done]
            agent.remember(item)

            if args.actor_critic and train:
                # only actor-critic performs online training
                # train at every step as it happens
                agent.train(item, gamma=0.99)
            elif not args.random and done and train:
                # for REINFORCE, REINFORCE with baseline, and A2C
                # we wait for the completion of the episode before 
                # training the network(s)
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                # last value as used by A2C
                if args.a2c:
                    v = 0 if reward > 0 else agent.value(next_state)
[0]
                    agent.train_by_episode(last_value=v)
                else:
                    agent.train_by_episode()

            # accumulate reward
            total_reward += reward
            # next state is the new state
            state = next_state
            step += 1

During training, we collected data to determine the performance of each policy 
gradient algorithm. In the next section, we summarize the results.

7. Performance evaluation of policy 
gradient methods
The 4 policy gradients methods were evaluated by training the agent for 1,000 
episodes. We define 1 training session as 1,000 episodes of training. The first 
performance metric is measured by accumulating the number of times the car 
reached the flag in 1,000 episodes.

In this metric, A2C reached the flag the greatest number of times, followed by 
REINFORCE with baseline, Actor-Critic, and REINFORCE. The use of baseline or 
critic accelerates the learning. Note that these are training sessions, where the agent 
is continuously improving its performance. There were cases in the experiments 
where the agent's performance did not improve with time.

The second performance metric is based on the requirement that 
MountainCarContinuous-v0 is considered solved if the total reward per episode is at least 
90.0. From the 5 training sessions per method, we selected 1 training session with the 
highest total reward for the last 100 episodes (episodes 900 to 999).

Figure 10.7.1 to Figure 10.7.4 show the number of times the mountain car reached 
the flag during the execution of 1,000 episodes.
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Figure 10.7.1: The number of times the mountain car reached the flag using the REINFORCE method

Figure 10.7.2: The number of times the mountain car reached the flag using the REINFORCE with baseline 
method
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Figure 10.7.3: The number of times the mountain car reached the flag using the Actor-Critic method

Figure 10.7.4: The number of times the mountain car reached the flag using the A2C method
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Figure 10.7.5 to Figure 10.7.8 show the total rewards for 1,000 episodes.

Figure 10.7.5: Total rewards received per episode using the REINFORCE method

Figure 10.7.6: Total rewards received per episode using the REINFORCE with baseline method.
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Figure 10.7.7: Total rewards received per episode using the Actor-Critic method

Figure 10.7.8: The total rewards received per episode using the A2C method

REINFORCE with baseline is the only method that was able to consistently achieve 
a total reward of about 90 within 1,000 episodes of training. A2C has the second-
best performance, but could not consistently reach at least 90 for the total rewards.
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In the experiments conducted, we used the same learning rate, 1e-3, for log 
probability and value network optimization. The discount factor is set to 0.99, 
except for A2C, which is easier to train at a discount factor of 0.95.

The reader is encouraged to run the trained network by executing:

python3 policygradient-car-10.1.1.py

--encoder_weights=encoder_weights.h5 --actor_weights=actor_weights.h5

Table 10.7.1 shows other modes of running policygradient-car-10.1.1.py. 
The weights file (that is, *.h5) can be replaced by your own pretrained weights file. 
Please consult the code to see the other potential options.

Purpose Run

Train REINFORCE from 
scratch

python3 policygradient-car-10.1.1.py

Train REINFORCE with 
baseline from scratch

python3 policygradient-car-10.1.1.py -b

Train Actor-Critic from 
scratch

python3 policygradient-car-10.1.1.py -a

Train A2C from scratch python3 policygradient-car-10.1.1.py -c

Train REINFORCE from 
previously saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5 --train

Train REINFORCE with 
baseline from previously 
saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5

--value-weights=value_weights.h5 -b --train

Train Actor-Critic from 
previously saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5

--value-weights=value_weights.h5 -a --train

Train A2C from 
previously saved weights

python3 policygradient-car-10.1.1.py

--encoder-weights=encoder_weights.h5

--actor-weights=actor_weights.h5

--value-weights=value_weights.h5 -c --train

Table 10.7.1: Different options in running policygradient-car-10.1.1.py
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As a final note, our implementation of the policy gradient methods in tf.keras 
has some limitations. For example, training the actor model requires the action 
to be resampled. The action is first sampled and applied to the environment to 
observe the reward and next state. Then, another sample is taken to train the 
log probability model. The second sample is not necessarily the same as the first 
one, but the reward that is used for training comes from the first sampled action, 
which can introduce stochastic error in the computation of gradients.

8. Conclusion
In this chapter, we've covered the policy gradient methods. Starting with the policy 
gradient theorem, we formulated four methods to train the policy network. The 
four methods, REINFORCE, REINFORCE with baseline, Actor-Critic, and A2C 
algorithms, were discussed in detail. We explored how the four methods could 
be implemented in Keras. We then validated the algorithms by examining the 
number of times the agent successfully reached its goal and in terms of the total 
rewards received per episode.

Similar to the deep Q-network [2] that we discussed in the previous chapter, there 
are several improvements that can be done on the fundamental policy gradient 
algorithms. For example, the most prominent one is the A3C [3], which is a 
multithreaded version of A2C. This enables the agent to get exposed to different 
experiences simultaneously and to optimize the policy and value networks 
asynchronously. However, in the experiments conducted by OpenAI, https://
blog.openai.com/baselines-acktr-a2c/, there is no strong advantage of A3C 
over A2C since the former could not take advantage of the strong GPUs available 
nowadays.

In the next two chapters, we will embark on a different area – object detection and 
semantic segmentation. Object detection enables an agent to identify and localize 
objects in a given image. Semantic segmentation identifies pixel regions in a given 
image based on object category.

https://blog.openai.com/baselines-acktr-a2c/
https://blog.openai.com/baselines-acktr-a2c/
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11
Object Detection

Object detection is one of the most important applications of computer vision. Object 
detection is the task of simultaneous localization and identification of an object that 
is present in an image. For autonomous vehicles to safely navigate the streets, the 
algorithm must detect the presence of pedestrians, roads, vehicles, traffic lights, 
signs, and unexpected obstacles. In security, the presence of an intruder can be 
used to trigger an alarm or inform the appropriate authorities.

Though important, object detection has been a long-standing problem in computer 
vision. Many algorithms have been proposed but are generally slow, with low 
precision and recall. Similar to what AlexNet [1] has achieved in the ImageNet large-
scale image classification problem, deep learning has significantly advanced the area 
of object detection. State-of-the-art object detection methods can now run in real time 
and have a much higher precision and recall.

In this chapter, we focus on real-time object detection. In particular, we discuss 
the concept and implementation of single-shot detection (SSD)[2] in tf.keras. 
Compared to other deep learning detection algorithms, SSD achieves real-time 
detection speed on modern GPUs without significant degradation in performance. 
SSD is also easy to train end-to-end.

In summary, the goal of this chapter is to present:

• The concept of object detection
• The concept of multi-scale object detection
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• SSD as a multi-scale object detection algorithm
• The implementation of SSD in tf.keras

We'll begin by introducing the concept of object detection.

1. Object detection
In object detection, the objective is to localize and identify an object in an image. 
Figure 11.1.1 shows object detection where the target is a Soda can. Localization 
means that the bounding box of the object must be estimated. Using upper left 
corner pixel and lower right corner pixel coordinates is a common convention that 
is used to describe a bounding box. In Figure 11.1.1, the upper left corner pixel has 
coordinates. (xmin,ymin), while the lower right corner pixel has coordinates (xmax,ymax).
The pixel coordinate system has the origin (0,0) at the upper left corner pixel of the 
entire image.

While performing localization, detection must also identify the object. Identification 
is the classic recognition or classification task in computer vision. At the minimum, 
object detection must identify if a bounding box belongs to a known object or to the 
background. An object detection network can be trained to detect one specific object 
only, like the Soda can in Figure 11.1.1. Everything else is considered background, 
and there is no need to show its bounding box. Multiple instances of the same object 
such as two or more Soda cans can also be detected by the same network, as shown 
in Figure 11.1.2.

Figure 11.1.1 Object detection is illustrated as the process of localizing and identifying an object in an image.
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Figure 11.1.2 Multiple instances of the same object be detected by the same  
network trained to detect one object instance.

If multiple objects in the scene are present, such as in Figure 11.1.3, the object 
detection method can only identify one object it was trained on. The other two 
objects will be classified as background and no bounding box will be assigned.

Figure 11.1.3 If the object detection is trained on detecting Soda cans only,  
it will ignore the other two objects in the image.
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However, if the network is retrained to detect the three objects: 1) Soda can, 2) Juice 
can, and 3) Bottled water, each will be localized and recognized simultaneously, 
as shown in Figure 11.1.4.

Figure 11.1.4 The object detection network can be retrained to detect all three objects even  
if the background is cluttered or the illumination is changed.

A good object detector must be robust in real-world environments. Figure 11.1.4 
shows a good object detection network can localize and identify known objects even 
if the background is cluttered or even in low-light conditions. Other factors that an 
object detector must be robust against are object transformation (rotation and/or 
translation), surface reflection, texture variation, and noise.

In summary, the objective of object detection is to simultaneously predict the 
following for each recognizable object in the image:

• ycls or the category or class in the form of a one-hot vector
• ybox = ((xmin,ymin),(xmax,ymax)) or the bounding box coordinates in the form of 

pixel coordinates

With the basic concepts of object detection explained, we can begin to discuss some of 
the specific mechanics of object detection. We'll begin by introducing anchor boxes.

2. Anchor boxes
From the discussion in the previous section, we learned that object detection must 
predict both the bounding box region and the category of the object inside it. 
Suppose for the meantime our focus is on bounding box coordinates estimation. 
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How can a network predict the coordinates (xmin,ymin) and (xmax,ymax)? A network can 
make an initial guess such as (0,0) and (w, h) corresponding to the upper left corner 
pixel coordinates and the lower right corner pixel coordinates of the image. w is the 
image width, while h is the image height. Then, the network iteratively corrects the 
estimates by performing regression on the ground truth bounding box coordinates.

Estimating bounding box coordinates using raw pixels is not optimal due to 
high variance of possible pixel values. Instead of raw pixels, SSD minimizes pixel 
error values between the ground truth bounding box and predicted bounding 
box coordinates. For this example, the pixel error values are (xmin, ymin) and  
(xmax – w, ymax – h). These values are called offsets.

To help the network figure out the correct bounding box coordinates, the image 
is divided into regions. Each region is called an anchor box. Then, the network 
estimates the offsets with respect to each anchor box. This results in a prediction 
that is closer to the ground truth.

For example, as shown in Figure 11.2.1, a common image size of 640 x 480 is divided 
into 2 x 1 regions resulting to two anchor boxes. Unlike the size of 2 x 2, a 2 x 1 
division creates approximately square anchor boxes. In the first anchor box, the new 
offsets are (xmin, ymin) and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤 2⁄ , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − ℎ) , which are smaller compared to the 
pixel error values with no anchor boxes. The offsets for the second anchor box are 
also smaller.

In Figure 11.2.2, the image is further divided. This time, the anchor boxes are 3 x 2. 
The second anchor box offsets are (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤 3⁄ , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)  and (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 2𝑤𝑤 3⁄ , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − ℎ 2⁄ ) ,  
the smallest so far. However, if the image is further divided into 5 x 4, the offsets 
start to increase again. The main idea is that during the process of creating regions 
of various dimensions, an optimal anchor box size that is nearest to the ground 
truth bounding box will emerge. The use of multi-scale anchor boxes to effectively 
detect objects of different sizes underpins the concept of multi-scale object detection 
algorithms.

Finding an optimal anchor box is not zero cost. In particular, there are extraneous 
anchor boxes with offsets that are worse than using the entire image. In such 
cases, SSD proposes that these anchor boxes should not contribute to the overall 
optimization process and must be suppressed. In the following sections, the 
algorithm for excluding non-optimal anchor boxes will be discussed with 
more details.

So far, we already have three sets of anchor boxes.
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The first one creates a 2 x 1 grid of anchor boxes each with dimensions (𝑤𝑤 2⁄ , ℎ) .

The second one creates a 3 x 2 grid of anchor boxes each with dimensions (𝑤𝑤 3⁄ , ℎ 2⁄ ) .

The third one creates a 5 x 4 grid of anchor boxes each with dimensions (𝑤𝑤 5⁄ , ℎ 4⁄ ) .

How many more sets anchor boxes do we need? It depends on the dimensions of the 
image and the dimensions of the smallest bounding box of the object. For the 640 x 
480 image used in this example, other anchor boxes are:

10 x 8 grid of anchor boxes each with dimensions (𝑤𝑤 10⁄ , ℎ 8⁄ ) 

20 x 15 grid of anchor boxes each with dimensions (𝑤𝑤 20⁄ , ℎ 15⁄ ) 

40 x 30 grid of anchor boxes each with dimensions (𝑤𝑤 40⁄ , ℎ 30⁄ ) 

For the 640 x 480 image with 40 x 30 grid of anchor boxes, the smallest anchor box 
covers a 16 x 16 pixels patch of the input image, also known as the receptive field. So 
far, the total number of bounding boxes is 1608. From the smallest, the scaling factor 
for all sizes can be summarized as:

𝑠𝑠 =  [(1
2 , 1) , (1

3 , 1
2) , (1

5 , 1
4) , ( 1

10 , 1
8) , ( 1

20 , 1
15) , ( 1

40 , 1
30)]     (Equation 11.2.1)

How can the anchor boxes be further improved? The offsets may be reduced if we 
allow the anchor boxes to have different aspect ratios. The centroid of each resized 
anchor box is the same as the original anchor box. Other than the aspect ratio of 1, 
SSD [2] includes additional aspect ratios:

    (Equation 11.2.2)

For each aspect ratio, 𝑎𝑎𝑖𝑖 , the corresponding anchor box dimensions are:

(𝑤𝑤𝑖𝑖,   ℎ𝑖𝑖) = (𝑤𝑤𝑤𝑤𝑥𝑥𝑥𝑥√𝑎𝑎𝑖𝑖,   ℎ𝑤𝑤𝑦𝑦𝑥𝑥
1

√𝑎𝑎𝑖𝑖
)     (Equation 11.2.3)

(sxj, syj) is the j – th scaling factor from Equation 11.2.1.

Using five different aspect ratios per anchor box, the total number of anchor boxes 
increases to 1,608 x 5 = 8,040. Figure 11.2.3 shows the anchor boxes for the case where 

(𝑠𝑠𝑥𝑥4,   𝑠𝑠𝑦𝑦4)  = (
1
3 ,

1
2)  and 𝑎𝑎𝑖𝑖∈{0,1,3} = 1, 2, 12 .

Note that to achieve a certain aspect ratio, we do not deform the anchor box. Instead, 
the anchor box width and height are adjusted.

For 𝑎𝑎0 = 1 , SSD recommends an additional anchor box with dimensions:
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(𝑤𝑤5,   ℎ5) = (𝑤𝑤√𝑠𝑠𝑗𝑗𝑠𝑠𝑗𝑗+1,   ℎ√𝑠𝑠𝑗𝑗𝑠𝑠𝑗𝑗+1)     (Equation 11.2.4)

There are now six anchor boxes per region. Five are due to five aspect ratios and 
there's an additional one for an aspect ratio of 1. The new total number of anchor 
boxes increases to 9,648.

Figure 11.2.1 Dividing the image into regions, also known as anchor boxes,  
enables the network to have a prediction that is closer to the ground truth.

Figure 11.2.2 Using smaller anchor boxes further reduces the offsets.
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Figure 11.2.3 Anchor boxes for one region with scaling factor (𝑠𝑠𝑥𝑥4,   𝑠𝑠𝑦𝑦4) = (1
3 , 1

2)  and aspect  

ratios 𝑎𝑎𝑖𝑖∈{0,1,3} = 1, 2, 12 .

Listing 11.2.1 below shows the anchor boxes generation function anchor_boxes(). 
Given the input image shape (image_shape), aspect ratios (aspect_ratios), and 
scaling factors (sizes), the different anchor box sizes are computed and stored in 
a list named width_height. From the given feature map shape, (feature_shape) 
or (hfmap,wfmap), and width_height, a tensor of anchor boxes is generated with 
dimensions (hfmap,wfmap,nboxes,4). nboxes or the number of anchor boxes per feature map 
point is computed based on the aspect ratios and one additional size for the aspect 
ratio equal to 1.

Listing 11.2.1: layer_utils.py function for the anchor box generation function:

def anchor_boxes(feature_shape,
                 image_shape,
                 index=0,
                 n_layers=4,
                 aspect_ratios=(1, 2, 0.5)):
    """ Compute the anchor boxes for a given feature map.
    Anchor boxes are in minmax format

    Arguments:
        feature_shape (list): Feature map shape
        image_shape (list): Image size shape
        index (int): Indicates which of ssd head layers
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            are we referring to
        n_layers (int): Number of ssd head layers

    Returns:
        boxes (tensor): Anchor boxes per feature map
    """

    # anchor box sizes given an index of layer in ssd head
    sizes = anchor_sizes(n_layers)[index]
    # number of anchor boxes per feature map pt
    n_boxes = len(aspect_ratios) + 1
    # ignore number of channels (last)
    image_height, image_width, _ = image_shape
    # ignore number of feature maps (last)
    feature_height, feature_width, _ = feature_shape

    # normalized width and height
    # sizes[0] is scale size, sizes[1] is sqrt(scale*(scale+1))
    norm_height = image_height * sizes[0]
    norm_width = image_width * sizes[0]

    # list of anchor boxes (width, height)
    width_height = []
    # anchor box by aspect ratio on resized image dims
    # Equation 11.2.3
    for ar in aspect_ratios:
        box_width = norm_width * np.sqrt(ar)
        box_height = norm_height / np.sqrt(ar)
        width_height.append((box_width, box_height))
    # multiply anchor box dim by size[1] for aspect_ratio = 1
    # Equation 11.2.4
    box_width = image_width * sizes[1]
    box_height = image_height * sizes[1]
    width_height.append((box_width, box_height))

    # now an array of (width, height)
    width_height = np.array(width_height)

    # dimensions of each receptive field in pixels
    grid_width = image_width / feature_width
    grid_height = image_height / feature_height

    # compute center of receptive field per feature pt
    # (cx, cy) format 
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    # starting at midpoint of 1st receptive field
    start = grid_width * 0.5
    # ending at midpoint of last receptive field
    end = (feature_width - 0.5) * grid_width
    cx = np.linspace(start, end, feature_width)

    start = grid_height * 0.5
    end = (feature_height - 0.5) * grid_height
    cy = np.linspace(start, end, feature_height)

    # grid of box centers
    cx_grid, cy_grid = np.meshgrid(cx, cy)

    # for np.tile()
    cx_grid = np.expand_dims(cx_grid, -1)
    cy_grid = np.expand_dims(cy_grid, -1)

    # tensor = (feature_map_height, feature_map_width, n_boxes, 4)
    # aligned with image tensor (height, width, channels)
    # last dimension = (cx, cy, w, h)
    boxes = np.zeros((feature_height, feature_width, n_boxes, 4))

    # (cx, cy)
    boxes[..., 0] = np.tile(cx_grid, (1, 1, n_boxes))
    boxes[..., 1] = np.tile(cy_grid, (1, 1, n_boxes)) 

    # (w, h)
    boxes[..., 2] = width_height[:, 0]
    boxes[..., 3] = width_height[:, 1]

    # convert (cx, cy, w, h) to (xmin, xmax, ymin, ymax)
    # prepend one dimension to boxes 
    # to account for the batch size = 1
    boxes = centroid2minmax(boxes)
    boxes = np.expand_dims(boxes, axis=0)
    return boxes

def centroid2minmax(boxes):
    """Centroid to minmax format 
    (cx, cy, w, h) to (xmin, xmax, ymin, ymax)
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    Arguments:
        boxes (tensor): Batch of boxes in centroid format

    Returns:
        minmax (tensor): Batch of boxes in minmax format
    """
    minmax= np.copy(boxes).astype(np.float)
    minmax[..., 0] = boxes[..., 0] - (0.5 * boxes[..., 2])
    minmax[..., 1] = boxes[..., 0] + (0.5 * boxes[..., 2])
    minmax[..., 2] = boxes[..., 1] - (0.5 * boxes[..., 3])
    minmax[..., 3] = boxes[..., 1] + (0.5 * boxes[..., 3])
    return minmax

We've covered how anchor boxes assist object detections, and how they can be 
generated. In the next section, we'll look at a special kind of anchor box: the ground 
truth anchor box. Given an object in an image, it must be assigned to one of the many 
anchor boxes. This is called the ground truth anchor box.

3. Ground truth anchor boxes
From Figure 11.2.3, it appears that given an object bounding box, there are many 
ground truth anchor boxes that can be assigned to an object. In fact, just for 
the illustration in Figure 11.2.3, there are already 3 anchor boxes. If all anchor 
boxes per region are considered, there are 6 x 6 = 36 ground truth boxes just for 

(𝑠𝑠𝑥𝑥4,   𝑠𝑠𝑦𝑦4) = (1
3 , 1

2) . Using all 9,648 anchor boxes is obviously excessive. Only one of 

all anchor boxes should be associated with the ground truth bounding box. All other 
anchor boxes are background anchor boxes. What is the criterion for choosing which 
one should be considered the ground truth anchor box for an object in the image?

The basis for choosing the anchor box is called Intersection over Union (IoU). IoU 
is also known as Jaccard index. IoU is illustrated in Figure 11.3.1. Given 2 regions, an 
object bounding box, B0 and an anchor box, A1, IoU is equal to the area of overlap 
divided by the area of the combined regions:

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐴𝐴 ∩ 𝐵𝐵
𝐴𝐴 ∪ 𝐵𝐵     (Equation 11.3.1)
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Figure 11.3.1 IoU is equal to Left) the area of intersection divided by Right)  
the area of union between a candidate anchor box, A1, and the object bounding box, B0.

We removed the subscripts for generality of the equation. For a given object 
bounding box, Bi, and for all anchor boxes, Aj, the ground truth anchor box, Aj(gt), 
is the one with the maximum IoU:

𝐴𝐴𝑗𝑗(𝑔𝑔𝑔𝑔) = max
𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼(𝐵𝐵𝑖𝑖, 𝐴𝐴𝑗𝑗)     (Equation 11.3.2)

Please note that for each object there is only one ground truth anchor box based on 
Equation 11.3.2. Furthermore, the maximization must be done for all anchor boxes 
in all scaling factors and sizes (aspect ratios and additional dimensions). In Figure 
11.3.1, only one scaling factor-size is shown out of the 9,648 anchor boxes.

To illustrate Equation 11.3.2, suppose anchor boxes with an aspect ratio of 1 in 
Figure 11.3.1 are considered. For each anchor box, the estimated IoU is shown in 
Table 11.3.1. Since the maximum IoU of bounding box B0 is 0.32 is with anchor box 
A1, A1 is assigned the ground truth bounding box B0. A1 is also known as a positive 
anchor box.

The category and offsets of a positive anchor box are determined with respect to its 
ground truth bounding box. The category of a positive anchor box and its ground 
truth bounding box are the same. Meanwhile, a positive anchor box offsets can be 
computed as equal to the ground truth bounding box coordinates minus its own 
bounding box coordinates.

What happens to the rest of anchor boxes, A0, A2, A3, A4, and A5? We can give them 
a second chance by finding which bounding box they have IoU greater than a certain 
threshold.
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For example, if the threshold is 0.5, then there is no ground truth bounding box that 
can be assigned to any of them. If the threshold is lowered to 0.25, then A4 is also 
assigned the ground truth bounding box B0 since its IoU is 0.30. A4 is added to the 
list of positive anchor boxes. In this book, A4 is called an extra positive anchor box. 
The remaining anchor boxes with no ground bounding boxes are called negative 
anchor boxes.

In the following section on loss functions, negative anchor boxes do not contribute 
to the offsets loss function.

B0

A0 0
A1 0.32
A2 0
A3 0
A4 0.30
A5 0

Table 11.3.1 IoU for each anchor box, 𝐴𝐴𝑗𝑗∈{0..5} , with object bounding box B0 as shown in Figure 11.3.1.

If another image with 2 objects to be detected is loaded, we look for 2 positive anchor 
boxes with maximum IoU with bounding boxes B0 and B1. Then, we look for extra 
positive anchor boxes that satisfy the minimum IoU criterion with bounding boxes  
B0 and B1.

For simplicity of the discussion, we only consider one anchor box per region. In 
practice, all anchor boxes representing different scaling factor, sizes, and aspect 
ratios should be considered. In the next section, we discuss how to formulate the 
loss functions that will be optimized by the SSD network.

Listing 11.3.1 shows the implementation of get_gt_data() that computes the 
ground truth labels for anchor boxes.

Listing 11.3.1: layer_utils.py

def get_gt_data(iou,
                n_classes=4,
                anchors=None,
                labels=None,
                normalize=False,
                threshold=0.6):
    """Retrieve ground truth class, bbox offset, and mask
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    Arguments:
        iou (tensor): IoU of each bounding box wrt each anchor box
        n_classes (int): Number of object classes
        anchors (tensor): Anchor boxes per feature layer
        labels (list): Ground truth labels
        normalize (bool): If normalization should be applied
        threshold (float): If less than 1.0, anchor boxes>threshold
            are also part of positive anchor boxes

    Returns:
        gt_class, gt_offset, gt_mask (tensor): Ground truth classes,
            offsets, and masks
    """
    # each maxiou_per_get is index of anchor w/ max iou
    # for the given ground truth bounding box
    maxiou_per_gt = np.argmax(iou, axis=0)

    # get extra anchor boxes based on IoU
    if threshold < 1.0:
        iou_gt_thresh = np.argwhere(iou>threshold)
        if iou_gt_thresh.size > 0:
            extra_anchors = iou_gt_thresh[:,0]
            extra_classes = iou_gt_thresh[:,1]
            extra_labels = labels[extra_classes]
            indexes = [maxiou_per_gt, extra_anchors]
            maxiou_per_gt = np.concatenate(indexes,
                                           axis=0)
            labels = np.concatenate([labels, extra_labels],
                                    axis=0)

    # mask generation
    gt_mask = np.zeros((iou.shape[0], 4))
    # only indexes maxiou_per_gt are valid bounding boxes
    gt_mask[maxiou_per_gt] = 1.0

    # class generation
    gt_class = np.zeros((iou.shape[0], n_classes))
    # by default all are background (index 0)
    gt_class[:, 0] = 1
    # but those that belong to maxiou_per_gt are not
    gt_class[maxiou_per_gt, 0] = 0
    # we have to find those column indexes (classes)
    maxiou_col = np.reshape(maxiou_per_gt,
                            (maxiou_per_gt.shape[0], 1))



Chapter 11

[ 383 ]

    label_col = np.reshape(labels[:,4],
                           (labels.shape[0], 1)).astype(int)
    row_col = np.append(maxiou_col, label_col, axis=1)
    # the label of object in maxio_per_gt
    gt_class[row_col[:,0], row_col[:,1]]  = 1.0

    # offsets generation
    gt_offset = np.zeros((iou.shape[0], 4))

    #(cx, cy, w, h) format
    if normalize:
        anchors = minmax2centroid(anchors)
        labels = minmax2centroid(labels)
        # bbox = bounding box
        # ((bbox xcenter - anchor box xcenter)/anchor box width)/.1
        # ((bbox ycenter - anchor box ycenter)/anchor box height)/.1
        # Equation 11.4.8 Chapter 11
        offsets1 = labels[:, 0:2] - anchors[maxiou_per_gt, 0:2]
        offsets1 /= anchors[maxiou_per_gt, 2:4]
        offsets1 /= 0.1

        # log(bbox width / anchor box width) / 0.2
        # log(bbox height / anchor box height) / 0.2
        # Equation 11.4.8 Chapter 11
        offsets2 = np.log(labels[:, 2:4]/anchors[maxiou_per_gt, 2:4])
        offsets2 /= 0.2

        offsets = np.concatenate([offsets1, offsets2], axis=-1)

    # (xmin, xmax, ymin, ymax) format
    else:
        offsets = labels[:, 0:4] - anchors[maxiou_per_gt]

    gt_offset[maxiou_per_gt] = offsets

    return gt_class, gt_offset, gt_mask

def minmax2centroid(boxes):
    """Minmax to centroid format
    (xmin, xmax, ymin, ymax) to (cx, cy, w, h)

    Arguments:
        boxes (tensor): Batch of boxes in minmax format



Object Detection

[ 384 ]

    Returns:
        centroid (tensor): Batch of boxes in centroid format
    """
    centroid = np.copy(boxes).astype(np.float)
    centroid[..., 0] = 0.5 * (boxes[..., 1] - boxes[..., 0])
    centroid[..., 0] += boxes[..., 0]
    centroid[..., 1] = 0.5 * (boxes[..., 3] - boxes[..., 2])
    centroid[..., 1] += boxes[..., 2]
    centroid[..., 2] = boxes[..., 1] - boxes[..., 0]
    centroid[..., 3] = boxes[..., 3] - boxes[..., 2]
    return centroid

maxiou_per_gt = np.argmax(iou, axis=0) implements Equation 11.3.2. 
Extra positive anchor boxes are determined based on a user-defined threshold 
implemented by: iou_gt_thresh = np.argwhere(iou>threshold).

Finding extra positive anchor boxes happens only when the threshold is less than 1.0. 
The indexes of all anchor boxes with ground truth bounding boxes (that is combined 
positive anchor boxes and extra positive anchor boxes) become the basis of the 
ground truth mask:

gt_mask[maxiou_per_gt] = 1.0.

All other anchor boxes (negative anchor boxes) have mask of 0.0 and do not 
contribute in the offsets loss function optimization.

The class of each anchor box, gt_class, is assigned the class of its ground truth 
bounding box. Initially, all anchor boxes are assigned the background class:

    # class generation
    gt_class = np.zeros((iou.shape[0], n_classes))
    # by default all are background (index 0)
    gt_class[:, 0] = 1

Then, the class of each positive anchor box is assigned to its non-background object 
class:

    # but those that belong to maxiou_per_gt are not
    gt_class[maxiou_per_gt, 0] = 0
    # we have to find those column indexes (classes)
    maxiou_col = np.reshape(maxiou_per_gt,
                            (maxiou_per_gt.shape[0], 1))
    label_col = np.reshape(labels[:,4],
                           (labels.shape[0], 1)).astype(int)
    row_col = np.append(maxiou_col, label_col, axis=1)
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    # the label of object in maxio_per_gt
    gt_class[row_col[:,0], row_col[:,1]]  = 1.0

row_col[:,0] are the indexes of positive anchor boxes, while row_col[:,1] are 
indexes of their non-background object class. Note that gt_class is an array of one-
hot vectors. The values are all zero except at the index of the anchor box object. Index 
0 is background, index 1 is the first non-background object, and so on. The last non-
background object has an index equal to n_classes-1.

For example, if anchor box 0 is a negative anchor box and there are 4 object 
categories including the background, then:

gt_class[0] = [1.0, 0.0, 0.0, 0.0]

If anchor box 1 is a positive anchor box and its ground truth bounding box contains 
a Soda can with label 2, then:

gt_class[1] = [0.0, 0.0, 1.0, 0.0]

Lastly, the offsets are simply ground truth bounding box coordinates minus anchor 
box coordinates:

    # (xmin, xmax, ymin, ymax) format

    else:

        offsets = labels[:, 0:4] - anchors[maxiou_per_gt]

Note that we only compute the offsets of positive anchor boxes.

The offsets can be normalized if that option is chosen. Offsets normalization is 
discussed in the next section. We will see that:

    #(cx, cy, w, h) format
    if normalize:
        anchors = minmax2centroid(anchors)
        labels = minmax2centroid(labels)
        # bbox = bounding box
        # ((bbox xcenter - anchor box xcenter)/anchor box width)/.1
        # ((bbox ycenter - anchor box ycenter)/anchor box height)/.1
        # Equation 11.4.8 
        offsets1 = labels[:, 0:2] - anchors[maxiou_per_gt, 0:2]
        offsets1 /= anchors[maxiou_per_gt, 2:4]
        offsets1 /= 0.1

        # log(bbox width / anchor box width) / 0.2
        # log(bbox height / anchor box height) / 0.2
        # Equation 11.4.8 
        offsets2 = np.log(labels[:, 2:4]/anchors[maxiou_per_gt, 2:4])
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        offsets2 /= 0.2

        offsets = np.concatenate([offsets1, offsets2], axis=-1)

is simply the implementation of Equation 11.4.8 that is discussed in the next section 
and shown here for convenience:

𝑦𝑦𝑔𝑔𝑔𝑔 = (
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑏𝑏

,
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

ℎ𝑎𝑎
𝜎𝜎𝑏𝑏

,
log𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑤𝑤

,
log ℎ𝑏𝑏ℎ𝑎𝑎
𝜎𝜎ℎ

)     (Equation 11.4.8)

Now that we've gained an understanding of the role of ground truth anchor boxes, 
we will move on to another key component in object detection: loss functions.

4. Loss functions
In SSD, there are thousands of anchor boxes. As discussed earlier in this chapter, the 
goal of object detection is to predict both the category and offsets of each anchor box. 
We can use the following loss functions for each prediction:

• ℒ𝑐𝑐𝑐𝑐𝑐𝑐  - Categorical cross-entropy loss for ycls

• ℒ𝑜𝑜𝑜𝑜𝑜𝑜  - L1 or L2 for yoff. Note that only positive anchor boxes contribute to 
ℒ𝑜𝑜𝑜𝑜𝑜𝑜  L1 is also known as mean absolute error (MAE) loss, while L2 is also 
known as mean squared error (MSE) loss.

The total loss function is:

ℒ =  ℒ𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑐𝑐𝑐𝑐𝑐𝑐     (Equation 11.4.1)

For each anchor box, the network predicts the following:

• ycls or the category or class in the form of a one-hot vector
• yoff = ((xomin,yomin),(xomax,yomax)) or the offsets in the form of pixel coordinates 

relative to anchor box.

For computational convenience, the offsets are better expressed in the form:

yoff = ((xomin,yomin),(xomax,yomax))    (Equation 11.4.2)
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SSD is a supervised object detection algorithm. The following ground truth values 
are available:

• ylabel or the class label of each object to detect
• ygt = (xgmin,xgmax,ygmin,ygmax) or the ground truth offsets which are computed as:

ygt = (xbmin – xamin, xbmax – xamax, ybmin – yamin, ybmax – yamax)    (Equation 11.4.3)

In other words, the ground truth offsets are computed as the ground truth offset of 
the object bounding box relative to anchor box. The minor tweak in the subscript of 
ybox is for clarity. As discussed in the previous section, the ground truth values are 
computed by get_gt_data() function.

However, SSD does not recommend to directly predict the raw pixel error values yoff. 
Instead, the normalized offset values are used. The ground truth bounding box and 
anchor box coordinates are first expressed in centroid-dimensions format:

𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = ((𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), (𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)) → (𝑐𝑐𝑏𝑏𝑏𝑏, 𝑐𝑐𝑏𝑏𝑏𝑏,𝑤𝑤𝑏𝑏, ℎ𝑏𝑏) 

𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜 = ((𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), (𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)) → (𝑐𝑐𝑎𝑎𝑎𝑎, 𝑐𝑐𝑎𝑎𝑎𝑎,𝑤𝑤𝑎𝑎, ℎ𝑎𝑎)     (Equation 11.4.4)

where:

(𝑐𝑐𝑏𝑏𝑏𝑏, 𝑐𝑐𝑏𝑏𝑏𝑏) = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 +
𝑥𝑥𝑚𝑚𝑚𝑚𝑏𝑏 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 +
𝑦𝑦𝑚𝑚𝑚𝑚𝑏𝑏 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

2 )     (Equation 11.4.5)

is the coordinate of the center of bounding box and:

(wb, hb) = (xmax – xmin, ymax – ymin)      (Equation 11.4.6)

corresponds to width and height respectively. The anchor box follows the same 
convention. The normalized ground truth offsets are expressed as:

𝑦𝑦𝑔𝑔𝑔𝑔 = (𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏
𝑤𝑤𝑎𝑎

,
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

ℎ𝑎𝑎
, log𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎
, log ℎ𝑏𝑏ℎ𝑎𝑎

)     (Equation 11.4.7)

Generally, the values of the elements of ygt are small, ||ygt|| << 1.0. Small gradients 
can make it more difficult for the network training to converge. 
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To alleviate the problem, each element is divided by its estimated standard 
deviation. The resulting ground truth offsets:

𝑦𝑦𝑔𝑔𝑔𝑔 = (
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑏𝑏

,
𝑐𝑐𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑎𝑎𝑏𝑏

ℎ𝑎𝑎
𝜎𝜎𝑏𝑏

,
log𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎
𝜎𝜎𝑤𝑤

,
log ℎ𝑏𝑏ℎ𝑎𝑎
𝜎𝜎ℎ

)     (Equation 11.4.8)

The recommended values are: 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 0.1  and 𝜎𝜎𝑤𝑤 = 𝜎𝜎ℎ = 0.2 . In other words, the 
expected range of pixel error along x and y axes is ±10% , while for width and height 
it is ±20% . These values are purely arbitrary.

Listing 11.4.1: loss.py L1 and smooth L1 loss functions

from tensorflow.keras.losses import Huber
def mask_offset(y_true, y_pred): 
    """Pre-process ground truth and prediction data"""
    # 1st 4 are offsets
    offset = y_true[..., 0:4]
    # last 4 are mask
    mask = y_true[..., 4:8]
    # pred is actually duplicated for alignment
    # either we get the 1st or last 4 offset pred
    # and apply the mask
    pred = y_pred[..., 0:4]
    offset *= mask 
    pred *= mask 
    return offset, pred

        
def l1_loss(y_true, y_pred):
    """MAE or L1 loss
    """ 
    offset, pred = mask_offset(y_true, y_pred)
    # we can use L1
    return K.mean(K.abs(pred - offset), axis=-1)

    
def smooth_l1_loss(y_true, y_pred):
    """Smooth L1 loss using tensorflow Huber loss
    """
    offset, pred = mask_offset(y_true, y_pred)
    # Huber loss as approx of smooth L1
    return Huber()(offset, pred)
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Furthermore, instead of L1 loss for yoff, SSD was inspired by Fast-RCNN [3] to use 
smooth L1:

ℒ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿1𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠ℎ(𝑢𝑢) = {
(𝜎𝜎𝑢𝑢)2

2 𝑖𝑖𝑖𝑖 |𝑢𝑢| < 1
𝜎𝜎2

|𝑢𝑢| − 1
2𝜎𝜎2 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

     (Equation 11.4.9)

where 𝑢𝑢  represents each element in the error between ground truth and prediction:

𝑢𝑢 = 𝑦𝑦𝑔𝑔𝑔𝑔 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝     (Equation 11.4.10)

Smooth L1 is more robust compared to L1 and less sensitive to outliers. In SSD, 
𝜎𝜎 = 1 . As 𝜎𝜎 → ∞ , smooth L1 approaches L1. Both L1 and smooth L1 loss functions 
are shown in Listing 11.4.1. The mask_offset() method ensures that the offsets are 
computed on predictions with ground truth bounding boxes only. The smooth L1 
function is the same as Huber loss when 𝜎𝜎 = 1  [8].

As a further improvement to the loss functions, RetinaNet [3] recommends that the 
categorical cross-entropy function for ycls, CE, be replaced by focal loss, FL:

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶 = −∑ 𝑦𝑦𝑖𝑖 log𝑝𝑝𝑖𝑖
𝑖𝑖

     (Equation 11.4.11)

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝐹𝐹 = −𝛼𝛼∑ 𝑦𝑦𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝛾𝛾 log𝑝𝑝𝑖𝑖
𝑖𝑖

     (Equation 11.4.12)

The difference is the extra factor, 𝛼𝛼(1 − 𝑝𝑝𝑖𝑖)𝛾𝛾 . In RetinaNet, object detection works 
best when 𝛾𝛾 = 2  and 𝛼𝛼 = 0.25 . Focal loss is implemented in Listing 11.4.2.

Listing 11.4.2: loss.py Focal loss

def focal_loss_categorical(y_true, y_pred):
    """Categorical cross-entropy focal loss"""
    gamma = 2.0
    alpha = 0.25

    # scale to ensure sum of prob is 1.0
    y_pred /= K.sum(y_pred, axis=-1, keepdims=True)

    # clip the prediction value to prevent NaN and Inf
    epsilon = K.epsilon()
    y_pred = K.clip(y_pred, epsilon, 1. - epsilon)

    # calculate cross entropy
    cross_entropy = -y_true * K.log(y_pred)
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    # calculate focal loss
    weight = alpha * K.pow(1 - y_pred, gamma)
    cross_entropy *= weight

    return K.sum(cross_entropy, axis=-1)

The motivation behind focal loss is that if we examine an image, the majority of the 
anchor boxes should be classified as background or negative anchor boxes. Only 
few positive anchor boxes are good candidates to represent the target object. The 
major contributors to cross-entropy loss are the negative anchor boxes. Thus, the 
contribution of positive anchor boxes during optimization is overpowered by the 
contribution of negative anchor boxes. This phenomenon is also known as class 
imbalance, where one or few classes dominate the rest. For additional details, Lin 
et al. [4] discuss class imbalance in the context of object detection.

With focal loss, we are confident early on during optimization that negative anchors 
boxes belong to background. Therefore, the term (1 − 𝑝𝑝𝑖𝑖)𝛾𝛾  reduces the contribution 
of negative anchor boxes since 𝑝𝑝𝑖𝑖 → 1.0 . For positive anchor boxes, the contribution 
is still significant since pi is far from 1.0.

Now that we have discussed the concept of anchor boxes, ground truth anchor 
boxes, and loss functions, we are now ready to present SSD model architecture 
that implements the multi-scale object detection algorithm.

5. SSD model architecture
Figure 11.5.1 shows the model architecture of SSD that implements the conceptual 
framework of multi-scale single-shot object detection. The network accepts an RGB 
image and outputs several levels of prediction. A base or backbone network extracts 
features for the downstream task of classification and offset predictions. A good 
example of a backbone network is ResNet50 that is similar to what was discussed, 
implemented, and evaluated in Chapter 2, Deep Neural Networks. After the backbone 
network, the object detection task is performed by the rest of the network which we 
call SSD head.

The backbone network can be a pre-trained network with frozen weights 
(for example; previously trained for ImageNet classification) or jointly trained 
with object detection. If we used a pre-trained base network, we take advantage of 
reusing previously learned feature extraction filters from a large dataset. In addition, 
it accelerates learning as the backbone network parameters are frozen. Only the top 
layers in object detection are trained. In this book, the backbone network is jointly 
trained with object detection since we assume that we do not necessarily have access 
to a pre-trained backbone network.
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The backbone network normally implements several rounds of downsampling 
either using strides = 2 or by max pooling. In the case of ResNet50, this is 4 
times. The resulting dimensions of feature maps after the base network becomes 

(𝑤𝑤24 ,
ℎ
24) = (𝑤𝑤16 ,

ℎ
16) . The dimensions are exact if both image width and height are 

divisible by 16.

For example, for a 640 x 480 image, the resulting feature maps have dimensions 40 x 
30 = 1,200. As discussed in the previous sections, this is the number of anchor boxes 
with aspect ratio equal to 1 after the base network. This figure is multiplied by the 
number of sizes per anchor box. In the previous sections, there are 6 different sizes 
due to aspect ratios and one additional size for aspect ratio of 1.

In this book, we will limit the aspect ratio to 𝑎𝑎𝑖𝑖∈{0,1,3} = 1, 2, 12 . Thus, there will only 
be 4 different sizes. For a 640 x 480 image, the total number of anchor boxes for the 
first set of anchor boxes is n1 = 4,800.

In Figure 11.5.1, the dense grid is indicated to show that for the first set of predictions 
there is a big number of predictions (for example: 40 x 30 x 4 ) resulting in a huge 
number of patches. Although there are 4 sizes per anchor box, only the 16 x 16 
anchor box that corresponds to aspect ratio of 1 is shown for clarity.

This anchor box is also the receptive field size of each element in 40 x 30 x nfilters 
feature maps. nfilters is the number of filters in the last convolutional layer of the 
backbone network. For each anchor box, both the class and offsets are predicted.

All in all, there are n1 class and n1 offsets predictions. The dimension of 1-hot 
class prediction is equal to number of categories of object to detect plus 1 for the 
background.  The dimension of each offsets variable prediction is 4 corresponding 
to the (x, y) offsets to the 2 corners of the predicted bounding box.

The class predictor is made of a convolutional layer terminated by an activation 
layer that is using softmax for categorical cross-entropy loss. The offsets predictor 
is a separate convolutional layer with linear activation.

Additional feature extraction blocks can be applied after the base network. Each 
feature extractor block is in the form of Conv2D(strides=2)-BN-ELU. After the 
feature extraction block, the feature map size is halved, and the number of filters 
is doubled. For example, the first feature extractor block after the base network 
has 20 x 15 x 2 nfilters feature maps. From this feature maps, n2 class and n2 offset 
predictions are made using convolutional layers. n2 = 20 x 15 x 4 = 1,200
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The process of adding feature extraction blocks with class and offsets predictors can 
continue. In the previous sections, for a 640 x 480 image, this could be up to 2 x 1 x 25 
nfilters feature maps producing n6 class and n6 offsets predictions where n6 = 2 x 1 x 4 = 
8. This corresponds to 6 layers of feature extraction and prediction blocks. After the 
6th block, the total number of anchor map predictions for a 640 x 480 image is 9,648.

In the previous sections, the scaling factor sizes of anchor boxes was arranged in 
decreasing order:

[(12 , 1) , (
1
3 ,

1
2) , (

1
5 ,

1
4) , (

1
10 ,

1
8) , (

1
20 ,

1
15) , (

1
40 ,

1
30)] 

    Equation 11.5.1)

It was done for clarity of the discussion. In this section, it should be realized that 
the scaling factor size actually begins with the feature map size after the backbone 
network. In reality, the scaling factor should be in increasing order:

[( 1
40 ,

1
30) , (

1
20 ,

1
15) , (

1
10 ,

1
8) , (

1
5 ,

1
4) , (

1
3 ,

1
2) , (

1
2 , 1)] 

    (Equation 11.5.2)

This means that if we reduced the number of feature extraction blocks to 4, the 
scaling factors are:

[( 1
40 ,

1
30) , (

1
20 ,

1
15) , (

1
10 ,

1
8) , (

1
5 ,

1
4)] 

    (Equation 11.5.3)

In cases where the feature map width or height is not divisible by 2 (for example: 

15), the ceiling function is applied (for example: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (152 ) = 8 ). However, in 

the original SSD [2] implementation, the scaling factors used were simplified to 

a [0.2, 0.9] range scaled linearly by the number of scaling factors or the number 
of feature extraction blocks, n_layers:

s = np.linspace(0.2, 0.9, n_layers + 1)
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Figure 11.5.1 The SSD model architecture. Please note that for the 
𝑤𝑤
16 ×

ℎ
16  grid, the number of anchor boxes 

may not be exact. The grid shows how tightly packed the anchor boxes are.

Having discussed SSD model architecture, let's now look at how the SSD model 
architecture is implemented in Keras.
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6. SSD model architecture in Keras
Unlike the code examples in the previous chapters, the tf.keras implementation 
of SSD is more involved. In comparison to other tf.keras implementations of SSD, 
the code example presented in this chapter focuses on explaining the key concepts 
of multi-scale object detection. Some parts of the code implementation can be further 
optimized such as caching of ground truth anchor boxes classes, offsets, and masks. 
In our example, the ground truth values are computed by a thread every time an 
image is loaded from the filesystem.

Figure 11.6.1 shows an overview of code blocks that comprise the tf.keras 
implementation of SSD. An SSD object in ssd-11.6.1.py builds, trains, and evaluates 
an SSD model. It sits on top of SSD model creator with the help of model.py and 
resnet.py and a multi-threaded data generator in data_generator.py. SSD model 
implements the SSD architecture as shown in Figure 11.5.1. The implementation of 
each major block will be discussed in detail in the succeeding sections.

The SSD model uses a ResNet as its backbone network. It calls the ResNet V1 or V2 
model creator in resnet.py. Unlike the examples in previous chapters, the dataset 
used by SSD is made of thousands of high-resolution images. A multi-threaded 
data generator loads and queues these images from the filesystem. It also computes 
the ground truth labels of anchor boxes. Without a multi-threaded data generator, 
loading and queueing of images and computation of ground truth values during 
training will be very slow.

There are many small but important routines that work behind the scenes. These are 
collectively stored in the utilities block. These routines create anchor boxes, compute 
IoUs, establish ground truth labels, run non-maximum suppression, draw labels and 
boxes, show detected objects on video frames, provide loss functions, and so on.

Figure 11.6.1 Code blocks implementing SSD.
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7. SSD objects in Keras
Listing 11.7.1, displayed shortly, shows the SSD class. Two main routines are 
illustrated:

1. Creation of the SSD model using build_model()
2. Instantiating a data generator through build_generator()

build_model first creates a data dictionary from the train labels. The dictionary 
stores image filenames and ground truth bounding box coordinates and class for 
every object in each image. Afterward, the backbone and SSD network models 
are constructed. The most important product of model creation is self.ssd – 
the network model of SSD.

The labels are stored in a csv file. For the sample training images that is used in this 
book, the labels are saved in dataset/drinks/labels_train.csv with the format:

frame,xmin,xmax,ymin,ymax,class_id

0001000.jpg,310,445,104,443,1

0000999.jpg,194,354,96,478,1

0000998.jpg,105,383,134,244,1

0000997.jpg,157,493,89,194,1

0000996.jpg,51,435,207,347,1

0000995.jpg,183,536,156,283,1

0000994.jpg,156,392,178,266,2

0000993.jpg,207,449,119,213,2

0000992.jpg,47,348,213,346,2

…

Listing 11.7.1: ssd-11.6.1.py

class SSD:
    """Made of an ssd network model and a dataset generator.
    SSD defines functions to train and validate 
    an ssd network model.

    Arguments:
        args: User-defined configurations

    Attributes:
        ssd (model): SSD network model
        train_generator: Multi-threaded data generator for training
    """
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    def __init__(self, args):
        """Copy user-defined configs.
        Build backbone and ssd network models.
        """
        self.args = args
        self.ssd = None
        self.train_generator = None
        self.build_model()

    def build_model(self):
        """Build backbone and SSD models."""
        # store in a dictionary the list of image files and labels
        self.build_dictionary()

        # input shape is (480, 640, 3) by default
        self.input_shape = (self.args.height,
                            self.args.width,
                            self.args.channels)

        # build the backbone network (eg ResNet50)
        # the number of feature layers is equal to n_layers
        # feature layers are inputs to SSD network heads
        # for class and offsets predictions
        self.backbone = self.args.backbone(self.input_shape,
                                           n_layers=self.args.layers)

        # using the backbone, build ssd network
        # outputs of ssd are class and offsets predictions
        anchors, features, ssd = build_ssd(self.input_shape,
                                           self.backbone,
                                           n_layers=self.args.layers,
                                           n_classes=self.n_classes)
        # n_anchors = num of anchors per feature point (eg 4)
        self.n_anchors = anchors
        # feature_shapes is a list of feature map shapes
        # per output layer - used for computing anchor boxes sizes
        self.feature_shapes = features
        # ssd network model
        self.ssd = ssd

    def build_dictionary(self):
        """Read input image filenames and obj detection labels
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        from a csv file and store in a dictionary.
        """
        # train dataset path
        path = os.path.join(self.args.data_path,
                            self.args.train_labels)

        # build dictionary: 
        # key=image filaname, value=box coords + class label
        # self.classes is a list of class labels
        self.dictionary, self.classes = build_label_dictionary(path)
        self.n_classes = len(self.classes)
        self.keys = np.array(list(self.dictionary.keys()))

    def build_generator(self):
        """Build a multi-thread train data generator."""

        self.train_generator = \
                DataGenerator(args=self.args,
                              dictionary=self.dictionary,
                              n_classes=self.n_classes,
                              feature_shapes=self.feature_shapes,
                              n_anchors=self.n_anchors,
                              shuffle=True)

Listing 11.7.2 shows another important method in SSD object, train(). Indicated are 
the options to use default loss functions or improved loss functions as discussed in 
the previous sections. There is also an option to choose smooth L1 only.

self.ssd.fit_generator() is the most important call in this function. It starts 
the supervised training with the aid of the multi-threaded data generator. At every 
epoch, two callback functions are executed. First, the model weights are saved to a 
file. Then, a modified learning rate scheduler used in the same way as in Chapter 2, 
Deep Neural Networks, for ResNet models is called:

Listing 11.7.2: ssd-11.6.1.py

    def train(self):
        """Train an ssd network."""
        # build the train data generator
        if self.train_generator is None:
            self.build_generator()

        optimizer = Adam(lr=1e-3)
        # choice of loss functions via args
        if self.args.improved_loss:
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            print_log("Focal loss and smooth L1", self.args.verbose)
            loss = [focal_loss_categorical, smooth_l1_loss]
        elif self.args.smooth_l1:
            print_log("Smooth L1", self.args.verbose)
            loss = ['categorical_crossentropy', smooth_l1_loss]
        else:
            print_log("Cross-entropy and L1", self.args.verbose)
            loss = ['categorical_crossentropy', l1_loss]

        self.ssd.compile(optimizer=optimizer, loss=loss)
...
        # prepare callbacks for saving model weights
        # and learning rate scheduler
        # learning rate decreases by 50% every 20 epochs
        # after 60th epoch
        checkpoint = ModelCheckpoint(filepath=filepath,
                                     verbose=1,
                                     save_weights_only=True)
        scheduler = LearningRateScheduler(lr_scheduler)

        callbacks = [checkpoint, scheduler]
        # train the ssd network
        self.ssd.fit_generator(generator=self.train_generator,
                               use_multiprocessing=True,
                               callbacks=callbacks,
                               epochs=self.args.epochs,
                               workers=self.args.workers)

In the next sections, we will discuss additional details of the SSD architecture 
implementation in Keras. In particular, the implementation of SSD model and the 
multi-threaded data generator.

8. SSD model in Keras
Listing 11.8.1 shows the SSD model creation function build_ssd(). The model is 
illustrated in Figure 11.5.1. The function retrieves n_layers of output features from 
the backbone or base network by calling base_outputs = backbone(inputs).

In this book, the backbone() is build_resnet(). The ResNet models that can be 
generated by build_resnet() are similar to the residual networks discussed in 
Chapter 2, Deep Neural Networks. The build_resnet() function can be replaced by 
any function name that builds the base network.
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As shown in Figure 11.5.1, the return value base_outputs is a list of output features 
that will be the input to class and offset prediction layers. For example, the first 
output base_outputs[0], is used to generate n1 class predictions and n1 offset 
predictions.

In the for loop of build_ssd() the class prediction is the classes variable, while 
the offsets prediction is the offsets variable. After the for loop iteration, the class 
predictions are concatenated and eventually merged into one classes variable 
with dimensions:

(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, 𝑛𝑛𝑏𝑏𝑚𝑚𝑏𝑏ℎ𝑜𝑜𝑜𝑜−𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏,  𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑜𝑜𝑜𝑜𝑚𝑚𝑏𝑏𝑏𝑏) 

The same procedure is done for offsets variable. The resulting dimensions are:

(𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, 𝑛𝑛𝑏𝑏𝑚𝑚𝑏𝑏ℎ𝑜𝑜𝑜𝑜−𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏, 4) 

where nmini-batch is the mini-batch size and nanchor-boxes is the number of anchor boxes. The 
number of for loop iterations is equal to n_layers. This number is also equal to the 
desired number of anchor boxes scaling factors or the number of feature extraction 
blocks of the SSD head.

The function build_ssd() returns the number of anchor boxes per feature point or 
region, the feature shape per before class, and offset prediction layers, and the SSD 
model itself.

Listing 11.8.1: model.py

def build_ssd(input_shape,
              backbone,
              n_layers=4,
              n_classes=4,
              aspect_ratios=(1, 2, 0.5)):
    """Build SSD model given a backbone
            
    Arguments:
        input_shape (list): input image shape
        backbone (model): Keras backbone model
        n_layers (int): Number of layers of ssd head
        n_classes (int): Number of obj classes
        aspect_ratios (list): annchor box aspect ratios
        
    Returns:
        n_anchors (int): Number of anchor boxes per feature pt
        feature_shape (tensor): SSD head feature maps
        model (Keras model): SSD model
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    """ 
    # number of anchor boxes per feature map pt
    n_anchors = len(aspect_ratios) + 1

    inputs = Input(shape=input_shape)
    # no. of base_outputs depends on n_layers
    base_outputs = backbone(inputs)
        
    outputs = []
    feature_shapes = []              
    out_cls = []                     
    out_off = []

    for i in range(n_layers):
        # each conv layer from backbone is used
        # as feature maps for class and offset predictions
        # also known as multi-scale predictions
        conv = base_outputs if n_layers==1 else base_outputs[i]
        name = "cls" + str(i+1)
        classes  = conv2d(conv,
                          n_anchors*n_classes,
                          kernel_size=3,
                          name=name)

        # offsets: (batch, height, width, n_anchors * 4)
        name = "off" + str(i+1)
        offsets  = conv2d(conv,
                          n_anchors*4,
                          kernel_size=3,
                          name=name)

        shape = np.array(K.int_shape(offsets))[1:]
        feature_shapes.append(shape)

        # reshape the class predictions, yielding 3D tensors of 
        # shape (batch, height * width * n_anchors, n_classes)
        # last axis to perform softmax on them
        name = "cls_res" + str(i+1)
        classes = Reshape((-1, n_classes),
                          name=name)(classes)

        # reshape the offset predictions, yielding 3D tensors of
        # shape (batch, height * width * n_anchors, 4)
        # last axis to compute the (smooth) L1 or L2 loss
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        name = "off_res" + str(i+1)
        offsets = Reshape((-1, 4),
                          name=name)(offsets)
        # concat for alignment with ground truth size
        # made of ground truth offsets and mask of same dim
        # needed during loss computation
        offsets = [offsets, offsets]
        name = "off_cat" + str(i+1)
        offsets = Concatenate(axis=-1,
                              name=name)(offsets)

        # collect offset prediction per scale
        out_off.append(offsets)

        name = "cls_out" + str(i+1)

        #activation = 'sigmoid' if n_classes==1 else 'softmax'
        #print("Activation:", activation)

        classes = Activation('softmax',
                             name=name)(classes)

        # collect class prediction per scale
        out_cls.append(classes)

    if n_layers > 1:
        # concat all class and offset from each scale
        name = "offsets"
        offsets = Concatenate(axis=1,
                              name=name)(out_off)
        name = "classes"
        classes = Concatenate(axis=1,
                              name=name)(out_cls)
    else:
        offsets = out_off[0]
        classes = out_cls[0]

    outputs = [classes, offsets]
    model = Model(inputs=inputs,
                  outputs=outputs,
                  name='ssd_head')

    return n_anchors, feature_shapes, model
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As mentioned in the previous sections, unlike small datasets like MNIST and 
CIFAR-10, the images used in SSD are big. Hence, it is not possible to load the 
images in a tensor variable. In the next section, we introduce a multi-threaded data 
generator that will allow us to load images concurrently from the filesystem and 
avoid memory bottleneck.

9. Data generator model in Keras
SSD requires a lot of labeled high-resolution images for object detection. Unlike 
the previous chapters where the dataset used can be loaded into memory to train 
the model, SSD implements a multi-threaded data generator. The task of the 
multi-threaded generator is to load multiple mini-batches of images and their 
corresponding labels. Because of multi-threading, the GPU can be kept busy as one 
thread feeds it with data while the rest of CPU threads are in the queue ready to feed 
another batch data or loading a batch of images from the filesystem and computing 
the ground truth values. Listing 11.9.1 shows the data generator model in Keras.

The DataGenerator class inherits from the Sequence class of Keras to ensure that it 
supports multi-processing. DataGenerator guarantees that the entire dataset is used 
in one epoch.

The length of the entire epoch given a batch size is returned by the __len__() 
method. Every request for a mini-batch of data is fulfilled by the __getitem__() 
method. After every epoch, the on_epoch_end() method is called to shuffle the 
entire batch if self.shuffle is True.

Listing 11.9.1: data_generator.py

class DataGenerator(Sequence):
    """Multi-threaded data generator.
    Each thread reads a batch of images and their object labels

    Arguments:
        args: User-defined configuration
        dictionary: Dictionary of image filenames and object labels
        n_classes (int): Number of object classes
        feature_shapes (tensor): Shapes of ssd head feature maps
        n_anchors (int): Number of anchor boxes per feature map pt
        shuffle (Bool): If dataset should be shuffled bef sampling
    """
    def __init__(self,
                 args,
                 dictionary,
                 n_classes,
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                 feature_shapes=[],
                 n_anchors=4,
                 shuffle=True):
        self.args = args
        self.dictionary = dictionary
        self.n_classes = n_classes
        self.keys = np.array(list(self.dictionary.keys()))
        self.input_shape = (args.height,
                            args.width,
                            args.channels)
        self.feature_shapes = feature_shapes
        self.n_anchors = n_anchors
        self.shuffle = shuffle
        self.on_epoch_end()
        self.get_n_boxes()

    def __len__(self):
        """Number of batches per epoch"""
        blen = np.floor(len(self.dictionary) / self.args.batch_size)
        return int(blen)

    def __getitem__(self, index):
        """Get a batch of data"""
        start_index = index * self.args.batch_size
        end_index = (index+1) * self.args.batch_size
        keys = self.keys[start_index: end_index]
        x, y = self.__data_generation(keys)
        return x, y

    def on_epoch_end(self):
        """Shuffle after each epoch"""
        if self.shuffle == True:
            np.random.shuffle(self.keys)

    def get_n_boxes(self):
        """Total number of bounding boxes"""
        self.n_boxes = 0
        for shape in self.feature_shapes:
            self.n_boxes += np.prod(shape) // self.n_anchors
        return self.n_boxes
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The bulk of the data generators work is done by the __data_generation() method 
as shown in Listing 11.9.2. Given a mini-batch, the method executes:

• imread() to read an image from the filesystem.
• labels = self.dictionary[key] to access the bounding box and class 

labels as stored in a dictionary. The first 4 items are the bounding box offsets. 
The last one is the class label.

• anchor_boxes() to generate anchor boxes.
• iou() to compute the IoU per anchor box with respect to the ground truth 

bounding box.
• get_gt_data() to assign the ground truth class and offsets per anchor box.

Sample data augmentation functions are also included but no longer discussed here 
such as addition of random noise, intensity rescaling, and exposure adjustment. 
__data_generation() returns the input x and output y pair where tensor x stores 
input images, while tensor y bundles the classes, offsets, and masks together.

Listing 11.9.2: data_generator.py

import layer_utils

from skimage.io import imread
    def __data_generation(self, keys):
        """Generate train data: images and 
        object detection ground truth labels 

        Arguments:
            keys (array): Randomly sampled keys
                (key is image filename)

        Returns:
            x (tensor): Batch images
            y (tensor): Batch classes, offsets, and masks
        """
        # train input data
        x = np.zeros((self.args.batch_size, *self.input_shape))
        dim = (self.args.batch_size, self.n_boxes, self.n_classes)
        # class ground truth
        gt_class = np.zeros(dim)
        dim = (self.args.batch_size, self.n_boxes, 4)
        # offsets ground truth
        gt_offset = np.zeros(dim)
        # masks of valid bounding boxes
        gt_mask = np.zeros(dim)
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        for i, key in enumerate(keys):
            # images are assumed to be stored in self.args.data_path
            # key is the image filename 
            image_path = os.path.join(self.args.data_path, key)
            image = skimage.img_as_float(imread(image_path))
            # assign image to a batch index
            x[i] = image
            # a label entry is made of 4-dim bounding box coords
            # and 1-dim class label
            labels = self.dictionary[key]
            labels = np.array(labels)
            # 4 bounding box coords are 1st four items of labels
            # last item is object class label
            boxes = labels[:,0:-1]
            for index, feature_shape in enumerate(self.feature_
shapes):
                # generate anchor boxes
                anchors = anchor_boxes(feature_shape,
                                       image.shape,
                                       index=index,
                                       n_layers=self.args.layers)
                # each feature layer has a row of anchor boxes 
                anchors = np.reshape(anchors, [-1, 4])
                # compute IoU of each anchor box 
                # with respect to each bounding boxes
                iou = layer_utils.iou(anchors, boxes)

                # generate ground truth class, offsets & mask
                gt = get_gt_data(iou,
                                 n_classes=self.n_classes,
                                 anchors=anchors,
                                 labels=labels,
                                 normalize=self.args.normalize,
                                 threshold=self.args.threshold)
                gt_cls, gt_off, gt_msk = gt
                if index == 0:
                    cls = np.array(gt_cls)
                    off = np.array(gt_off)
                    msk = np.array(gt_msk)
                else:
                    cls = np.append(cls, gt_cls, axis=0)
                    off = np.append(off, gt_off, axis=0)
                    msk = np.append(msk, gt_msk, axis=0)
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            gt_class[i] = cls
            gt_offset[i] = off
            gt_mask[i] = msk

        y = [gt_class, np.concatenate((gt_offset, gt_mask), axis=-1)]

        return x, y

Now that we have a multi-threaded generator, we can use it to load images from 
a filesystem. In the next section, we demonstrate how to build our custom dataset 
by taking images of target objects and labeling them.

10. Example dataset
A small dataset made of 1,000 640 X 480 RGB train images and 50 640 X 480 RGB test 
images was collected using an inexpensive USB camera (A4TECH PK-635G). The 
dataset images were labeled using VGG Image Annotator (VIA) [5] to detect the 
three objects: 1) Soda can, 2) Juice can, and 3) Bottled water. Figure 11.10.1 shows 
a sample UI of the labeling process.

A utility script for collecting images can be found in utils/video_capture.py in 
the GitHub repository. The script can speed up the data collection process since it 
automatically captures an image every 5 seconds.

Figure 11.10.1 Dataset labeling process using VGG Image Annotator (VIA)
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Data collection and labeling is a time-consuming activity. In the industry, this is 
typically outsourced to a third-party annotation company. The use of automatic 
data labeling software is another option to accelerate the data labeling task.

With this example dataset, we can now train our object detection network.

11. SSD model training
The train and test datasets including labels in csv format can be downloaded from 
this link:

https://bit.ly/adl2-ssd

In the top-level folder (that is, Chapter 11, Object Detection), create the dataset folder, 
copy the downloaded file there, and extract it by running:

mkdir dataset

cp drinks.tar.gz dataset

cd dataset

tar zxvf drinks.tar.gz

cd..

The SSD model is trained for 200 epochs by executing:

python3 ssd-11.6.1.py --train

The default batch size, --batch-size=4, can be adjusted depending on the GPU 
memory. On 1080Ti, the batch size is 2. On 32GB V100, this could be 4 or 8 per GPU. 
--train represents model training option.

To support normalization of bounding box offsets, the --normalize option is 
included. To use improved loss functions, the --improved_loss option is added. 
If only smooth L1 is desired (no focal loss), use –smooth-l1. To illustrate:

• L1, no normalization:
 ° python3 ssd-11.1.1.py –-train

• Improved loss functions, no normalization:
 ° python3 ssd-11.1.1.py –-train --improved-loss

• Improved loss functions, with normalization:
 ° python3 ssd-11.1.1.py –-train –improved-loss --normalize

https://bit.ly/adl2-ssd


Object Detection

[ 408 ]

• Smooth L1, with normalization:
 ° python3 ssd-11.1.1.py –-train –-smooth-l1 --normalize

After training the SSD network, there is one more issue that we need to address. 
How do we deal with multiple predictions for a given object? Before we test our 
trained model, we will first discuss the Non-Maximum Suppression (NMS) 
algorithm.

12. Non-Maximum Suppression (NMS) 
algorithm
After the model training is completed, the network predicts bounding box offsets 
and corresponding categories. In some cases, two or more bounding boxes refer 
to the same object creating redundant predictions. The situation is shown in the 
case of a Soda can in Figure 11.12.1. To remove redundant predictions, a NMS 
algorithm is called. In this book, both classic NMS and soft NMS [6] are covered as 
shown in Algorithm 11.12.1. Both algorithms assume that bounding boxes and the 
corresponding confidence scores or probabilities are known.

Figure 11.12.1 The network predicted two overlapping bounding boxes for the Soda can object.  
Only one valid bounding box is chosen and that is the one with the higher score of 0.99.

In classic NMS, the final bounding boxes are selected based on probabilities 
and stored in list 𝒟𝒟  and with corresponding scores 𝒮𝒮 . All bounding boxes and 
corresponding probabilities are stored in initial lists ℬ  and 𝒫𝒫 . In lines 3 and 4, the 
bounding box with the maximum score pm is used as reference, bm.
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The reference bounding box is added to the list of final selected bounding boxes 
𝒟𝒟  and removed from the list ℬ  as shown in line 5. Its score is added to list 𝒮𝒮  and 
removed from 𝒫𝒫 . For the remaining bounding boxes, if the IoU with bm is greater 
than or equal to a set threshold Nt, it is removed from ℬ . Its corresponding score is 
also removed from 𝒫𝒫 .

The steps are shown in lines 6 and 9-11. The steps remove all redundant bounding 
boxes with smaller scores. After all the remaining bounding boxes have been 
examined, the process starting at line 3 is repeated. The process continues until 
the list of bounding boxes ℬ  has been emptied. The algorithm returns the selected 
bounding boxes 𝒟𝒟  and corresponding scores 𝒮𝒮 .

The problem with classic NMS is a bounding box that contains another object but 
with significant IoU with bm will be unceremoniously removed from the list. Soft 
NMS [6] proposes that instead of outright removal from the list, the score of the 
overlapping bounding box is decreased at a negative exponential rate in proportion 
to the square of its IoU with bm as shown in line 8.

The overlapping bounding box is given a second chance. Bounding boxes with 
smaller IoUs will have higher chances of survival in future iterations. In the future 
selections, it may in fact prove that it contains a different object that is different from 
bm. Soft NMS is an easy drop-in replacement to classic NMS as shown in Algorithm 
11.12.1. There is no need to retrain the SSD network. Soft NMS exhibits higher 
average precision compared to classic NMS.

Listing 11.12.1 illustrates both classic and soft NMS. Other than the final bounding 
boxes and corresponding scores, the corresponding objects are also returned. The 
code implements an early termination of NMS when the maximum score of the 
remaining bounding boxes is less than a certain threshold (for example: 0.2).

Algorithm 11.12.1 NMS and Soft NMS

Require: Bounding box predictions: B = {b1, b2,…,bn,}

Require: Bounding box class confidence or scores: B = {b1, b2,…,bn,}

Require: NMS minimum IoU threshold: Nt

1. 𝒟𝒟 ← { } ; 𝒮𝒮 ← { } 
2. while ℬ ≠ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  do
3.    𝑚𝑚 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 𝒫𝒫 
4.    ℳ ← 𝑏𝑏𝑚𝑚 ; 𝒩𝒩 ← 𝑝𝑝𝑚𝑚 ,
5.    𝒟𝒟 ← 𝒟𝒟⋃ℳ ; ℬ ← ℬ −ℳ ; 𝒮𝒮 ← 𝒮𝒮⋃𝒩𝒩 ; 𝒫𝒫 ← 𝒫𝒫 −𝒩𝒩 ;
6.    for steps 𝑏𝑏𝑖𝑖 𝑖𝑖𝑖𝑖 ℬ  do
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7.         if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  then

8.             𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑒𝑒− 𝐼𝐼𝐼𝐼𝐼𝐼(ℳ,𝑏𝑏𝑖𝑖)2
𝜎𝜎   

9.         elif 𝐼𝐼𝐼𝐼𝐼𝐼(ℳ, 𝑏𝑏𝑖𝑖) ≥ 𝑁𝑁𝑡𝑡  then
10.             ℬ = ℬ − 𝑏𝑏𝑖𝑖 ; 𝒫𝒫 = 𝒫𝒫 − 𝑝𝑝𝑖𝑖 
11.         end
12.    end
13. end
14. return 𝒟𝒟, 𝒮𝒮 

Listing 11.12.1: boxes.py

def nms(args, classes, offsets, anchors):
    """Perform NMS (Algorithm 11.12.1).

    Arguments:
        args: User-defined configurations
        classes (tensor): Predicted classes
        offsets (tensor): Predicted offsets
        
    Returns:
        objects (tensor): class predictions per anchor
        indexes (tensor): indexes of detected objects
            filtered by NMS
        scores (tensor): array of detected objects scores
            filtered by NMS
    """

    # get all non-zero (non-background) objects
    objects = np.argmax(classes, axis=1)
    # non-zero indexes are not background
    nonbg = np.nonzero(objects)[0]

    # D and S indexes in Line 1
    indexes = []
    while True:
        # list of zero probability values
        scores = np.zeros((classes.shape[0],))
        # set probability values of non-background
        scores[nonbg] = np.amax(classes[nonbg], axis=1)

        # max probability given the list
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        # Lines 3 and 4
        score_idx = np.argmax(scores, axis=0)
        score_max = scores[score_idx]

        # get all non max probability & set it as new nonbg
        # Line 5
        nonbg = nonbg[nonbg != score_idx]

        # if max obj probability is less than threshold (def 0.8)
        if score_max < args.class_threshold:
            # we are done
            break

 
        # Line 5
        indexes.append(score_idx)
        score_anc = anchors[score_idx]
        score_off = offsets[score_idx][0:4]
        score_box = score_anc + score_off
        score_box = np.expand_dims(score_box, axis=0)
        nonbg_copy = np.copy(nonbg)

        # get all overlapping predictions (Line 6)
        # perform Non-Max Suppression (NMS)
        for idx in nonbg_copy:
            anchor = anchors[idx]
            offset = offsets[idx][0:4]
            box = anchor + offset
            box = np.expand_dims(box, axis=0)
            iou = layer_utils.iou(box, score_box)[0][0]
            # if soft NMS is chosen (Line 7)
            if args.soft_nms:
                # adjust score: Line 8
                iou = -2 * iou * iou
                classes[idx] *= math.exp(iou)
            # else NMS (Line 9), (iou threshold def 0.2)
            elif iou >= args.iou_threshold:
                # remove overlapping predictions with iou>threshold
                # Line 10
                nonbg = nonbg[nonbg != idx]

        # Line 2, nothing else to process
        if nonbg.size == 0:
            break
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    # get the array of object scores
    scores = np.zeros((classes.shape[0],))
    scores[indexes] = np.amax(classes[indexes], axis=1)

    return objects, indexes, scores

Given that we have a trained SSD network and a method to suppress redundant 
predictions, the next section discusses the validation on our test dataset. Basically, we 
want to know if our SSD can perform object detection on never seen before images.

13. SSD model validation
After training the SSD model for 200 epochs, the performance can be validated. 
Three possible metrics for evaluation are used: 1) IoU, 2) Precision, and 3) Recall.

The first metric is mean IoU (mIoU). Given the ground truth test dataset, the IoU 
between the ground truth bounding box and predicted bounding box is computed. 
This is done for all ground truth and predicted bounding boxes after performing 
NMS. The average of all IoUs is computed as mIoU:

𝑚𝑚𝐼𝐼𝑜𝑜𝑜𝑜 = 1
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏

∑ max
𝑗𝑗∈{1,2,..𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}

𝐼𝐼𝑜𝑜𝑜𝑜(𝑏𝑏𝑖𝑖, 𝑑𝑑𝑗𝑗)
𝑖𝑖∈{1,2,..𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏}

     (Equation 11.13.1)

where nbox is the number of ground truth bounding boxes bi and npred is the number of 
predicted bounding boxes dj. Please note that this metric does not validate if the two 
overlapping bounding boxes belong to the same class. If this is required, then the 
code can be easily modified. Listing 11.13.1 shows the code implementation.

The second metric is precision as shown in Equation 11.3.2. It is the number of object 
categories correctly predicted (true positive or TP) divided by the sum of the number 
of object categories correctly predicted (true positive or TP) plus the number of object 
categories wrongly predicted (false positive or FP). Precision is a measure of how 
good SSD is at correctly identifying objects in an image. The closer precision is to 1.0, 
the better.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇     (Equation 11.3.2)
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The third metric is recall, as shown in Equation 11.3.3. It is the number of object 
categories correctly predicted (true positive or TP) divided by the sum of the number 
of object categories correctly predicted (true positive or TP) plus the number of 
objects missed (false negative or FN). Recall is a measure of how good SSD is at not 
misclassifying objects in an image. The closer recall is to 1.0, the better.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹     (Equation 11.3.3)

If we take the mean for all images in the test dataset, they are called average 
precision and average recall. In object detection, the precision and recall curves over 
different mIoUs are used to measure the performance. For the sake of simplicity, 
we only compute values of these metrics for a certain class threshold (default is 0.5). 
Interested readers are referred to the Pascal VOC [7] paper for more details on object 
detection metrics.

The results of the evaluation are shown in Table 11.13.1. The results can be obtained 
by running:

• No normalization:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-extra_anchors-drinks-200.h5 --evaluate

• No normalization, smooth L1:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-smooth_l1-extra_anchors-drinks-200.h5 --evaluate

• With normalization:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-norm-extra_anchors-drinks-200.h5 --evaluate 
--normalize

• With normalization, smooth L1:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-norm-smooth_l1-extra_anchors-drinks-200.h5 
--evaluate --normalize

• With normalization, smooth L1, focal loss:
 ° python3 ssd-11.6.1.py --restore-weights=ResNet56v2-

4layer-norm-improved_loss-extra_anchors-drinks-200.h5 
--evaluate --normalize

The weights are available on GitHub.
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On mIoU, the best performance is the unnormalized offsets option, while the 
normalized offsets setting has the highest average precision and recall. It is expected 
that the performance is not state of the art considering there are only 1,000 images in 
the training dataset. There is also no data augmentation applied.

From the results, the performance suffers when the improvements on loss functions 
are used. This happens either when using smooth L1 or focal loss function or both. 
Figure 11.13.1 to Figure 11.13.5 show sample predictions. Object detections on an 
image can be obtained by executing:

python3 ssd-11.6.1.py –-restore-weights=<weights_file>
--image-file=<target_image_file> --evaluate 

For example, to run object detection on dataset/drinks/0010050.jpg:

python3 ssd-11.6.1.py --restore-weights=ResNet56v2-4layer-extra_
anchors-drinks-200.h5 --image-file=dataset/drinks/0010050.jpg 
--evaluate

If the model weights filename has the word norm in it, please append the 
--normalize option.

Listing 11.13.1: ssd-11.6.1.py

    def evaluate_test(self):
        # test labels csv path
        path = os.path.join(self.args.data_path,
                            self.args.test_labels)
        # test dictionary
        dictionary, _ = build_label_dictionary(path)
        keys = np.array(list(dictionary.keys()))
        # sum of precision
        s_precision = 0
        # sum of recall
        s_recall = 0
        # sum of IoUs
        s_iou = 0
        # evaluate per image
        for key in keys:
            # ground truth labels
            labels = np.array(dictionary[key])
            # 4 boxes coords are 1st four items of labels
            gt_boxes = labels[:, 0:-1]
            # last one is class
            gt_class_ids = labels[:, -1]
            # load image id by key
            image_file = os.path.join(self.args.data_path, key)
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            image = skimage.img_as_float(imread(image_file))
            image, classes, offsets = self.detect_objects(image)
            # perform nms
            _, _, class_ids, boxes = show_boxes(args,
                                                image,
                                                classes,
                                                offsets,
                                                self.feature_shapes,
                                                show=False)

            boxes = np.reshape(np.array(boxes), (-1,4))
            # compute IoUs
            iou = layer_utils.iou(gt_boxes, boxes)
            # skip empty IoUs
            if iou.size ==0:
                continue
            # the class of predicted box w/ max iou
            maxiou_class = np.argmax(iou, axis=1)

            # true positive
            tp = 0
            # false positiove
            fp = 0
            # sum of objects iou per image
            s_image_iou = []
            for n in range(iou.shape[0]):
                # ground truth bbox has a label
                if iou[n, maxiou_class[n]] > 0:
                    s_image_iou.append(iou[n, maxiou_class[n]])
                    # true positive has the same class and gt
                    if gt_class_ids[n] == class_ids[maxiou_class[n]]:
                        tp += 1
                    else:
                        fp += 1

            # objects that we missed (false negative)
            fn = abs(len(gt_class_ids) - tp)
            s_iou += (np.sum(s_image_iou) / iou.shape[0])
            s_precision += (tp/(tp + fp))
            s_recall += (tp/(tp + fn))

        n_test = len(keys)
        print_log("mIoU: %f" % (s_iou/n_test),
                  self.args.verbose)
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        print_log("Precision: %f" % (s_precision/n_test),
                  self.args.verbose)
        print_log("Recall: %f" % (s_recall/n_test),
                  self.args.verbose)

The results are as follows, in Table 11.13.1:

Un-
normalized 
offsets

Un-
normalized 
offsets, 
smooth L1

Normalized 
offsets

Normalized 
offsets, 
smooth L1

Normalized 
offsets, 
smooth L1, 
focal loss

mIoU 0.64 0.61 0.53 0.50 0.51
Average 
precision

0.87 0.86 0.90 0.85 0.85

Average 
recall

0.87 0.85 0.87 0.83 0.83

Table 11.13.1 Performance benchmark of SSD on the test dataset.

Figure 11.13.1 Example predictions on an image from the test dataset (unnormalized offsets).
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Figure 11.13.2 Example predictions on an image from the test dataset (unnormalized offsets, smooth L1).

Figure 11.13.3 Example predictions on an image from the test dataset (normalized offsets).
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Figure 11.13.4 Example predictions on an image from the test dataset (normalized offsets, smooth L1).

Figure 11.13.5 Example predictions on an image from the test dataset (normalized offsets, smooth L1, focal loss).
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The results in this section validate our SSD model. An important lesson to learn 
is that as long as we understand the problem, no matter how complex it is we can 
incrementally build a working solution. SSD is by far the most complex model that 
we have covered in this book. It requires many utilities, modules, and a lot of data 
preparation and management to work.

14. Conclusion
In this chapter, the concept of multi-scale single shot object detection was discussed. 
Using anchor boxes that are centered on the centroid of the receptive field patches, 
the ground truth bounding box offsets are computed. Instead of raw pixel error, 
normalized pixel error encourages a bounded range that is more suitable for 
optimization.

The ground truth class label is assigned per anchor box. If an anchor box does not 
overlap an object, it is assigned the background class and its offset is not included 
in the offset loss computation. Focal loss has been proposed to improve the category 
loss function. The default L1 offset loss function can be replaced by a smooth L1 loss 
function.

Evaluation on the test dataset shows that normalized offset using default loss 
functions results in the best performance for average precision and recall while 
mIoU is improved when offsets normalization is removed. The performance can 
be improved by increasing the number and variation of train images.

In Chapter 12, Semantic Segmentation, builds upon the concepts developed in 
this chapter. In particular, we reuse the ResNet backbone network to build the 
segmentation network and the IoU metric for validation.
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12
Semantic Segmentation

In Chapter 11, Object Detection, we discussed object detection as an important 
computer vision algorithm with diverse practical applications. In this chapter, 
we will discuss another related algorithm called Semantic Segmentation. If the 
goal of object detection is to perform simultaneous localization and identification 
of each object in the image, in semantic segmentation, the aim is to classify each 
pixel according to its object class.

Extending the analogy further, in object detection, we use bounding boxes to 
show results. In semantic segmentation, all pixels for the same object belong to 
the same category. Visually, all pixels of the same object will have the same color. 
For example, all pixels belonging to the soda can category will be blue in color. 
Pixels for non-soda can objects will have a different color.

Similar to object detection, semantic segmentation has many practical applications. 
In medical imaging, it can be used to separate and measure regions of normal 
from abnormal cells. In satellite imaging, semantic segmentation can be used to 
measure forest cover or the extent of flooding during disasters. In general, semantic 
segmentation can be used to identify pixels belonging to the same class of object. 
Identifying the individual instances of each object is not important.

Curious readers may wonder what is the difference between different segmentation 
algorithms in general, and the semantic segmentation algorithm in particular? In the 
following section, we will qualify the different segmentation algorithms.

In summary, the goal of this chapter is to present:

• Different types of segmentation algorithms
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• Fully Convolutional Networks (FCNs) as an implementation of the semantic 
segmentation algorithm

• Implementation and evaluation of FCN in tf.keras

We'll begin by discussing the different segmentation algorithms.

1. Segmentation
Segmentation algorithms partition an image into sets of pixels or regions. The 
purpose of partitioning is to understand better what the image represents. The 
sets of pixels may represent objects in the image that are of interest for a specific 
application. The manner in which we partition distinguishes the different 
segmentation algorithms.

In some applications, we are interested in specific countable objects in a given image. 
For example, in autonomous navigation, we are interested in instances of vehicles, 
traffic signs, pedestrians, and other objects on the roads. Collectively, these countable 
objects are called things. All other pixels are lumped together as background. This 
type of segmentation is called instance segmentation.

In other applications, we are not interested in countable objects but in amorphous 
uncountable regions, such as the sky, forests, vegetation, roads, grass, buildings, and 
bodies of water. These objects are collectively called stuff. This type of segmentation 
is called semantic segmentation.

Roughly, things and stuff together compose the entire image. If an algorithm can 
identify both things and stuff pixels, it is called panoptic segmentation, as defined 
by Kirilov et al. (2019) [1].

However, the distinction between things and stuff is not rigid. An application may 
consider countable objects collectively as stuff. For example, in a department store, 
it is impossible to identify instances of clothing on racks. They can be collectively 
lumped together as cloth stuff.

Figure 12.1.1 shows the distinction between different types of segmentation. 
The input image shows two soda cans and two juice cans on top of a table. The 
background is cluttered. Assuming that we are only interested in soda and juice 
cans, in instance segmentation, we assign a unique color to each object instance to 
distinguish the four objects individually. For semantic segmentation, we assume that 
we lump together all soda cans as stuff, juice cans as another stuff, and background 
as the last stuff. Basically, we have a unique color assigned to each stuff. Finally, in 
panoptic segmentation, we assume that only the background is stuff and we are only 
interested in instances of soda and juice cans.
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For this book, we only explore semantic segmentation. Following the example in 
Figure 12.1.1, we will assign unique stuff categories to the objects that we used in 
Chapter 11, Object Detection: 1) Water bottle, 2) Soda can, and 3) Juice can. The fourth 
and last category is background.
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Figure 12.1.1: Four images showing the different segmentation algorithms. Best viewed in color. The original 
images can be found at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/

master/chapter12-segmentation
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2. Semantic segmentation network
From the previous section, we learned that the semantic segmentation network 
is a pixel-wise classifier. The network block diagram is shown in Figure 12.2.1. 
However, unlike a simple classifier (for example, the MNIST classifier in Chapter 1, 
Introducing Advanced Deep Learning with Keras and Chapter 2, Deep Neural Networks), 
where there is only one classifier generating a one-hot vector as output, in 
semantic segmentation, we have parallel classifiers running simultaneously. Each 
one is generating its own one-hot vector prediction. The number of classifiers is equal 
to the number of pixels in the input image or the product of image width and height. 
The dimension of each one-hot vector prediction is equal to the number of stuff 
object categories of interest.

Figure 12.2.1: The semantic segmentation network can be viewed as a pixel-wise classifier. Best viewed in color. 
The original images can be found at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-

Keras/tree/master/chapter12-segmentation

For example, assuming we are interested in four of the categories: 0) Background, 1) 
Water bottle, 2) Soda can, and 3) Juice can, we can see in Figure 12.2.2 that there are 
four pixels from each object category.
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Each pixel is classified accordingly using a 4-dim one-hot vector. We use color 
shading to indicate the class category of the pixel. Using this knowledge, we can 
imagine that a semantic segmentation network predicts image_width x image_
height 4-dim one-hot vectors as output, and one 4-dim one-hot vector per pixel:

Figure 12.2.2: Four different sample pixels. Using a 4-dim one-hot vector, each pixel is classified according to 
its category. Best viewed in color. The original images can be found at https://github.com/PacktPublishing/

Advanced-Deep-Learning-with-Keras/tree/master/chapter12-segmentation

Having understood the concept of semantic segmentation, we can now introduce 
a neural network pixel-wise classifier. Our semantic segmentation network 
architecture is inspired by Fully Convolutional Network (FCN) by Long et al. (2015) [2]. 
The key idea of FCN is to use multiple scales of feature maps in generating the final 
prediction. 
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Our semantic segmentation network is shown in Figure 12.2.3. Its input is an RGB 
image (for example, 640 x 480 x 3) and it outputs a tensor with similar dimensions 
except that the last dimension is the number of stuff categories (for example, 640 x 
480 x 4 for a 4-stuff category). For visualization purposes, we map the output into 
RGB by assigning a color to each category:

Figure 12.2.3: Network architecture of semantic segmentation. Kernel size is 3 unless indicated. Strides 
is 1 unless indicated. Best viewed in color. The original images can be found at https://github.com/

PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/master/chapter12-segmentation

Similar to SSD that was discussed in Chapter 11, Object Detection, we employ a 
backbone network as a feature extractor. We use a similar ResNetv2 network in 
SSD. The ResNet backbone performs max pooling twice to arrive at the first set 
of feature maps with the dimensions being 1 4⁄   of the input image. The additional 
sets of feature maps are generated by using successive Conv2D(strides=2)-BN-
ReLU layers, resulting in feature maps with dimensions (1 8⁄ , 1 16⁄ , 1 32⁄ )  of the 
input image.

Our semantic segmentation network architecture is further enhanced by the 
improvements made by Pyramid Scene Parsing Network (PSPNet) by Zhao et al. (2017) 
[3]. In PSPNet, each feature map is further processed by another convolutional layer. 
Furthermore, the first set of feature maps is also used.
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Both FCN and PSPNet upsample the features pyramid to arrive at the same size as 
the first set of feature maps. Afterward, all upsampled features are fused together 
using a Concatenate layer. The concatenated layers are then processed twice by 
a transposed convolution with strides equal to 2 to put the original image width 
and height back. Lastly, a transposed convolution with a kernel size of 1 and filters 
equal to 4 (in other words, the number of categories) and a Softmax layer are used 
to generate the pixel-wise categorical prediction.

In the next section, we will discuss the tf.keras implementation of our 
segmentation network. We can reuse some network blocks in SSD from Chapter 11, 
Object Detection, to speed up our implementation.

3. Semantic segmentation network in 
Keras
As shown in Figure 12.2.3, we already have some of the key building blocks of our 
semantic segmentation network. We can reuse the ResNet model presented in 
Chapter 2, Deep Neural Networks. We just need to build the features' pyramid and the 
upsampling and prediction layers.

Borrowing the ResNet model that we developed in Chapter 2, Deep Neural Networks, 
and which was reused in Chapter 11, Object Detection, we extract a features' pyramid 
with four levels. Listing 12.3.1 shows features' pyramid extraction from ResNet. 
conv_layer() is just a helper function to create a Conv2D(strides=2)-BN-
ReLU layer.

Listing 12.3.1: resnet.py:

Features' pyramid function:

def features_pyramid(x, n_layers):
    """Generate features pyramid from the output of the 
    last layer of a backbone network (e.g. ResNetv1 or v2)

    Arguments:
        x (tensor): Output feature maps of a backbone network
        n_layers (int): Number of additional pyramid layers

    Return:
        outputs (list): Features pyramid 
    """
    outputs = [x]
    conv = AveragePooling2D(pool_size=2, name='pool1')(x)
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    outputs.append(conv)
    prev_conv = conv
    n_filters = 512

    # additional feature map layers
    for i in range(n_layers - 1):
        postfix = "_layer" + str(i+2)
        conv = conv_layer(prev_conv,
                          n_filters,
                          kernel_size=3,
                          strides=2,
                          use_maxpool=False,
                          postfix=postfix)
        outputs.append(conv)
        prev_conv = conv

    return outputs

Listing 12.3.1 is just half of the features' pyramid. The remaining half is the 
convolution after each set of features. The other half is shown in Listing 12.3.2, 
together with the upsampling of each level of the pyramid. For example, features 
with dimensions of 1 8⁄   of the image size are upsampled by 2 to match their 
dimensions with the first set of features, which are 1 4⁄   of the image size. In the 
same listing, we also build the entire segmentation model, from the backbone 
network to the features' pyramid, to concatenating upsampled features' pyramids, 
and finally to further feature extractions, upsampling, and prediction. We use the 
n-dim (for example, 4-dim) Softmax layer at the output layer to perform pixel-wise 
classification.

Listing 12.3.2: model.py:

Building the semantic segmentation network:

def build_fcn(input_shape,
              backbone,
              n_classes=4):
    """Helper function to build an FCN model.
        
    Arguments:
        backbone (Model): A backbone network
            such as ResNetv2 or v1
        n_classes (int): Number of object classes
            including background.
    """
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    inputs = Input(shape=input_shape)
    features = backbone(inputs)

    main_feature = features[0]
    features = features[1:]
    out_features = [main_feature]
    feature_size = 8
    size = 2
    # other half of the features pyramid
    # including upsampling to restore the
    # feature maps to the dimensions
    # equal to 1/4 the image size
    for feature in features:
        postfix = "fcn_" + str(feature_size)
        feature = conv_layer(feature,
                             filters=256,
                             use_maxpool=False,
                             postfix=postfix)
        postfix = postfix + "_up2d"
        feature = UpSampling2D(size=size,
                               interpolation='bilinear',
                               name=postfix)(feature)
        size = size * 2
        feature_size = feature_size * 2
        out_features.append(feature)

    # concatenate all upsampled features
    x = Concatenate()(out_features)
    # perform 2 additional feature extraction 
    # and upsampling
    x = tconv_layer(x, 256, postfix="up_x2")
    x = tconv_layer(x, 256, postfix="up_x4")
    # generate the pixel-wise classifier
    x = Conv2DTranspose(filters=n_classes,
                        kernel_size=1,
                        strides=1,
                        padding='same',
                        kernel_initializer='he_normal',
                        name="pre_activation")(x)
    x = Softmax(name="segmentation")(x)

    model = Model(inputs, x, name="fcn")

    return model
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Given the segmentation network model, we use the Adam optimizer with a learning 
rate of 1e-3 and a categorical cross-entropy loss function to train the network. Listing 
12.3.3 shows the model building and train function calls. The learning rate is halved 
every 20 epochs after 40 epochs. We monitor the network performance using the 
AccuracyCallback, similar to the SSD network in Chapter 11, Object Detection. The 
callback computes the performance using mean IoU (mIoU) metrics similar to the 
mean IoU for object detection. The weights of the best performing mean IoU are 
saved on a file. The network is trained for 100 epochs by calling fit_generator().

Listing 12.3.3: fcn-12.3.1.py:

Initialization and training of a semantic segmentation network:

    def build_model(self):
        """Build a backbone network and use it to
            create a semantic segmentation 
            network based on FCN.
        """

        # input shape is (480, 640, 3) by default
        self.input_shape = (self.args.height,
                            self.args.width,
                            self.args.channels)

        # build the backbone network (eg ResNet50)
        # the backbone is used for 1st set of features
        # of the features pyramid
        self.backbone = self.args.backbone(self.input_shape,
                                           n_layers=self.args.layers)

        # using the backbone, build fcn network
        # output layer is a pixel-wise classifier
        self.n_classes =  self.train_generator.n_classes
        self.fcn = build_fcn(self.input_shape,
                             self.backbone,
                             self.n_classes)

    def train(self):
        """Train an FCN"""
        optimizer = Adam(lr=1e-3)
        loss = 'categorical_crossentropy'
        self.fcn.compile(optimizer=optimizer, loss=loss)

        log = "# of classes %d" % self.n_classes
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        print_log(log, self.args.verbose)
        log = "Batch size: %d" % self.args.batch_size
        print_log(log, self.args.verbose)

        # prepare callbacks for saving model weights
        # and learning rate scheduler
        # model weights are saved when test iou is highest
        # learning rate decreases by 50% every 20 epochs
        # after 40th epoch
        accuracy = AccuracyCallback(self)
        scheduler = LearningRateScheduler(lr_scheduler)

        callbacks = [accuracy, scheduler]
        # train the fcn network
        self.fcn.fit_generator(generator=self.train_generator,
                               use_multiprocessing=True,
                               callbacks=callbacks,
                               epochs=self.args.epochs,
                               workers=self.args.workers)

The multithreaded data generator class, DataGenerator, is similar to what was used 
in Chapter 11, Object Detection. As shown in Listing 12.3.4, the __data_generation 
(self, keys) signature method was modified to generate a pair of image tensors 
and its corresponding pixel-wise ground truth labels or segmentation mask. In the 
next section, we will discuss how to generate ground truth labels.

Listing 12.3.4: data_generator.py:

Data generation method of the DataGenerator class for semantic segmentation:

    def __data_generation(self, keys):
        """Generate train data: images and 
        segmentation ground truth labels 

        Arguments:
            keys (array): Randomly sampled keys
                (key is image filename)

        Returns:
            x (tensor): Batch of images
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            y (tensor): Batch of pixel-wise categories
        """
        # a batch of images
        x = []
        # and their corresponding segmentation masks
        y = []

        for i, key in enumerate(keys):
            # images are assumed to be stored 
            # in self.args.data_path
            # key is the image filename 
            image_path = os.path.join(self.args.data_path, key)
            image = skimage.img_as_float(imread(image_path))
            # append image to the list
            x.append(image)
            # and its corresponding label (segmentation mask)
            labels = self.dictionary[key]
            y.append(labels)

        return np.array(x), np.array(y)

The semantic segmentation network is now complete. Using tf.keras, we have 
discussed its architecture implementation, initialization, and training.

Before we can run the training procedure, we need the training and test datasets with 
ground truth labels. In the next section, we will discuss the semantic segmentation 
dataset that we will use in this chapter.

4. Example dataset
We can use the dataset that we used in Chapter 11, Object Detection. Recall that we 
used a small dataset comprising 1,000 640 x 480 RGB train images and 50 640 x 480 
RGB test images collected using an inexpensive USB camera (A4TECH PK-635G). 
However, instead of labeling using bounding boxes and categories, we traced the 
edges of each object category using a polygon shape. We used the same dataset 
annotator called VGG Image Annotator (VIA) [4] to manually trace the edges and 
assign the following labels: 1) Water bottle, 2) Soda can, and 3) Juice can. 
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Figure 12.4.1 shows a sample UI of the labeling process.

Figure 12.4.1: Dataset labeling process for semantic segmentation using the VGG Image Annotator (VIA)

The VIA labeling software saves the annotation on a JSON file. For the training and 
test datasets, these are:

segmentation_train.json
segmentation_test.json

The polygon region stored on the JSON files could not be used as it is. Each region 
has to be converted into a segmentation mask, which is a tensor with the dimensions 
imagewidth x imageheight x pixel – wise_category. In this dataset, the dimensions of the 
segmentation mask are 640 x 480 x 4. The category 0 is for background, and the rest 
are 1) for Water bottle, 2) for Soda can, and 3) for Juice can. In the utils folder, 
we created a tool, generate_gt_segmentation.py, to convert the JSON file into 
segmentation masks. For convenience, the ground truth data for training and testing 
is stored inside the compressed dataset, which we downloaded from https://bit.
ly/adl2-ssd in the previous chapter:

segmentation_train.npy
segmentation_test.npy

https://bit.ly/adl2-ssd
https://bit.ly/adl2-ssd
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Each file contains a dictionary of ground truth data in the format image filename: 
segmentation mask, which is loaded during training and validation. Figure 12.4.2 
shows an example of the segmentation mask of the image in Figure 12.4.1, visualized 
using colored pixels.

Figure 12.4.2: Visualization of the segmentation mask for the annotation done in Figure 12.4.1

We are now ready to train and validate the semantic segmentation network. In the 
next section, we will show the results of the semantic segmentation on the dataset 
that we annotated in this section.

5. Semantic segmentation validation
To train the semantic segmentation network, run the following command:

python3 fcn-12.3.1.py --train

At every epoch, the validation is also executed to determine the best performing 
parameters. For semantic segmentation, two metrics can be used. The first is mean 
IoU. This is similar to the mean IoU in object detection in the previous chapter. The 
difference is that the IoU is computed between the ground truth segmentation mask 
and the predicted segmentation mask for each stuff category. This includes the 
background. The mean IoU is simply the average of all IoUs for the test dataset.
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Figure 12.5.1 shows the performance of our semantic segmentation network using 
mIoU at every epoch. The maximum mIoU is 0.91. This is relatively high. However, 
our dataset only has four object categories:

Figure 12.5.1: Semantic segmentation performance during training using mIoU for the test dataset

The second metric is average pixel accuracy. This is similar to how the accuracy 
is computed on a classifier prediction. The difference is that, instead of having 
one prediction, the segmentation network has a number of predictions equal to 
the number of pixels in the image. For each test input image, an average pixel 
accuracy is computed. Then, the mean for all the test images is computed.

Figure 12.5.2 shows the performance of our semantic segmentation network using 
average pixel accuracy at every epoch. The maximum average pixel accuracy is 
97.9%. We can see the correlation between average pixel accuracy and mIoU:

Figure 12.5.2: Semantic segmentation performance during training using average  
pixel accuracy for the test dataset
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Figure 12.5.3 shows a sample of the input image, the ground truth semantic 
segmentation mask, and the predicted semantic segmentation mask:

Figure 12.5.3: Sample input, ground truth, and prediction for semantic segmentation.  
We assigned the color black for the background class instead of purple, as was used earlier
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Overall, our semantic segmentation network that is based on FCN and improved 
by ideas from PSPNet is performing relatively well. Our semantic segmentation 
network is by no means optimized. The number of filters in the features' pyramid 
can be reduced to minimize the number of parameters, which is about 11.1 million. 
It is also interesting to explore increasing the number of levels in the features' 
pyramid. The reader may run validation by executing:

python3 fcn-12.3.1.py --evaluate 

--restore-weights=ResNet56v2-3layer-drinks-best-iou.h5

In the next chapter, we will introduce unsupervised learning algorithms. There has 
been a strong motivation to develop unsupervised learning techniques considering 
the costly and time-consuming labeling needed in supervised learning. For example, 
in the semantic segmentation dataset in this chapter, it took one person about 4 days 
of manual labeling. Deep learning will not advance if it requires human labeling all 
the time.

6. Conclusion
In this chapter, the concept of segmentation was discussed. We learned that there 
are different categories of segmentation. Each has its own target application. This 
chapter focused on the network design, implementation, and validation of semantic 
segmentation.

Our semantic segmentation network was inspired by FCN, which has been the basis 
of many modern-day, state-of-the-art segmentation algorithms, such as Mask-R-
CNN [5]. Our network was further enhanced by ideas from PSPNet, which won first 
place in the ImageNet 2016 parsing challenge.

Using the VIA labeling tool, a new dataset label for semantic segmentation was 
generated using the same set of images employed in Chapter 11, Object Detection. 
The segmentation mask labels all pixels belonging to the same object class.

Our semantic segmentation network was trained and validated using mean IoU 
and average pixel accuracy metrics. The performance on the test dataset shows  
that it can effectively classify pixels in our test images.

As mentioned in the last section of this chapter, the field of deep learning is realizing 
the limits of supervised learning due to the costs and time involved. The next chapter 
focuses on unsupervised learning. It takes advantage of the concept of mutual 
information that is used in information theory in the field of communications.
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13
Unsupervised Learning 

Using Mutual Information
Many machine learning tasks such as classification, detection, and segmentation are 
dependent on labeled data. The performance of a network on these tasks is directly 
affected by the quality of labeling and the amount of data. The problem is that 
producing a sufficient amount of good-quality annotated data is costly and time-
consuming.

To continue the progress of development in machine learning, new algorithms 
should be less dependent on human labelers. Ideally, a network should learn 
from unlabeled data, which is abundant due to the growth of the internet and 
the popularity of sensing devices such as smartphones and the Internet of Things 
(IoT). Learning from unlabeled data is a field of unsupervised learning. In some 
cases, unsupervised learning is also called self-supervised learning to emphasize 
the use of pure unlabeled data for training and the absence of human supervision. 
In this text, we will use the term unsupervised learning.

There are approaches that learn from unlabeled data in machine learning. The 
performance of these approaches can be improved using deep neural networks 
and new ideas in unsupervised learning. This is especially true when dealing with 
highly unstructured data such as text, image, audio, and video.

One of the successful approaches in unsupervised learning is maximizing mutual 
information between two random variables in a given neural network. In the field 
of information theory, Mutual Information (MI) is a measure of dependency 
between two random variables. 
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MI has recently been successful in extracting useful information from unlabeled 
data that could aid in learning downstream tasks. For example, MI is able to cluster 
latent code vectors such that a classification task becomes a simple linear separation 
problem.

In summary, the goal of this chapter is to present:

• The concept of Mutual Information
• Estimating MI using neural networks
• The maximization of MI on discrete and continuous random variables for 

downstream tasks
• The implementation of MI estimation networks in Keras

We will begin by introducing the concept of Mutual Information.

1. Mutual Information
Mutual Information is a measure of dependency between two random variables, 
X and Y. Sometimes, MI is also defined as the amount of information about X 
through observing Y. MI is also known as information gain or reduction in the 
uncertainty of X upon observing Y.

In contrast with correlation, MI can measure non-linear statistical dependence 
between X and Y. In deep learning, MI is a suitable method since most real-world 
data is unstructured and the dependency between input and output is generally 
non-linear. In deep learning, the end goal is to perform specific tasks such as 
classification, translation, regression, or detection on input data and a pre-trained 
model. These tasks are also known as downstream tasks.

Since MI can uncover important aspects of dependencies in inputs, intermediate 
features, representation, and outputs, which are random variables themselves, 
shared information generally improves the performance of models in 
downstream tasks.

Mathematically, the MI between two random variables X and Y can be defined as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋, 𝑌𝑌) ∥ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌))     (Equation 13.1.1)

where:

• P(X, Y) is the joint distribution of X and Y on sample space X x Y.
• P(X) P(Y) is the product of marginal distributions P(X) and P(Y) on 

sample spaces X and Y respectively.
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In other words, MI is the Kullback-Leibler (KL) divergence between the joint 
distribution and the product of marginal distributions. Recall from Chapter 5, 
Improved GANs, KL is a measure of distance between two distributions. In the context 
of MI, the higher the KL distance, the higher the MI between two random variables, 
X and Y. By extension, the higher the MI, the higher the dependency of X on Y.

Since MI is equal to the KL divergence between the joint and product of marginal 
distributions, it implies that it is greater or equal to zero: 𝐼𝐼(𝑋𝑋; 𝑌𝑌) ≥ 0 . MI is exactly 
equal to zero when X and Y are independent random variables. When X and Y are 
independent, observing one random variable (for example, Y) does not give any 
information about the other random variable (for example, X). Therefore, MI is a 
measure of how far X and Y are from being independent.

If X and Y are discrete random variables, by expanding the KL divergence MI can 
be computed as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼(𝑋𝑋,𝑌𝑌)~𝑃𝑃(𝑋𝑋,𝑌𝑌) 𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌) = ∑ ∑𝑃𝑃(𝑋𝑋, 𝑌𝑌) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)

𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)
𝑌𝑌∈𝒴𝒴𝑋𝑋∈𝒳𝒳

     (Equation 13.1.2)

where:

• P(X, Y) is the joint probability mass function (PMF).
• P(X) and P(Y) are marginal PMFs.

If the joint and marginal distributions are known, MI has an exact computation.

If X and Y are continuous random variables, by expanding the KL divergence, 
MI can be expressed as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = ∫ ∫ 𝑝𝑝(𝑥𝑥, 𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥, 𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)ⅆ𝑥𝑥 ⅆ𝑦𝑦

𝒴𝒴𝒳𝒳

      (Equation 13.1.3)

where:

• p(x, y) is the joint probability distribution function (PDF).
• p(x) and p(y) are marginal PDFs.

MI for continuous random variables is generally intractable and estimated by 
variational methods. In this chapter, we will discuss techniques for estimating MI 
between two continuous random variables.

Before discussing techniques for computing Mutual Information, let's first explain 
the relationship between MI and entropy. Entropy was informally introduced in 
Chapter 6, Disentangled Representation GANs, with applications in InfoGAN.
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2. Mutual Information and Entropy
MI can also be interpreted in terms of entropy. Recall from Chapter 6, Disentangled 
Representation GANs, that entropy, H(X), is a measure of the expected amount of 
information of a random variable X:

𝐻𝐻(𝑋𝑋) = −𝔼𝔼𝑥𝑥~𝑃𝑃(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑥𝑥)]      (Equation 13.2.1)

Equation 13.2.1 implies that entropy is also a measure of uncertainty. The occurrence 
of uncertain events gives us a higher amount of surprise, or information. For 
example, news about an employee's unexpected promotion has a high amount 
of information, or entropy.

Using Equation 13.2.1, MI can be expressed as:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋, 𝑌𝑌) ∥ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌)] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑋𝑋)) + 𝐻𝐻(𝑃𝑃(𝑌𝑌)) − 𝐻𝐻(𝑃𝑃(𝑋𝑋, 𝑌𝑌)) 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑋𝑋) +𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑋𝑋, 𝑌𝑌)     (Equation 13.2.2)

Equation 13.2.2 implies that MI increases with marginal entropy but decreases with 
joint entropy. A more common expression for MI in terms of entropy is as follows:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋|𝑌𝑌)

𝑃𝑃(𝑋𝑋) ] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋|𝑌𝑌)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋)] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑋𝑋)) − 𝐻𝐻(𝑃𝑃(𝑋𝑋|𝑌𝑌)) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌)     (Equation 13.2.3)

Equation 13.2.3 tells us that MI increases with the entropy of a random variable but 
decreases with the conditional entropy on another random variable. Alternatively, 
MI is how much decrease in information or uncertainty in X, had we known Y.
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Equivalently,

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌|𝑋𝑋)

𝑃𝑃(𝑌𝑌) ] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑌𝑌)) − 𝐻𝐻(𝑃𝑃(𝑌𝑌|𝑋𝑋)) = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋)     (Equation 13.2.4)

Equation 13.2.4 implies that MI is symmetric:

𝐼𝐼(𝑌𝑌; 𝑋𝑋) = 𝐼𝐼(𝑋𝑋; 𝑌𝑌)     (Equation 13.2.5)

MI can also be expressed in terms of the conditional entropy of X and Y:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)] = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋)] − 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌)]     (Equation 13.2.6)

Using Bayes' theorem:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] − 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)
𝑃𝑃(𝑌𝑌|𝑋𝑋)] − 𝔼𝔼 [𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)

𝑃𝑃(𝑋𝑋|𝑌𝑌)] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = −𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋, 𝑌𝑌)] + 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑌𝑌|𝑋𝑋)] + 𝔼𝔼[𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑋𝑋|𝑌𝑌)] 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑃𝑃(𝑋𝑋, 𝑌𝑌)) − 𝐻𝐻(𝑃𝑃(𝑌𝑌|𝑋𝑋)) − 𝐻𝐻(𝑃𝑃(𝑋𝑋|𝑌𝑌)) 

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑋𝑋, 𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌)      (Equation 13.2.7)

Figure 13.2.1 summarizes all the relationships between MI and conditional and 
marginal entropies that we have discussed so far:

Figure 13.2.1 Venn diagram showing the relationships between MI and conditional and marginal entropies
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Another interesting interpretation of MI is from Equation 13.2.3, which can be 
rewritten as:

𝐻𝐻(𝑋𝑋|𝑌𝑌) = 𝐻𝐻(𝑋𝑋) − 𝐼𝐼(𝑋𝑋; 𝑌𝑌)     (Equation 13.2.8)

Since H(X| Y) is the uncertainty of X upon observing Y, Equation 13.2.8 tells us 
that we are more certain about X given Y if we can maximize MI. In Figure 13.2.1, 
the area of crescent shape H(X| Y) decreases as the intersection between the circles 
representing MI increases.

As a more concrete example, suppose X is a random variable representing the 
event of observing a number between 0 and 255 inclusive in a given random byte. 

Assuming a uniform distribution, this translates to a probability of 𝑃𝑃(𝑋𝑋) =
1
256 . 

The entropy of X in base 2 is:

𝐻𝐻(𝑋𝑋) = − ∑ 𝑃𝑃(𝑋𝑋) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃(𝑋𝑋) =
𝑋𝑋~𝑃𝑃(𝑋𝑋)

− ∑ 1
256 𝑙𝑙𝑙𝑙𝑙𝑙2

1
256 = 256 × 8

256 = 8
𝑋𝑋~𝑃𝑃(𝑋𝑋)

 

Suppose the random variable Y represents the 4 most significant bits of a random 
byte. If we observed that the 4 most significant bits are all zeros, then numbers 0 to 
15 inclusive have 𝑃𝑃(𝑋𝑋) = 1

16 , while the rest have P(X) = 0. The conditional entropy in 
base 2 is:

𝐻𝐻(𝑋𝑋|𝑌𝑌) = − ∑ 𝑃𝑃(𝑋𝑋|𝑌𝑌) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃(𝑋𝑋|𝑌𝑌) =
𝑋𝑋~𝑃𝑃(𝑋𝑋|𝑌𝑌)

− ∑ 1
16 𝑙𝑙𝑙𝑙𝑙𝑙2

1
16 = 16 × 4

16 = 4
𝑋𝑋~𝑃𝑃(𝑋𝑋|𝑌𝑌)

 

This gives us MI of 𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 8 − 4 = 4 . Note that the uncertainty or the amount of 
expected information in random variable X decreased upon knowing Y. The mutual 
information shared by X and Y is 4, which is also equal to the number of bits shared 
by the two random variables. Figure 13.2.2 illustrates two cases where all bits are 
random and the four most significant bits are all 0.
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Figure 13.2.2 Entropy when all bits are unknown versus when some bits are known

Given that we already have a good understanding of MI and entropy, we can now 
exploit this concept as a method for unsupervised learning.

3. Unsupervised learning by maximizing 
the Mutual Information of discrete 
random variables
A classic problem in deep learning is supervised classification. In Chapter 1, 
Introducing Advanced Deep Learning with Keras, and Chapter 2, Deep Neural Networks, 
we learned that in supervised classification, we need labeled input images. We 
performed classification on both the MNIST and CIFAR10 datasets. For MNIST, 
a 3-layer CNN and a Dense layer can achieve as much as 99.3% accuracy. For 
CIFAR10, using ResNet or DenseNet, we can achieve about 93% to 94% accuracy. 
Both MNIST and CIFAR10 are labeled datasets.
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Unlike supervised learning, our objective in this chapter is to perform unsupervised 
learning. Our focus is on classification without labels. The idea is if we learn how 
to cluster latent code vectors of all training data, then a linear separation algorithm 
can classify each test input data latent vector.

To learn the clustering of latent code vectors without labels, our training objective 
is to maximize MI between the input image X and its latent code Y. Both X and 
Y are random variables. The idea is that similar looking images will have latent 
vectors that cluster into the same regions. Regions that are far from each other 
can be easily separated by a linear assignment problem. Thus, the problem 
of classification can be done in an unsupervised manner. Mathematically, the 
objective is to maximize:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) = 𝐻𝐻(𝑋𝑋) −𝐻𝐻(𝑋𝑋|𝑌𝑌)     (Equation 13.2.3)

Intuitively, once we have observed Y, we are confident about X. The problem with 
Equation 13.2.3 is we do not have a good estimate of the density P(X| Y) to measure 
H(X| Y).

Invariant Information Clustering (IIC) by Ji et al. [1] proposed to measure 𝐼𝐼(𝑋𝑋; 𝑌𝑌)  
directly from joint and marginal distributions. The objective is to use Equation 13.1.2 
to measure the MI between two latent code random variables that refer to the same 
input. Let's assume that the input X is encoded as Z:

𝑍𝑍 = ℰ(𝑋𝑋) 

The same input X is transformed as �̅�𝑋 =  𝒢𝒢(𝑋𝑋)  such that �̅�𝑋  remains clearly classifiable 
with the same category as X. In image processing, 𝒢𝒢  can be a common operation 
such as small rotation, random cropping, and shearing. Sometimes, operations 
such as contrast and brightness adjustment, edge detection, the addition of small 
amounts of noise, and normalization are also acceptable as long as the meaning of 
the resulting image remains the same. For example, if X is an image of a dog, after 𝒢𝒢 , 
�̅�𝑋  is still obviously a dog.

The latent code vector using the same encoder network is:

�̅�𝑍 = ℰ(�̅�𝑋) 
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Therefore, we can rewrite Equation 13.1.2 in terms of the two random variables Z and 
�̅�𝑍  as:

𝐼𝐼(𝑍𝑍; �̅�𝑍) = ∑∑𝑃𝑃(𝑍𝑍, �̅�𝑍) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑍𝑍, �̅�𝑍)
𝑃𝑃(𝑍𝑍)𝑃𝑃(�̅�𝑍)

𝑍𝑍∈𝑍𝑍𝑍𝑍∈𝒵𝒵
     (Equation 13.3.1)

Where P(Z) and 𝑃𝑃(�̅�𝑍)  can be interpreted as the marginal distributions of Z and 
�̅�𝑍 . For discrete random variables, Z and �̅�𝑍  both P(Z) and 𝑃𝑃(�̅�𝑍)  are categorical 
distributions. We can imagine that the encoder output is a softmax with 
dimensionality equal to the number of classes, N, in the train and test data 
distributions. For example, for MNIST, the encoder output is a 10-dimensional  
one-hot vector corresponding to the 10 digits in both the train and test datasets.

To determine each term in Equation 13.3.1, we start by estimating 𝑃𝑃(𝑍𝑍, �̅�𝑍) .  
IIC assumes Z and �̅�𝑍  are independent such that the joint distribution can be 
estimated as:

𝑃𝑃(𝑍𝑍, �̅�𝑍) = 𝑃𝑃(𝑍𝑍)𝑃𝑃(�̅�𝑍)𝑇𝑇     (Equation 13.3.2)

This creates an N x N matrix 𝑃𝑃(𝑍𝑍, �̅�𝑍)  where each element Zij corresponds to 
the probability of simultaneously observing two random variables (𝑍𝑍𝑖𝑖, �̅�𝑍𝑗𝑗) . If 
this estimation is done for a large batch size, the mean of the large sample size 
estimates the joint probability.

Since we will use MI to estimate the density functions, IIC constraints the 
sampling to (𝑍𝑍𝑖𝑖, �̅�𝑍𝑖𝑖) . Essentially, for every sample Xi, we compute its latent code, 
𝑃𝑃(𝑍𝑍𝑖𝑖) = ℰ(𝑋𝑋𝑖𝑖) . Then, we transform Xi and compute its latent code, 𝑃𝑃(�̅�𝑍𝑖𝑖)  =  𝜀𝜀(�̅�𝑋𝑖𝑖) . 
The joint distribution is computed as:

𝑃𝑃(𝑍𝑍, �̅�𝑍) = 1
𝑀𝑀∑𝑃𝑃(𝑍𝑍𝑖𝑖)𝑃𝑃(�̅�𝑍𝑖𝑖)𝛵𝛵

𝑀𝑀

𝑖𝑖=1
     (Equation 13.3.3)

Where M is the batch size. Since we use the same encoder ℰ  for both Xi and �̅�𝑋𝑖𝑖 ,  
the resulting joint distribution should be symmetrical. We enforce symmetry by 
executing:

𝑃𝑃(𝑍𝑍, �̅�𝑍) = 𝑃𝑃(𝑍𝑍, �̅�𝑍) + 𝑃𝑃(𝑍𝑍, �̅�𝑍)𝛵𝛵
2      (Equation 13.3.4)
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Given 𝑃𝑃(𝑍𝑍, �̅�𝑍) , the marginal distributions can be computed as:

𝑃𝑃(𝑍𝑍) =∑𝑃𝑃(𝑍𝑍𝑖𝑖, �̅�𝑍𝑗𝑗)
𝑁𝑁

𝑗𝑗=1
     (Equation 13.3.5)

We sum all entries of the matrix row-wise. Similarly:

𝑃𝑃(�̅�𝑍) =∑𝑃𝑃(𝑍𝑍𝑖𝑖, �̅�𝑍𝑗𝑗)
𝑁𝑁

𝑖𝑖=1
     (Equation 13.3.6)

We sum all entries of the matrix column-wise.

Given all the terms in Equation 13.3.1 we can train a neural network encoder ℰ  that 
maximizes MI or minimizes the negative MI using the loss function:

ℒ(𝑍𝑍, �̅�𝑍) = −𝐼𝐼(𝑍𝑍; �̅�𝑍) = ∑∑𝑃𝑃(𝑍𝑍, �̅�𝑍)(𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑍𝑍) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(�̅�𝑍) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑍𝑍, �̅�𝑍))
𝑍𝑍∈𝑍𝑍𝑍𝑍∈𝒵𝒵

     (Equation 13.3.7)

Before we implement unsupervised clustering, let us reflect again on the objective – 
maximize 𝐼𝐼(𝑍𝑍; �̅�𝑍) . Since X and �̅�𝑋 = 𝒢𝒢(𝑋𝑋)  and their corresponding latent code vectors 
Z and �̅�𝑍  share the same information, then the neural network encoder ℰ  should 
learn to map X and �̅�𝑋  into latent vectors Z and �̅�𝑍  that have almost the same value 
in order to maximize their MI. In the context of MNIST, similar-looking digits will 
have latent code vectors that cluster in the same region in space.

If the latent code vector is the output of softmax, then it implies that we are 
performing unsupervised clustering, which can be converted to a classifier using 
a linear assignment algorithm. In this chapter, we will present two possible linear 
assignment algorithms that can be used to convert unsupervised clustering into 
unsupervised classification.

In the next section, we will discuss the encoder network model that can be used to 
implement unsupervised clustering. In particular, we will introduce the encoder 
network that can be used to estimate both P(Z) and 𝑃𝑃(�̅�𝑍) .

4. Encoder network for unsupervised 
clustering
The encoder network implementation for unsupervised clustering is shown in 
Figure 13.4.1. It is an encoder with a VGG-like [2] backbone and a Dense layer with 
a softmax output. The simplest VGG-11 has a backbone, as shown in Figure 13.4.2. 
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For MNIST, using the simplest VGG-11 backbone decimates the feature map size to 
zero from 5 times the MaxPooling2D operations. Therefore, a scaled-down version of 
the VGG-11 backbone is used, as shown in Figure 13.4.3, when implemented in Keras. 
The same set of filters is used.

Figure 13.4.1 Network implementation of IIC encoder network ℰ . The input MNIST image is center cropped to 
24 x 24 pixels. In this example, �̅�𝑋 = 𝒢𝒢(𝑋𝑋)  is a random 24 x 24-pixel cropping operation.

Figure 13.4.2 VGG-11 classifier backbone
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In Figure 13.4.3, there are 4 Conv2D-BN-ReLU Activation-MaxPooling2D layers 
with filter sizes (64,128,256,512). The last Conv2D layer does not use MaxPooling2D. 
Therefore, the last Conv2D layer outputs a (3,3,512) feature map for a 24 x 24 x 1 
cropped MNIST input.

Figure 13.4.3 A scaled-down VGG is used as the encoder backbone
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Figure 13.4.4 shows the Keras model diagram of Figure 13.4.1. To improve its 
performance, IIC performs overclustering. Two or more encoders are used to 
generate two or more marginal distributions P(Z) and 𝑃𝑃(�̅�𝑍) . The corresponding 
joint distributions 𝑃𝑃(𝑍𝑍, �̅�𝑍)  are generated. In terms of the network model, this is 
implemented by an encoder with two or more heads.

Figure 13.4.4 Network implementation of IIC encoder ℰ  in Keras

Figure 13.4.4 is a single-headed encoder, while Figure 13.4.5 is a two-headed encoder. 
Notice that the two heads share the same VGG backbone.

Figure 13.4.5 A two-headed encoder network ℰ  in Keras
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In the following two sections, we will look into how the IIC network model is 
implemented, trained, and evaluated. We will also look into the linear assignment 
problem as a tool for designating a label for each cluster.

5. Unsupervised clustering 
implementation in Keras
The network model implementation in Keras for unsupervised clustering is shown 
in Listing 13.5.1. Only the initialization is shown. The network hyperparameters are 
stored in args. The VGG backbone object is supplied during initializations. Given 
a backbone, the model is actually just a Dense layer with a softmax activation, as 
shown in the build_model() method. There is an option to create multiple heads.

Similar to Chapter 11, Object Detection, we implemented a DataGenerator class to 
efficiently serve input data in a multithreaded fashion. A DataGenerator object 
generates the required paired train input data (that is, a Siamese input image) 
made of the input image X and its transformed image �̅�𝑋 . The most critical method, 
__data_generation(), of the DataGenerator class is shown in Listing 13.5.2. 
The input image X is center cropped from the original input image. In the case 
of MNIST, this is 24 x 24-pixel center cropping. The transformed input image �̅�𝑋  is 
either randomly rotated by an angle in the range of ±20  or randomly cropped 16 
x 16, 18 x 18, or 20 x 20 pixels from any part of the image and is resized back to 24 
x 24 pixels. Crop sizes are stored in the crop_sizes list.

Note that only the input and transformed images are important in the data generated 
by the DataGenerator object. Also, the paired data that is needed by the loss 
function is concatenated along the batch axis. This will allow us to compute the loss 
function in a single batch of paired data.

Listing 13.5.1: iic-13.5.1.py. The IIC class showing initialization and model 
creation: class IIC:

    def __init__(self,
                 args,
                 backbone):
        """Contains the encoder model, the loss function,
            loading of datasets, train and evaluation routines
            to implement IIC unsupervised clustering via mutual
            information maximization

        Arguments:
            args : Command line arguments to indicate choice
                of batch size, number of heads, folder to save
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                weights file, weights file name, etc
            backbone (Model): IIC Encoder backbone (eg VGG)
        """
        self.args = args
        self.backbone = backbone
        self._model = None
        self.train_gen = DataGenerator(args, siamese=True)
        self.n_labels = self.train_gen.n_labels
        self.build_model()
        self.load_eval_dataset()
        self.accuracy = 0

    def build_model(self):
        """Build the n_heads of the IIC model
        """
        inputs = Input(shape=self.train_gen.input_shape, name='x')
        x = self.backbone(inputs)
        x = Flatten()(x)
        # number of output heads
        outputs = []
        for i in range(self.args.heads):
            name = "z_head%d" % i
            outputs.append(Dense(self.n_labels,
                                 activation='softmax',
                                 name=name)(x))
        self._model = Model(inputs, outputs, name='encoder')
        optimizer = Adam(lr=1e-3)
        self._model.compile(optimizer=optimizer, loss=self.mi_loss)
    

Listing 13.5.2: data_generator.py. The DataGenerator class method for generating 
paired input data to train the IIC encoder:

    def __data_generation(self, start_index, end_index):
        """Data generation algorithm. The method generates
            a batch of pair of images (original image X and
            transformed imaged Xbar). The batch of Siamese
            images is used to trained MI-based algorithms:
            1) IIC and 2) MINE (Section 7)

        Arguments:
            start_index (int): Given an array of images,
                this is the start index to retrieve a batch
            end_index (int): Given an array of images,
                this is the end index to retrieve a batch
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        """

        d = self.crop_size // 2
        crop_sizes = [self.crop_size*2 + i for i in range(0,5,2)]
        image_size = self.data.shape[1] - self.crop_size
        x = self.data[self.indexes[start_index : end_index]]
        y1 = self.label[self.indexes[start_index : end_index]]

        target_shape = (x.shape[0], *self.input_shape)
        x1 = np.zeros(target_shape)
        if self.siamese:
            y2 = y1
            x2 = np.zeros(target_shape)

        for i in range(x1.shape[0]):
            image = x[i]
            x1[i] = image[d: image_size + d, d: image_size + d]
            if self.siamese:
                rotate = np.random.randint(0, 2)
                # 50-50% chance of crop or rotate
                if rotate == 1:
                    shape = target_shape[1:]
                    x2[i] = self.random_rotate(image,
                                               target_shape=shape)
                else:
                    x2[i] = self.random_crop(image,
                                             target_shape[1:],
                                             crop_sizes)

        # for IIC, we are mostly interested in paired images
        # X and Xbar = G(X)
        if self.siamese:
            # If MINE Algorithm is chosen, use this to generate
            # the training data (see Section 9)
            if self.mine:
                y = np.concatenate([y1, y2], axis=0)
                m1 = np.copy(x1)
                m2 = np.copy(x2)
                np.random.shuffle(m2)

                x1 =  np.concatenate((x1, m1), axis=0)
                x2 =  np.concatenate((x2, m2), axis=0)
                x = (x1, x2)
                return x, y
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            x_train = np.concatenate([x1, x2], axis=0)
            y_train = np.concatenate([y1, y2], axis=0)
            y = []
            for i in range(self.args.heads):
                y.append(y_train)
            return x_train, y

        return x1, y1

To implement the VGG backbone, the VGG class is implemented in Keras, as shown 
in Listing 13.5.3. The VGG class is flexible in that it can be configured in different ways 
(or different flavors of VGG). Option 'F' for IIC VGG backbone configuration cfg is 
shown. We use a helper function to generate Conv2D-BN-ReLU-MaxPooling2D layers.

Listing 13.5.3: vgg.py.

The VGG backbone class method in Keras:

cfg = {
    'F': [64, 'M', 128, 'M', 256, 'M', 512],
} 

class VGG:
    def __init__(self, cfg, input_shape=(24, 24, 1)):
        """VGG network model creator to be used as backbone
            feature extractor

        Arguments:
            cfg (dict): Summarizes the network configuration
            input_shape (list): Input image dims
        """
        self.cfg = cfg
        self.input_shape = input_shape
        self._model = None
        self.build_model()

    def build_model(self):
        """Model builder uses a helper function
            make_layers to read the config dict and
            create a VGG network model
        """
        inputs = Input(shape=self.input_shape, name='x')
        x = VGG.make_layers(self.cfg, inputs)
        self._model = Model(inputs, x, name='VGG')

    @property



Unsupervised Learning Using Mutual Information

[ 458 ]

    def model(self):
        return self._model

    @staticmethod
    def make_layers(cfg,
                    inputs,
                    batch_norm=True,
                    in_channels=1):
        """Helper function to ease the creation of VGG
            network model

        Arguments:
            cfg (dict): Summarizes the network layer 
                configuration
            inputs (tensor): Input from previous layer
            batch_norm (Bool): Whether to use batch norm
                between Conv2D and ReLU
            in_channel (int): Number of input channels
        """
        x = inputs
        for layer in cfg:
            if layer == 'M':
                x = MaxPooling2D()(x)
            elif layer == 'A':
                x = AveragePooling2D(pool_size=3)(x)
            else:
                x = Conv2D(layer,
                           kernel_size=3,
                           padding='same',
                           kernel_initializer='he_normal'
                           )(x)
                if batch_norm:
                    x = BatchNormalization()(x)
                x = Activation('relu')(x)

        return x

Going back to the IIC class, the key algorithm of IIC is the loss function that 
minimizes the negative MI. This method is shown in Listing 13.5.4. To evaluate 
the loss in a single batch, we look into y_pred and break it into two halves, lower 
and upper, corresponding to the encoder output for the input image �̅�𝑋  and its 
transformed image �̅�𝑋 . Recall that the paired data is made by concatenating a batch 
of image �̅�𝑋  and a batch of its transformed image �̅�𝑋 .
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The lower half of y_pred is Z while the upper half is �̅�𝑍.  Following Equation 10.3.2 
to Equation 10.3.7, the joint distribution 𝑃𝑃(𝑍𝑍, �̅�𝑍)  and marginal distributions are 
computed. Finally, the negative MI is returned. Note that each head contributes 
equally to the total loss function. Hence the loss is scaled by the number of heads.

Listing 13.5.4: iic-13.5.1.py.

The IIC class loss function in Keras. The loss function minimizes the negative MI (that 
is, it maximizes the MI):

    def mi_loss(self, y_true, y_pred):
        """Mutual information loss computed from the joint
           distribution matrix and the marginals

        Arguments:
            y_true (tensor): Not used since this is
                unsupervised learning
            y_pred (tensor): stack of softmax predictions for
                the Siamese latent vectors (Z and Zbar)
        """
        size = self.args.batch_size
        n_labels = y_pred.shape[-1]
        # lower half is Z
        Z = y_pred[0: size, :]
        Z = K.expand_dims(Z, axis=2)
        # upper half is Zbar
        Zbar = y_pred[size: y_pred.shape[0], :]
        Zbar = K.expand_dims(Zbar, axis=1)
        # compute joint distribution (Eq 10.3.2 & .3)
        P = K.batch_dot(Z, Zbar)
        P = K.sum(P, axis=0)
        # enforce symmetric joint distribution (Eq 10.3.4)
        P = (P + K.transpose(P)) / 2.0
        # normalization of total probability to 1.0
        P = P / K.sum(P)
        # marginal distributions (Eq 10.3.5 & .6)
        Pi = K.expand_dims(K.sum(P, axis=1), axis=1)
        Pj = K.expand_dims(K.sum(P, axis=0), axis=0)
        Pi = K.repeat_elements(Pi, rep=n_labels, axis=1)
        Pj = K.repeat_elements(Pj, rep=n_labels, axis=0)
        P = K.clip(P, K.epsilon(), np.finfo(float).max)
        Pi = K.clip(Pi, K.epsilon(), np.finfo(float).max)
        Pj = K.clip(Pj, K.epsilon(), np.finfo(float).max)
        # negative MI loss (Eq 10.3.7)
        neg_mi = K.sum((P * (K.log(Pi) + K.log(Pj) - K.log(P))))
        # each head contribute 1/n_heads to the total loss
        return neg_mi/self.args.heads
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The IIC network training method is shown in Listing 13.5.5. Since we are using a 
DataGenerator object derived from the Sequence class, we can use the Keras fit_
generator() method to train the model.

We use a learning rate scheduler that decreases the learning rate by 80% every 
400 epochs. AccuracyCallback calls the eval() method, so we can record the 
performance of the network after every epoch.

The weights of the best performing model are optionally saved. In the eval() 
method, we use a linear classifier to assign a label to each cluster. The linear classifier 
unsupervised_labels() is a Hungarian algorithm that assigns a label to a cluster 
with the minimum cost.

This last step converts the unsupervised clustering into unsupervised classification. 
The unsupervised_labels() function is shown in Listing 13.5.6.

Listing 13.5.5: iic-13.5.1.py.

The IIC network training and evaluation:

    def train(self):
        """Train function uses the data generator,
            accuracy computation, and learning rate
            scheduler callbacks
        """
        accuracy = AccuracyCallback(self)
        lr_scheduler = LearningRateScheduler(lr_schedule,
                                             verbose=1)
        callbacks = [accuracy, lr_scheduler]
        self._model.fit_generator(generator=self.train_gen,
                                  use_multiprocessing=True,
                                  epochs=self.args.epochs,
                                  callbacks=callbacks,
                                  workers=4,
                                  shuffle=True)
    def eval(self):
        """Evaluate the accuracy of the current model weights
        """
        y_pred = self._model.predict(self.x_test)
        print("")
        # accuracy per head
        for head in range(self.args.heads):
            if self.args.heads == 1:
                y_head = y_pred
            else:
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                y_head = y_pred[head]
            y_head = np.argmax(y_head, axis=1)

            accuracy = unsupervised_labels(list(self.y_test),
                                           list(y_head),
                                           self.n_labels,
                                           self.n_labels)
            info = "Head %d accuracy: %0.2f%%"
            if self.accuracy > 0:
                info += ", Old best accuracy: %0.2f%%"
                data = (head, accuracy, self.accuracy)
            else:
                data = (head, accuracy)
            print(info % data)
            # if accuracy improves during training, 
            # save the model weights on a file
            if accuracy > self.accuracy \
                    and self.args.save_weights is not None:
                self.accuracy = accuracy
                folder = self.args.save_dir
                os.makedirs(folder, exist_ok=True)
                path = os.path.join(folder, self.args.save_weights)
                print("Saving weights... ", path)
                self._model.save_weights(path)

Listing 13.5.6: utils.py.

The Hungarian algorithm assigns a label to a cluster with the minimum cost:

from scipy.optimize import linear_sum_assignment
def unsupervised_labels(y, yp, n_classes, n_clusters):
    """Linear assignment algorithm
    
    Arguments:
        y (tensor): Ground truth labels
        yp (tensor): Predicted clusters
        n_classes (int): Number of classes
        n_clusters (int): Number of clusters
    """
    assert n_classes == n_clusters
            
    # initialize count matrix
    C = np.zeros([n_clusters, n_classes])
            
    # populate count matrix
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    for i in range(len(y)):
        C[int(yp[i]), int(y[i])] += 1
    
    # optimal permutation using Hungarian Algo
    # the higher the count, the lower the cost
    # so we use -C for linear assignment
    row, col = linear_sum_assignment(-C)
        
    # compute accuracy
    accuracy = C[row, col].sum() / C.sum()
                
    return accuracy * 100

Figure 13.5.1 The linear assignment algorithm explained in a simple scenario of three clusters to be assigned 
optimally to three classes

As shown in Figure 13.5.1, the linear assignment problem is best explained using 
a simplified scenario of three clusters to be assigned to three classes. The linear 
assignment problem finds the one-to-one assignment of clusters to classes that 
result in the minimum total cost. On the left of Figure 13.5.1, the clustering results 
and the ground truth labels are shown.

The linear assignment problem finds the class or category for each cluster or how 
to assign labels to each cluster. The cost matrix 𝐶𝐶  is also shown. For every cluster-
ground truth pair, a cost matrix cell is decremented by 1. The row-column index 
of the cell is the cluster number-ground truth label index. Using the cost matrix, 
the job of the linear assignment problem is to find the optimal matrix X that results 
in the minimum total cost:
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚∑𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖

     (Equation 13.5.1)

Where cij and xij are the elements of matrices 𝐶𝐶  and X respectively. i and j are the 
indexes. The elements of X are subject to the following constraints:

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} 

∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

= 1        for i = 1, 2, … , N

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

=  1        for j = 1, 2, … , N

X is a binary matrix. Each row is assigned to only one column. The linear assignment 
problem is therefore a combinatorial problem. The details of the optimal solution 
are beyond the scope of this book and are not discussed here.

The optimal weight matrix X is shown in Figure 13.5.1. Cluster 0 is assigned label 1. 
Cluster 1 is assigned to label 2. Cluster 2 is assigned to label 0. This can be intuitively 
verified from the cost matrix since this results in a minimum cost of -4 while 
ensuring each row is assigned to only one column.

Using this matrix, the cluster class assignment is shown in the right most table. 
With the cluster class assignment, there is only one error on the fourth row. The 
resulting accuracy is four-fifths, or 80%.

We can extend the linear assignment problem to the problem of assigning labels 
to our 10 MNIST clusters. We use the linear_sum_assignment() function in 
the scipy package. The function is based on the Hungarian algorithm. Listing 
13.5.6 shows the implementation of the cluster labeling process. For more details 
on the linear_sum_assignment() function see https://docs.scipy.org/
doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_
assignment.html.

To train the IIC model for the case of 1 head, execute:

python3 iic-13.5.1.py  --heads=1 --train --save-weights=head1.h5

For other numbers of heads, the options --heads and --save-weights should be 
modified accordingly. In the next section, we will examine the performance of IIC 
as an MNIST classifier.

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
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6. Validation using MNIST
In this section, we'll look at the results following the validation of IIC using the 
MNIST test dataset. After running the cluster prediction on the test dataset, the 
linear assignment problem assigns a label to each cluster, essentially converting the 
clustering into classification. We computed the classification accuracy, as shown 
in Table 13.6.1. The IIC accuracy is higher than the 99.3% reported in the paper. 
However, it should be noted that not every training results in a high-accuracy 
classification.

Sometimes, we have to run the training multiple times since it appears that the 
optimization is stuck in a local minimum. Furthermore, we do not obtain the same 
level of performance for all heads in multi-head IIC models. Table 13.6.1 reports the 
best performing head.

Number of heads 1 2 3 4 5

Accuracy, % 99.49 99.47 99.54 99.52 99.53

Table 13.6.1 Accuracy of IIC for different numbers of heads

The weights are available on GitHub. For example, to run validation on one-head 
IIC:

python3 iic-13.5.1.py --heads=1 --eval --restore-weights=head1-best.h5

In conclusion, we can see that it is possible to perform unsupervised classification. 
The results are in fact better than the supervised classification that we examined 
in Chapter 2, Deep Neural Networks. In the following sections, we will turn our 
attention to unsupervised learning for continuous random variables.

7. Unsupervised learning by maximizing 
the Mutual Information of continuous 
random variables
In previous sections, we learned that we can arrive at a good estimator of the MI 
of discrete random variables. We also demonstrated that with the help of a linear 
assignment algorithm, a network that performs clustering by maximizing MI leads 
to an accurate classifier.
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If IIC is a good estimator of the MI of discrete random variables, what about 
continuous random variables? In this section, we discuss the Mutual Information 
Network Estimator (MINE) by Belghazi et al. [3] as an estimator of the MI of 
continuous random variables.

MINE proposes an alternative expression of KL-divergence in Equation 13.1.1 
to implement an MI estimator using a neural network. In MINE, the Donsker-
Varadhan (DV) representation of KL-divergence is used:

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝑋𝑋, 𝑌𝑌) ∥ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇:𝛺𝛺→ℝ

𝔼𝔼𝑥𝑥,𝑦𝑦~𝑃𝑃(𝑋𝑋,𝑌𝑌)[𝑇𝑇(𝑥𝑥, 𝑦𝑦)] − 𝑙𝑙𝑙𝑙𝑙𝑙𝔼𝔼𝑥𝑥~𝑃𝑃(𝑋𝑋),𝑦𝑦~𝑃𝑃(𝑌𝑌)[𝑒𝑒𝑇𝑇(𝑥𝑥,𝑦𝑦)] 
    

(Equation 13.7.1)

Where the supremum is taken all over the space of function T. T is an arbitrary 
function that maps from the input space (such as an image) to a real number. Recall 
that supremum is roughly interpreted as a maximum. For T, we can choose from 
a family of functions 𝑇𝑇𝜃𝜃 = 𝑋𝑋 × 𝑌𝑌 → ℝ  that is parameterized by 𝜃𝜃 ∈ 𝛩𝛩 . Therefore, 
we can represent 𝑇𝑇𝜃𝜃 , hence T, with a deep neural network that estimates the KL-
divergence.

Given the exact (but intractable) representation of the MI, 𝐼𝐼(𝑋𝑋; 𝑌𝑌) , and its 
parameterized estimate 𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌)  as a tractable lower bound, we can safely state:

𝐼𝐼(𝑋𝑋; 𝑌𝑌) ≥ 𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌)     (Equation 13.7.2)

where the parameterized MI estimate is:

𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑠𝑠
𝜃𝜃∈𝛩𝛩

𝔼𝔼𝑥𝑥,𝑦𝑦~𝑃𝑃(𝑋𝑋,𝑌𝑌)[𝑇𝑇𝜃𝜃(𝑥𝑥, 𝑦𝑦)] − 𝑙𝑙𝑙𝑙𝑙𝑙𝔼𝔼𝑥𝑥~𝑃𝑃(𝑋𝑋),𝑦𝑦~𝑃𝑃(𝑌𝑌)[𝑒𝑒𝑇𝑇𝜃𝜃(𝑥𝑥,𝑦𝑦)]     (Equation 13.7.3)

𝐼𝐼𝜃𝜃(𝑋𝑋; 𝑌𝑌)  is also called the neural information measure. In the first expectation, 
the samples (𝑥𝑥, 𝑦𝑦)~𝑃𝑃(𝑋𝑋, 𝑌𝑌)  are taken from the joint distribution P(X, Y). In the 
second expectation, the samples 𝑥𝑥~𝑃𝑃(𝑋𝑋), 𝑦𝑦~𝑃𝑃(𝑌𝑌)  are taken from marginal 
distributions P(X) and P(Y).

Algorithm 13.7.1: MINE.

𝜃𝜃 ←  initialize all network parameters
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While 𝜃𝜃  has not converged do:

1. Draw a mini batch, b, of samples from the joint distribution 
{(𝑥𝑥(1), 𝑦𝑦(1)), (𝑥𝑥(2), 𝑦𝑦(2)),… , (𝑥𝑥(𝑏𝑏), 𝑦𝑦(𝑏𝑏))}~𝑃𝑃(𝑋𝑋, 𝑌𝑌) 

2. Draw a mini batch, b, of samples from the marginal distributions 

{(𝑥𝑥¯ (1)) , (𝑥𝑥¯ (2)) ,… , (𝑥𝑥¯ (𝑏𝑏))}~𝑃𝑃(𝑋𝑋)  and {(𝑦𝑦
¯ (1)) , (𝑦𝑦¯ (2)) , … , (𝑦𝑦¯ (𝑏𝑏))}~𝑃𝑃(𝑌𝑌) .

3. Evaluate the lower-bound: 𝒱𝒱(𝜃𝜃) =
1
𝑏𝑏∑𝑇𝑇𝜃𝜃(𝑥𝑥(𝑖𝑖), 𝑦𝑦(𝑖𝑖)) − 𝑙𝑙𝑙𝑙𝑙𝑙 1𝑏𝑏∑𝑒𝑒𝑇𝑇𝜃𝜃(𝑥𝑥

¯ (𝑖𝑖),𝑦𝑦¯ (𝑖𝑖))
𝑏𝑏

𝑖𝑖=1

𝑏𝑏

𝑖𝑖=1
 

4. Evaluate the bias-corrected gradients: �̂�𝐺(𝜃𝜃) = ∇̂𝜃𝜃𝒱𝒱(𝜃𝜃) 

5. Update the network parameters: 𝜃𝜃 ← 𝜃𝜃 − 𝜖𝜖�̂�𝐺(𝜃𝜃) , where 𝜖𝜖  is the learning rate.

Algorithm 13.7.1 summarizes the MINE algorithm. The samples from the marginal 
distribution are samples from the joint distribution with the other variable dropped. 
For example, samples x are simply samples (x, y) with the variable y dropped. 
After dropping values for variable y, samples x are shuffled. The same sampling 
method is done for y. For clarity, we use symbols �̅�𝑥  and �̅�𝑦  to identify samples 
from marginal distributions.

In the next section, we will use the MINE algorithm to estimate the MI in the case 
of a bivariate Gaussian distribution. We will show both the estimation of MI using 
an analytic method and the approximation of MI using MINE.

8. Estimating the Mutual Information of a 
bivariate Gaussian
In this section, we validate MINE on a bivariate Gaussian distribution. Figure 13.8.1 
shows a bivariate Gaussian distribution with mean and covariance:

𝝁𝝁 = [0 0]     (Equation 13.8.1)

𝝈𝝈 = [ 1 0.5
0.5 1 ]     (Equation 13.8.2)
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Figure 13.8.1 A two dimensional Gaussian distribution with mean and covariance as shown in Equation 13.8.1 
and Equation 13.8.2

Our goal is to estimate MI by approximating Equation 13.1.3. The approximation 
can be done by obtaining a huge number of samples (such as 1 million) and creating 
a histogram with a large number of bins (such as 100 bins). Listing 13.8.1 shows the 
manual computation of the MI of a bivariate Gaussian distribution using binning.

Listing 13.8.1: mine-13.8.1.py:

def sample(joint=True,
           mean=[0, 0],
           cov=[[1, 0.5], [0.5, 1]],
           n_data=1000000):
    """Helper function to obtain samples 
        fr a bivariate Gaussian distribution

    Arguments:
        joint (Bool): If joint distribution is desired
        mean (list): The mean values of the 2D Gaussian
        cov (list): The covariance matrix of the 2D Gaussian
        n_data (int): Number of samples fr 2D Gaussian
    """
    xy = np.random.multivariate_normal(mean=mean,
                                       cov=cov,
                                       size=n_data)
    # samples fr joint distribution
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    if joint:
        return xy
    y = np.random.multivariate_normal(mean=mean,
                                      cov=cov,
                                      size=n_data)

    # samples fr marginal distribution
    x = xy[:,0].reshape(-1,1)
    y = y[:,1].reshape(-1,1)

    xy = np.concatenate([x, y], axis=1)
    return xy

def compute_mi(cov_xy=0.5, n_bins=100):
    """Analytic computation of MI using binned 
        2D Gaussian

    Arguments:
        cov_xy (list): Off-diagonal elements of covariance
            matrix
        n_bins (int): Number of bins to "quantize" the
            continuous 2D Gaussian
    """
    cov=[[1, cov_xy], [cov_xy, 1]]
    data = sample(cov=cov)
    # get joint distribution samples
    # perform histogram binning
    joint, edge = np.histogramdd(data, bins=n_bins)
    joint /= joint.sum()
    eps = np.finfo(float).eps
    joint[joint<eps] = eps
    # compute marginal distributions
    x, y = margins(joint)

    xy = x*y
    xy[xy<eps] = eps
    # MI is P(X,Y)*log(P(X,Y)/P(X)*P(Y))
    mi = joint*np.log(joint/xy)
    mi = mi.sum()
    return mi
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The result of running:

python3 mine-13.8.1.py --gaussian

indicates the manually computed MI:

Computed MI: 0.145158

The covariance can be changed using the --cov_xy option. For example:

python3 mine-13.8.1.py  --gaussian --cov_xy=0.8

indicates the manually computed MI:

Computed MI: 0.510342

Figure 13.8.2 A simple MINE model for estimating the MI of random  
variables X and Y of a bivariate Gaussian distribution
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Listing 13.8.2: mine-13.8.1.py.

A simple MINE model to estimate the MI of random variables of a bivariate 
Gaussian distribution:

class SimpleMINE:
    def __init__(self,
                 args,
                 input_dim=1,
                 hidden_units=16,
                 output_dim=1):
        """Learn to compute MI using MINE (Algorithm 13.7.1)

        Arguments:
            args : User-defined arguments such as off-diagonal
                elements of covariance matrix, batch size, 
                epochs, etc
            input_dim (int): Input size dimension
            hidden_units (int): Number of hidden units of the 
                MINE MLP network
            output_dim (int): Output size dimension
        """
        self.args = args
        self._model = None
        self.build_model(input_dim,
                         hidden_units,
                         output_dim)

    def build_model(self,
                    input_dim,
                    hidden_units,
                    output_dim):
        """Build a simple MINE model
        
        Arguments:
            See class arguments.
        """
        inputs1 = Input(shape=(input_dim), name="x")
        inputs2 = Input(shape=(input_dim), name="y")
        x1 = Dense(hidden_units)(inputs1)
        x2 = Dense(hidden_units)(inputs2)
        x = Add()([x1, x2])
        x = Activation('relu', name="ReLU")(x)
        outputs = Dense(output_dim, name="MI")(x)
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        inputs = [inputs1, inputs2]
        self._model = Model(inputs,
                            outputs,
                            name='MINE')
        self._model.summary()

    def mi_loss(self, y_true, y_pred):
        """ MINE loss function

        Arguments:
            y_true (tensor): Not used since this is
                unsupervised learning
            y_pred (tensor): stack of predictions for
                joint T(x,y) and marginal T(x,y)
        """
        size = self.args.batch_size
        # lower half is pred for joint dist
        pred_xy = y_pred[0: size, :]

        # upper half is pred for marginal dist
        pred_x_y = y_pred[size : y_pred.shape[0], :]
        # implentation of MINE loss (Eq 13.7.3)
        loss = K.mean(pred_xy) \
               - K.log(K.mean(K.exp(pred_x_y)))
        return -loss

    def train(self):
        """Train MINE to estimate MI between 
            X and Y of a 2D Gaussian
        """
        optimizer = Adam(lr=0.01)
        self._model.compile(optimizer=optimizer,
                            loss=self.mi_loss)
        plot_loss = []
        cov=[[1, self.args.cov_xy], [self.args.cov_xy, 1]]
        loss = 0.
        for epoch in range(self.args.epochs):
            # joint dist samples
            xy = sample(n_data=self.args.batch_size,
                        cov=cov)
            x1 = xy[:,0].reshape(-1,1)
            y1 = xy[:,1].reshape(-1,1)
            # marginal dist samples
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            xy = sample(joint=False,
                        n_data=self.args.batch_size,
                        cov=cov)
            x2 = xy[:,0].reshape(-1,1)
            y2 = xy[:,1].reshape(-1,1)

            # train on batch of joint & marginal samples
            x =  np.concatenate((x1, x2))
            y =  np.concatenate((y1, y2))
            loss_item = self._model.train_on_batch([x, y],
                                                   np.zeros(x.shape))
            loss += loss_item
            plot_loss.append(-loss_item)
            if (epoch + 1) % 100 == 0:
                fmt = "Epoch %d MINE MI: %0.6f"
                print(fmt % ((epoch+1), -loss/100))
                loss = 0.

Let's now use MINE to estimate the MI of this bivariate Gaussian distribution. 
Figure 13.8.2 shows a simple 2-layer MLP as a model of 𝑇𝑇𝜃𝜃 . The input layers receive 
one batch of (x, y) from the joint distribution and one batch of (�̅�𝑥, �̅�𝑦)  from the 
marginal distribution. The network is implemented in Listing 13.8.2 in build_
model(). Also shown in the same listing is the training routine for this simple 
MINE model.

The loss function implementing Equation 13.7.3 is also shown in Listing 13.8.2. Note 
that the loss function does not use the ground truth values. It simply minimizes the 
negative MI estimate (and thus maximizes the MI). For this simple MINE model, 
the moving average loss is not implemented. We use the same function, sample(), 
in Listing 13.8.1 to obtain both joint and marginal samples.

We can now estimate the MI of a bivariate Gaussian distribution using the same 
command:

python3 mine-13.8.1.py --gaussian

Figure 13.8.3 shows the MI estimate (negative of loss) as a function of the number 
of epochs. Below are the quantitative results on specific epochs at intervals of 100. 
The results for both manual and MINE computations are close. This validates 
MINE as a good estimator of the MI of continuous random variables.

Epoch 100 MINE MI: 0.112297

Epoch 200 MINE MI: 0.141723

Epoch 300 MINE MI: 0.142567

Epoch 400 MINE MI: 0.142087
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Epoch 500 MINE MI: 0.142083

Epoch 600 MINE MI: 0.144755

Epoch 700 MINE MI: 0.141434

Epoch 800 MINE MI: 0.142480

Epoch 900 MINE MI: 0.143059

Epoch 1000 MINE MI: 0.142186

Computed MI: 0.147247

Figure 13.8.3 MI estimate as a function epoch for the simple MINE model.

So far, we have demonstrated MINE for the case of a bivariate Gaussian distribution. 
In the next section, we will use MINE on the same problem of unsupervised 
clustering of MNIST as we did with IIC.

9. Unsupervised clustering using 
continuous random variables in Keras
In the unsupervised classification of MNIST digits, we used IIC since the MI can 
be computed using discrete joint and marginal distributions. We obtained good 
accuracy with a linear assignment algorithm.
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In this section, we will attempt to use MINE to perform clustering. We'll use the 
same key ideas from IIC: from a pair of images and their transformed versions 
(𝑋𝑋, �̅�𝑋) , maximize the MI of the corresponding encoded latent vectors (𝑍𝑍, �̅�𝑍) . By 
maximizing the MI, we perform clustering of the encoded latent vectors. The 
difference with MINE is that the encoded latent vectors are continuous and not in 
one-hot vector format, as used in IIC. Since the output of clustering is not in one-hot 
vector format, we will use a linear classifier. A linear classifier is an MLP without a 
non-linear activation layer such as ReLU. A linear classifier is used as an alternative 
to the linear assignment algorithm in the case of outputs that are not in one-hot 
vector format.

Figure 13.9.1 shows the network model of MINE. For the case of MNIST, variable 
x is sampled from the MNIST train dataset. Similar to IIC, the other input called 
variable y is just a transformed version of image x. During testing, the input image x 
is from the MNIST test dataset. Essentially, the data generation is the same as in IIC, 
as shown in Listing 13.5.2.

Figure 13.9.1 Network implementation of MINE using encoder network ℰ . The input MNIST image is center 
cropped to 24 x 24 pixels. In this example, �̅�𝑋 = 𝑌𝑌 = 𝒢𝒢(𝑋𝑋)  is a random 24 x 24-pixel cropping operation.

The encoder network of Figure 13.9.1 is shown in Figure 13.9.2 when implemented in 
Keras. We left out the number of dimensions in the Dense output so that we can try 
out different dimensions (such as 10, 16, and 32).
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Figure 13.9.2 Encoder network ℰ  is a VGG network similar to the one used in IIC

The MINE network model is shown in Figure 13.9.3, and the code is shown in Listing 
13.9.1. It is similar in architecture to the simple MINE implemented in the previous 
section except that we used 1,024 hidden units in the MLP instead of 16.

Listing 13.9.1: mine-13.8.1.py.

MINE network model for unsupervised clustering:

class MINE:
    def __init__(self,
                 args,
                 backbone):
        """Contains the encoder, SimpleMINE, and linear 
            classifier models, the loss function,
            loading of datasets, train and evaluation routines
            to implement MINE unsupervised clustering via mutual
            information maximization

        Arguments:
            args : Command line arguments to indicate choice
                of batch size, folder to save
                weights file, weights file name, etc
            backbone (Model): MINE Encoder backbone (eg VGG)
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        """
        self.args = args
        self.latent_dim = args.latent_dim
        self.backbone = backbone
        self._model = None
        self._encoder = None
        self.train_gen = DataGenerator(args,
                                       siamese=True,
                                       mine=True)
        self.n_labels = self.train_gen.n_labels
        self.build_model()
        self.accuracy = 0

    def build_model(self):
        """Build the MINE model unsupervised classifier
        """
        inputs = Input(shape=self.train_gen.input_shape,
                       name="x")
        x = self.backbone(inputs)
        x = Flatten()(x)
        y = Dense(self.latent_dim,
                  activation='linear',
                  name="encoded_x")(x)
        # encoder is based on backbone (eg VGG)
        # feature extractor
        self._encoder = Model(inputs, y, name="encoder")
        # the SimpleMINE in bivariate Gaussian is used 
        # as T(x,y) function in MINE (Algorithm 13.7.1)
        self._mine = SimpleMINE(self.args,
                                input_dim=self.latent_dim,
                                hidden_units=1024,
                                output_dim=1)
        inputs1 = Input(shape=self.train_gen.input_shape,
                        name="x")
        inputs2 = Input(shape=self.train_gen.input_shape,
                        name="y")
        x1 = self._encoder(inputs1)
        x2 = self._encoder(inputs2)
        outputs = self._mine.model([x1, x2])
        # the model computes the MI between 
        # inputs1 and 2 (x and y)
        self._model = Model([inputs1, inputs2],
                            outputs,
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                            name='encoder')
        optimizer = Adam(lr=1e-3)
        self._model.compile(optimizer=optimizer,
                            loss=self.mi_loss)
        self._model.summary()
        self.load_eval_dataset()
        self._classifier = LinearClassifier(\
                            latent_dim=self.latent_dim)

Figure 13.9.3 The MINE network model

As shown in Listing 13.9.2, the training routine is similar to the one in IIC. The 
difference is in the evaluation that is performed after every epoch. In this case, we 
train a linear classifier for a few epochs and use it to evaluate the clustered latent 
code vectors. When the accuracy improves, the model weights are optionally saved. 
The loss function and optimizer are similar in SimpleMINE as shown in Listing 
13.8.2 and are not repeated here.

Listing 13.9.2: mine-13.8.1.py.

MINE training and evaluation functions:

    def train(self):
        """Train MINE to estimate MI between 
            X and Y (eg MNIST image and its transformed
            version)
        """
        accuracy = AccuracyCallback(self)
        lr_scheduler = LearningRateScheduler(lr_schedule,
                                             verbose=1)
        callbacks = [accuracy, lr_scheduler]
        self._model.fit_generator(generator=self.train_gen,
                                  use_multiprocessing=True,
                                  epochs=self.args.epochs,
                                  callbacks=callbacks,
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                                  workers=4,
                                  shuffle=True)
    def eval(self):
        """Evaluate the accuracy of the current model weights
        """
        # generate clustering predictions fr test data
        y_pred = self._encoder.predict(self.x_test)
        # train a linear classifier
        # input: clustered data
        # output: ground truth labels
        self._classifier.train(y_pred, self.y_test)
        accuracy = self._classifier.eval(y_pred, self.y_test)

        info = "Accuracy: %0.2f%%"
        if self.accuracy > 0:
            info += ", Old best accuracy: %0.2f%%"
            data = (accuracy, self.accuracy)
        else:
            data = (accuracy)
        print(info % data)
        # if accuracy improves during training, 
        # save the model weights on a file
        if accuracy > self.accuracy \
            and self.args.save_weights is not None:
            folder = self.args.save_dir
            os.makedirs(folder, exist_ok=True)
            args = (self.latent_dim, self.args.save_weights)
            filename = "%d-dim-%s" % args
            path = os.path.join(folder, filename)
            print("Saving weights... ", path)
            self._model.save_weights(path)

        if accuracy > self.accuracy:
            self.accuracy = accuracy

Figure 13.9.4 A linear classifier model
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The linear classifier model is shown in Figure 19.3.4. It is an MLP with one hidden 
layer with 256 units. Since this model does not use a non-linear activation such 
as ReLU, it can be used as an approximation of the linear assignment algorithm to 
classify the output of the VGG-Dense encoder ℰ . Listing 13.9.3 shows the linear 
classifier network model builder as implemented in Keras.

Listing 13.9.3: mine-13.8.1.py.

Linear classifier network:

class LinearClassifier:
    def __init__(self,
                 latent_dim=10,
                 n_classes=10):
        """A simple MLP-based linear classifier. 
            A linear classifier is an MLP network
            without non-linear activations like ReLU.
            This can be used as a substitute to linear
            assignment algorithm.

        Arguments:
            latent_dim (int): Latent vector dimensionality
            n_classes (int): Number of classes the latent
                dim will be converted to.
        """
        self.build_model(latent_dim, n_classes)

    def build_model(self, latent_dim, n_classes):
        """Linear classifier model builder.

        Arguments: (see class arguments)
        """
        inputs = Input(shape=(latent_dim,), name="cluster")
        x = Dense(256)(inputs)
        outputs = Dense(n_classes,
                        activation='softmax',
                        name="class")(x)
        name = "classifier"
        self._model = Model(inputs, outputs, name=name)
        self._model.compile(loss='categorical_crossentropy',
                            optimizer='adam',
                            metrics=['accuracy'])
        self._model.summary()
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The MINE unsupervised classifier can be trained by executing:

python3 mine-13.8.1.py  --train --batch-size=1024 --epochs=200

The batch size could be adjusted depending on the GPU memory available. To use 
a different latent dimension size (such as 64), use the --latent-dim option:

python3 mine-13.8.1.py  --train --batch-size=1024 --latent-dim=64 
--epochs=200

In 200 epochs, the MINE network has the accuracy shown in Figure 13.9.5:

Figure 13.9.5 Accuracy of MINE in MNIST classification

As shown in Figure 13.9.5, at the default latent dim of 10, which is similar to IIC, 
MINE with a linear classifier achieves 93.86% accuracy. The accuracy increases with 
the value of the latent dimension. Since MINE is an approximation of the true MI, it 
is expected that its accuracy is less than IIC.

This concludes the chapter and the book. The area of unsupervised learning is 
nascent. This is a huge research opportunity given that one of the current barriers 
to the progress of AI is human labeling, which is costly and time-consuming. We 
expect breakthroughs in unsupervised learning in the next few years.
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10. Conclusion
In this chapter, we discussed MI and the ways in which it can be useful in solving 
unsupervised tasks. Various online resources provide additional background about 
MI [4]. When used in clustering, maximizing MI forces the latent code vectors to 
cluster in regions that are suitable for easy labeling, either using linear assignment 
or a linear classifier.

We presented two measures of MI: IIC and MINE. We can closely approximate 
MI that leads to a classifier that performs with high accuracy by using IIC on 
discrete random variables. IIC is suitable for discrete probability distributions. 
For continuous random variables, MINE uses the Donsker-Varadhan form of KL-
divergence to model a deep neural network that estimates MI. We demonstrated 
that MINE can closely approximate the MI of a bivariate Gaussian distribution. 
As an unsupervised method, MINE shows acceptable performance on classifying 
MNIST digits.
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with existing patterns
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